
J. W. Specks, A. Rajnák,
“LIN - Protocol, Development Tools, and Software Interfaces for Local Interconnect Networks in Vehicles“,
9th International Conference on Electronic Systems for Vehicles, Baden-Baden, Oct. 5/6, 2000

1

LIN - Protocol, Development Tools, and Software Interfaces
for Local Interconnect Networks in Vehicles

LIN - Protokoll, Entwicklungswerkzeuge und Software-Schnittstelle
für Lokale Datennetzwerke im Kraftfahrzeug

Dr.-Ing. J. Will Specks, Motorola GmbH, Munich
Antal Rajnák, Volcano Communications Technologies, Gothenburg (S)

Abstract – LIN is a holistic communication concept for local interconnect networks in
vehicles. The specification covers in addition to the definition of the protocol and the
physical layer also the definition of interfaces for development tools and application
software. LIN enables a cost-effective communication for smart sensors and actuators
where the bandwidth and versatility of CAN is not required. The communication is
based on the SCI (UART) data format, a single-master/multiple-slave concept, a single-
wire 12V bus, and a clock synchronization for nodes without stabilized time base. The
LIN specification is open and is driven by an automotive industry consortium.

Zusammenfassung – LIN ist ein ganzheitliches Kommunikationskonzept für lokale
Datennetzwerke im Kraftfahrzeug. Die Spezifikation umfasst zusätzlich zur Definition des
Protokolls und der elektrischen Übertragungsebene auch die Definition der Schnittstellen für
Entwicklungswerkzeuge and Anwendersoftware. LIN ermöglicht eine kostengünstige
Kommunikation für intelligente Sensoren und Aktuatoren dort, wo die Bandbreite und
Vielseitigkeit von CAN nicht erforderlich ist. Die Kommunikation basiert auf dem seriellen SCI
(UART) Datenformat, einem Single-Master/Multi-Slave Konzept, einem 12V Eindrahtbus, und
einer Taktsynchronisation für Busknoten ohne stabilisierte Zeitbasis. Die LIN-Spezifikation ist
offengelegt und wird durch ein Konsortium der Automobilindustrie getrieben.



J. W. Specks, A. Rajnák,
“LIN - Protocol, Development Tools, and Software Interfaces for Local Interconnect Networks in Vehicles“,
9th International Conference on Electronic Systems for Vehicles, Baden-Baden, Oct. 5/6, 2000

2

1. Introduction

The LIN Consortium started as workgroup in late 1998 as an initiative by the five car manu-
facturers Audi, BMW, DaimlerChrysler, Volvo and Volkswagen, the tool manufacturer VCT,
and the semiconductor manufacturer Motorola. The objective of this workgroup is the specifi-
cation of an open standard for low-cost local interconnect networks (LIN) in vehicles where
the bandwidth and versatility of CAN are not required. Typical applications for LIN are smart
sensors and actuators that require data communication from and to a network.

The LIN standard [1] specifies not only the data transmission but also gives provision for a
highly automated tool chain. It addresses the needs of increasing complexity, implementa-
tion, and maintenance of software in distributed systems. For this very reason the LIN speci-
fication covers in addition to the definition of protocol and medium also the interfaces for the
development tools and for a network-independent application software (see Figure 1).

Operating System

Bus Transceiver

Application Software

Communication Manager

Vehicle  LIN Network

Software
Level

Hardware
Level

LIN API Specification

LIN Protocol Specification

LIN Physical Layer Specification

LIN Configuration Language

Tools

Signal Database
Manager (SDM/L)

Bus Analyzer and Emulator
(LINspector)

Network Configuration
Generator (LCFG)

LIN Physical Layer Specification

LIN Configuration Language

ECU (LIN relevant functions only)

Figure 1: Networking and tool interfaces for LIN

The LIN protocol (see Section 5) is based on the SCI (UART) serial data link format, which is
supported by a wide products range. The communication concept is ‘single-master/multiple-
slave’ with a message identification for multi-cast transmission between any network nodes.
A particular feature of LIN is the synchronization for slave nodes that do not have a stabilized
timebase for cost reasons. The physical layer (see Section 6) is a single-wire 12V bus inter-
face, derived from the ISO9141 standard for automotive diagnostics, that has been adapted
to the particular requirements by EMC, ESD, and noise under vehicle operation.

The LIN configuration language (see Section 3.4) is used to describe the network topology
and objects, as e.g. nodes, interfaces, and latencies. This enables the integration of devel-



J. W. Specks, A. Rajnák,
“LIN - Protocol, Development Tools, and Software Interfaces for Local Interconnect Networks in Vehicles“,
9th International Conference on Electronic Systems for Vehicles, Baden-Baden, Oct. 5/6, 2000

3

opment tools from different vendors, such as the database manager, the network configura-
tion manager, or the network analyzer/emulator. Finally, the application programmer's inter-
face (API, see Section 4) defines common calls between application and communication
software in an ECU. The definition of the API is simple but quite powerful as it provides the
capability for automatic code generation.

1.1 The Need for LIN

The applications for network protocols in vehicles can be separated in four distinct areas, as
illustrated by Figure 2. There is no single protocol, which could claim to represent a “one fits
all” solution for all these areas. Each of them requires specific protocol features:

(a) Multimedia  applications, calling for protocols providing high speed, high bandwidth,
and even wireless interconnection, like MOST, D2B, or Bluetooth;

(b) Emerging safety critical applications in chassis and power train (x-by wire) calling for
a fault tolerant, dependable protocol, like TTP/C, Byteflight, TT-CAN or others;

(c) Conventional body and powertrain applications, mainly using CAN;

(d) Mechatronic type applications such as smart sensors and actuator, or even complex
ECUs with simple communications needs, being addressed by low-end protocols
like LIN, TTP/A, J-1850, and quite a few other OEM or Tier-I in-house protocols.

The progress of development and consolidation of the various protocols is different in the
four areas. In general, the evolution can be differentiated in two phases: the introduction and
the consolidation. The introduction of protocols in a new field of application is driven by time
to market. During this phase, a variety of protocols are developed in parallel and secrecy by
several OEM. The standardization efforts are quite low, as the network requirements are dif-
ficulty to share without revealing details about the application itself.

The introduction phase is followed by the consolidation phase, which is driven by cost reduc-
tion. The need for a significant amount of resources and competence in application know-
how, protocol design, tool-support, silicon-design and manufacturing drive the standardiza-
tion through the industry. While the standardization in body electronics is far progressed with
CAN, the consolidation process in the field of low-end multiplexing has started now.



J. W. Specks, A. Rajnák,
“LIN - Protocol, Development Tools, and Software Interfaces for Local Interconnect Networks in Vehicles“,
9th International Conference on Electronic Systems for Vehicles, Baden-Baden, Oct. 5/6, 2000

4

relative incremental communication cost per node
0.5 1 2.5 5

J1850

LIN
master-slave
single wire bus
no quartz

CAN-B
event triggered
fault tolerant
dual wire

CAN-C
event triggered
dual wire

TTx, byteflight
time triggered
fault tol, dependable
2x2 wire / optical

25M

20K

10M

1M

125K

data rate [ bit/s ]

D2B, MOST

optical ring

Bluetooth

wireless medium

embedded control multi media

Figure 2: Hierarchy of the major multiplex networks in vehicles

There are virtually dozens of different SCI based protocols defined within the industry today,
almost being proprietary in-house standards of either an OEM or a supplier. The approach of
LIN to find the consensus for a standard during is based on the holistic addressing of the
needs of development, configuration, programming, signal transmission, and interconnection,
and not only the specification of another SCI protocol. The definition of LIN regards the lean
development process in the automotive industry of tomorrow and provides well-defined tool
interfaces, functional APIs and a properly designed and verified protocol.

Typical candidates for LIN nodes are door control (window lift, lock, mirror), roof control
(light/rain sensor, fond control unit), steering wheel and steering column, seat control and
heating, switch panels, motors and sensors in climate control, smart wiper motor, RF-
receiver for remote control, or the intelligent alternator.

1.2 Performance and resource requirements of  LIN versus CAN

LIN targets to low end applications where the communication cost per node must be two to
three times lower compared to CAN but where the performance, bandwidth, and versatility of
CAN is not required. The main saving factors of LIN versus CAN are the single-wire trans-
mission, the low cost of implementation as hardware or software in silicon, and the avoidance
of quartz or ceramics resonator in slave nodes. These advantages are compromised by a
lower bandwidth and the restrictive single-master bus access scheme. The main features of
LIN and CAN protocol, as well as the typical memory and CPU requirements of LIN and CAN
nodes are compared for body applications in Table 1 and Table 2, respectively.



J. W. Specks, A. Rajnák,
“LIN - Protocol, Development Tools, and Software Interfaces for Local Interconnect Networks in Vehicles“,
9th International Conference on Electronic Systems for Vehicles, Baden-Baden, Oct. 5/6, 2000

5

LIN CAN

medium access control single master multiple master

typical bus sped 2.4 … 19.6 kbps 62.5 … 500 kbps

multicast message routing 6-bit identifier 11 / 29-bit identifier

typical size of network 2 … 10 nodes 4 … 20 nodes

bit / byte coding NRZ 8N1 (UART) NRZ w/ bit stuffing

data byte per frame 2, 4, 8 byte 0 … 8 byte

transmission time for 4 data bytes 3.5 ms at 20 kbps 0.8 ms at 125 kbps

error detection (data field) 8-bit checksum 15-bit CRC

physical layer single wire, 13.5V twisted pair, 5V

quartz/ceramic resonator no (except master) yes

relative cost per network connection x 0.5 x 1

Table 1: Comparison of the main features of LIN and CAN protocol in body applications

network
speed

CPU
clock

CPU
load

memory
flash/ROM

memory
RAM

[kbps] [MHz] [%] [byte] [byte]

LIN 16-bit master 19.2 4 10 1200 25

LIN 8-bit slave w/o quartz 19.2 4 15 750 22

LIN 8-bit slave with quartz 19.2 4 6 650 20

CAN 16-bit node 125 8 15 3000 150

Table 2: Typical memory and CPU requirements for LIN and CAN microcontroller (C)

2. The Vehicle EE Architecture with LIN

The objective for the design of the vehicle electrical and electronic (EE) network is to enable
the exchange of signals between nodes meeting the latency requirements and communica-
tion security at lowest system cost. The optimization of the network requires the considera-
tion of criteria such as

• number of signal to be communicated;

• signal latencies and other real-time requirements of functions;

• speed, bandwidth, and medium of the bus;

• electro-magnetic compatibility (EMC);

• fault tolerance or fail safety;

• cost per electrical interconnection versus cost of local intelligence;



J. W. Specks, A. Rajnák,
“LIN - Protocol, Development Tools, and Software Interfaces for Local Interconnect Networks in Vehicles“,
9th International Conference on Electronic Systems for Vehicles, Baden-Baden, Oct. 5/6, 2000

6

• ECU variety cost by customer options and over vehicle platforms, system scalability;

• cost and reliability of systems integration in silicon and mechatronics;

• availability of tools and software;

• existing infrastructures and development skills, architecture and networking legacies.

The network architecture depends on the weight and balance of the above items. The possi-
ble outcomes of such an optimization are illustrated by the two examples in Figure 3 and
Figure 4. The examples show a central comfort ECU that controls actuators and sensors in a
seat. The ECU exchanges signals via a CAN link with other main ECUs as for example the
instrumentation cluster. The CAN link between the main ECUs is required due to the amount
of signals and latency requirements between these nodes.

The network architecture in Figure 3 is based on the intensive usage of the CAN backbone,
which links the zone modules with the central ECU. This architecture is today common for
highly functional zone ECUs as in door, seat, or roof modules [2]. The actuators and sensors
are hard-wired to the zone modules. This partitioning is chosen if the complexity of the sys-
tem requires a high bandwidth for signal exchange between the main ECUs, and if the local
actuators and sensors require a high computing performance. This architecture is cost effec-
tive only if the diversity of zone ECUs can be kept low because any change in the peripheral
electric requires another ECU design and qualification.

seatseat

< 20 wired signals
hard real-time demands

low system variety

dash board
instrument

ECU

CAN with 100...1000 signals

central body
control ECU

actuator

zone ECU

actuator

sensor

actuator

zone ECU

actuator

sensor

CAN dedicated
design

Figure 3: Network with CAN zone ECUs and locally hard-wired actuators and sensors

The architecture in Figure 4 shows an alternative distributed system that is based on smart
actuators and sensors. The zone ECU is almost dissolved and replaced by mechatronics that
are linked to the central comfort ECU via several LIN links. This partitioning is chosen in or-



J. W. Specks, A. Rajnák,
“LIN - Protocol, Development Tools, and Software Interfaces for Local Interconnect Networks in Vehicles“,
9th International Conference on Electronic Systems for Vehicles, Baden-Baden, Oct. 5/6, 2000

7

der to achieve a scaleable EE architecture with universally applicable mechatronic compo-
nents. This architecture will be cost effective if the additional cost for local intelligence and
networking can be compensated by cost savings in production and development due to a
lower variety of electronic components. The key enablers for this architecture are a sub-bus
standard, low-cost mechatronic assembly, and semiconductor systems integration.

seatseat

20...100 local signals
hard real-time demands
high system variety

dash board
instrument

ECU

CAN with 100 ... 1000 signals

central body
control ECU

smart
actuator

smart
sensor

smart
actuator

smart
actuator

smart
sensor

smart
actuator

LIN

universal
mechatronic
components

Figure 4: Network with smart actuators and sensors directly linked to the main ECU via LIN

2.1 Case Study: Seat, Steering, and Mirror Systems with LIN

This case study shall illustrate the philosophy of a LIN architecture and shall also give the
background for the description of the network configuration and management as well as
software programming in Section 3. It is the body comfort system comprising seat, steering,
and mirror nodes in Figure 5. This example includes four different LIN networks with one
master ECU that also acts as a gateway between the different networks. The master node is
also connected to another CAN network.

The general philosophy demonstrated in this case study is to build the network links around
the system functionality rather than around mechanical assembly needs. This is why in this
example the seat, the steering, and the mirror form a quasi-single system around the driver.



J. W. Specks, A. Rajnák,
“LIN - Protocol, Development Tools, and Software Interfaces for Local Interconnect Networks in Vehicles“,
9th International Conference on Electronic Systems for Vehicles, Baden-Baden, Oct. 5/6, 2000

8

Mirror LIN

Driver Seat LIN

Passenger Seat LIN 

Steering LIN

CAN

Central Body Control ECU (Master)

Switch Block

Mechatronic
Motor

Heating

Figure 5: LIN case study with mechatronic seat, mirror, and steering nodes

3. Network Design and Configuration

3.1 Tool Chain and Workflow

The holistic concept of LIN supports the entire development, configuration, and maintenance
of a network by the definition of interfaces not only between network nodes but also between
automated tools and software modules. Tool chain and workflow are illustrated in Figure 6.
The main tools are the signal database manager for LIN (SDML), the LIN configuration man-
ager (LCFG), the software compiler and linker, and the bus analysis tool (LINspector).

The signal database manager is a tool for definition, configuration and maintenance of LIN
networks. It is a PC Windows program that captures all properties of a LIN project including
the definition of signals, node, interfaces, and latency requirements. With the database man-
ager the project configuration comprising networks, functions, and gatewayed signals is cre-
ated. The frame/schedule packer packs signals into frames, and creates the message
schedules. A timing analysis is performed to ensure that all timing requirements of the sig-
nals are fulfilled, telling if a configuration is schedulable or not. Finally, the LIN configuration
file is generated together with other reports describing entities of a specific node or network.



J. W. Specks, A. Rajnák,
“LIN - Protocol, Development Tools, and Software Interfaces for Local Interconnect Networks in Vehicles“,
9th International Conference on Electronic Systems for Vehicles, Baden-Baden, Oct. 5/6, 2000

9

  VCT - LIN Database Manager

SDM/L

Database
Plug-In Plug-InPlug-In

  VCT - LINalyzer

LINspector

LCFG
User provided

information

LIN application &
configuration code

LIN API

ECU application
code

Compiler
Linker

Target image

ECU

LIN
sub-bus

LIN
Configuration
description

file

LIN Configuration
Language

Specification

LIN API
Recommended

Practice

LIN Protocol
Specification

Database

LIN
CDL LIN

Configuration
File

LIN
Protocol & PL

LIN
API

Target
Image

LIN
Configur’tn

Code

User-
Provided

Information

ECU
Application

Code

LCFG

Compiler
Linker

LIN Bus

LIN ECU

LIN API

Figure 6: Network configuration and development workflow with LIN

The configuration file (see Section 3.4) contains all significant network information and is an
input to the network analyzer and the configuration manager, which merges the network in-
formation with ECU-specific information and finally generates the LIN configuration C-code.
This configuration code is compiled and linked with the ECU application code and loaded as
target image into the node. The API (see Section 4) ensures a composable system for which
the application code can be independently developed from the network definition.

3.2 Definition of Network Objects

3.2.1 Signals, Latencies, and  Encoding Types

Signals, encoding types, nodes, and interfaces are entered as global objects into the signal
database manager and can be used for different projects, releases, and configurations. For
every node there is one or more interfaces defined. Though the SDML will only handle LIN
networks, a node can of course also have interfaces to other networks as for example CAN.

For each interface the global signals that are to be published or subscribed are defined. A
signal can only be published from one interface, but any signal can be subscribed by several
interfaces on a network. A signal that is published in one network and is subscribed in an-
other network is defined as a gatewayed signal. The encoding types describe how a signal is
encoded and decoded in terms of bits that represent logical or physical values and that are
carried by the message frame.



J. W. Specks, A. Rajnák,
“LIN - Protocol, Development Tools, and Software Interfaces for Local Interconnect Networks in Vehicles“,
9th International Conference on Electronic Systems for Vehicles, Baden-Baden, Oct. 5/6, 2000

10

The timing analysis of the system requires the definition of the master time base, the master
jitter, and various signal latency parameters. These values are used for the timing analysis of
the network. The master time base is the interval between two consecutive calls to a ‘tic’
function according to the LIN API. The master jitter is calculated as the maximum difference
between the master time base and the distance of two consecutive ‘tics’.

Three types of signal latencies are required for the network configuration: generation latency,
consumption latency, and maximum age. The definitions and the corresponding timing model
are illustrated in Figure 7. The generation latency is defined as the time between an event
input (e.g. a button pressed) and the signal being placed in a buffer, ready for transmission. It
has to be noted that some time might pass before the transport itself will take place, de-
pending on the actual schedule table and the master’s call to the “tic” function.

The consumption latency is defined as the time from when a signal has been received from
the network into a buffer until it has been read into the subscribing application and some ac-
tion has taken place (e.g. a motor starts moving). Further, every subscribed signal is given a
maximum age. This is the maximum allowed time between a user action in the publishing
node until the subscribing node is actually carrying out an action.

notional
generation

new value
available for

trans-
mission

new value
available for

read call

notional
consump-

tion

start of
frame trans-

mission

completion
of frame
trans-

mission

generation
latency
(signal)

timeconsumption
latency
(signal)

message
length
(frame)

scheduling
latency
(frame)

notification
latency
(frame)

LIN availability time (signal)

maximum age (signal)

Figure 7: The LIN timing model and definition of latencies

3.2.2 Nodes and Interfaces

The SDML interface consists of three windows that represent the tree structure of the ob-
jects, the list of object details, and an information window. With this interface, the network
nodes are added or edited in a convenient form of ‘click-and-type’. If a node contains a mas-
ter interface then a master time base (see Section 3.2) is assigned.

The screen shot in Figure 8 shows the list of nodes as defined for the case study in Section
2.1. The example includes the sub-tree of the interface ‘IfcMirror’, which has a 0.1 ms master



J. W. Specks, A. Rajnák,
“LIN - Protocol, Development Tools, and Software Interfaces for Local Interconnect Networks in Vehicles“,
9th International Conference on Electronic Systems for Vehicles, Baden-Baden, Oct. 5/6, 2000

11

jitter. For every node one or more interfaces have to defined. In the case that an interface is
the master node then the previously defined master jitter should be entered.

Figure 8: SDML interface with the list of nodes and mirror sub-tree used in the case study

Signals can be mapped to an interface as published signals with the generation latency or as
subscribed signals with the specific consumption latency and the maximum age. In the par-
ticular case of published signals that are related to each other in a time critical way and that
need to be mapped into one single frame, a ‘published signal group’ can be defined.

3.3 Definition of  Network Topology and Generation of Message Schedules

3.3.1 Network  and Gateways

After all global objects have defined the network itself is defined under a project. The case
study uses four networks all using the CBCM module as the master node. The LIN networks
will DSeatNet, PSeatNet, SteeringNet, and MirrorNet are defined together with their network
the speed in kbits/sec. The interfaces are then added to the networks using a ‘drag-and-drop’
technique. The screen-shot in Figure 9 shows how the MirrorNet is created by dragging the
master interface IfcMirror and the slave interfaces IfcMR_DR and IfcMR_PS to the right
panel of the Assign Interfaces window.

DS_SB
DS_PS
DS_HT

MR_PS

DS_CS
DS_BR
DS_HR
DS_HT

MR_DR

MR_RF

..........

..........

IfcDriverSeat
IfcPassengerSeat



J. W. Specks, A. Rajnák,
“LIN - Protocol, Development Tools, and Software Interfaces for Local Interconnect Networks in Vehicles“,
9th International Conference on Electronic Systems for Vehicles, Baden-Baden, Oct. 5/6, 2000

12

Figure 9: The network definition with the SDML interface

The SDML will note if a signal is published on one network and subscribed on another. The
network designer defines such a signal as ‘gatewayed’ and assigns to it the gateway node,
the source network with interface, and the target network with interface. For every gatewayed
signal the maximum age needs to be distributed over the transporting networks.

3.3.2 Frame Packing and Schedule Table, and Timing Analysis

The Frame/Schedule Packer tool is used to pack signals into frames and to create schedule
tables for each network. The screen-shot in Figure 10 shows the example for the definition of
the MirrorFrm frame SchMirror schedule table. The left and the middle panel are used for
frame packing, and the middle and right panel for schedule table generation.

The signals of the actual interface shown in the left panel are ‘drag-and-dropped’ into the
selected frame in the middle panel. Each signal is shown with information about the signal
size and offset in the frame. The size of a frame is selectable between 2, 4, or 8 data bytes,
depending on the number and size of the included signals. The frame ID is also assigned
during this step. After the signals are packed into frames, the schedule tables for these
frames are automatically generated with delays that optimize the network’s bandwidth usage.

Full Extension

Case Study Vehicle
Comfort System

IfcDS_SB (Node DS_SB)
IfcDS_PS (Node DS_PS)
IfcDS_HT (Node DS_HT)

IfcMR_PS (MR_RF)

IfcDS_CS (Node DS_CS)
IfcDS_BR (Node DS_BR)
IfcDS_HR (Node DS_HR)
IfcDS_HT (Node DS_HT)

IfcMR_DR (MR_RF)
IfcMR_RF (Node MR_RF)

..........                    

IfcDriverSeat (CBCM)
IfcPass’grSeat (CBCM)

IfcST_UD (Node ST_UD)



J. W. Specks, A. Rajnák,
“LIN - Protocol, Development Tools, and Software Interfaces for Local Interconnect Networks in Vehicles“,
9th International Conference on Electronic Systems for Vehicles, Baden-Baden, Oct. 5/6, 2000

13

Figure 10: Packing of signals into MirrorFrm frame and definition of schedule table SchMirror

The timing analysis will determine if the system is schedulable or not. If it is not, appropriate
actions like changing one or more maximum age settings should be taken until the system is
proved to be schedulable. The timing results and the bandwidth usage for the mirror case
study are shown in Figure 11.

Figure 11: Timing analysis of the schedule table for the IfcMirror frames

3.4 LIN Configuration File and Language

After the creation and verification of the network schedules, a network configuration file is
automatically generated. The LIN Configuration Language defines the syntax for the objects
and topology of a network (see Section 3.3). The specification of a common description for-
mat for LIN networks enables the integration of tools from different vendors into a homoge-
neous development flow. The format of the configuration language is illustrated by Listing 1.



J. W. Specks, A. Rajnák,
“LIN - Protocol, Development Tools, and Software Interfaces for Local Interconnect Networks in Vehicles“,
9th International Conference on Electronic Systems for Vehicles, Baden-Baden, Oct. 5/6, 2000

14

LIN_description_file; // example: mirror network

LIN_protocol_version = "1.1";

LIN_language_version = "1.1";

LIN_speed = 9.6 kbps;

Nodes { Master: CBCM, time base 5 ms, jitter 0.1ms;

Slave: MR_DR, MR_PS, MR_RF;}

Frames { frame_name, frame_id, published_by {

{signal_name, signal offset } }

Signals { signal_name : signal_size, init_value,

published_by, subscribed_by }

Schedule_tables { schedule_table_name {

frame_name delay frame_time }

Signal_groups {} // optional

Signal_encoding_types {} //optional

Signal_representation {} //optional

Listing 1: Format of the LIN configuration language for network description

4. Software Configuration Manger and API

The LIN application programmer's interface (API) is a network software layer that hides the
details of a LIN network configuration (e.g. how signals are mapped into frames) to the pro-
grammer of the application program in an ECU. The programmer uses the API to write and
read signals from other nodes via the network, without caring about the details of the data
transport.

The configuration manager (LCFG) converts the LIN configuration files (one per node inter-
face) and one node private file into the ANSI-C compliant source and header files  ‘l_gen.c’
and ‘l_gen.h’ (see Figure 12). The private file contains typically flags attached to signals,
local renaming, or interface descriptions. The generated source and header files are com-
piled together with the application source file. The resulting object code is then linked with
provided LIN library functions into the final target image. The library contains re-locatable
object modules and is generated for a specific target hardware and a certain type of linker.



J. W. Specks, A. Rajnák,
“LIN - Protocol, Development Tools, and Software Interfaces for Local Interconnect Networks in Vehicles“,
9th International Conference on Electronic Systems for Vehicles, Baden-Baden, Oct. 5/6, 2000

15

LIN Configuration File
per Node Interface

l_gen.h

lin.h

Application Source File

LIN Library

LIN Node Private File

l_gen.c

LCFG

Compiler

Linker

LIN Node Target Image

Figure 12: Data flow of the automated code generation with the configuration manager

The LIN API specification defines a set of functions that are used for system initialization,
read and write calls for signals and flags, scheduler calls, initialization and connection of
node interfaces, and interrupt management for the controller. An example for the most fre-
quently called API - the signal read/write calls – is shown in Listing 2.

void intDrMirrorPosition(void) { // position driver mirror

uint8 u8DrMirrorPos;

if (l_flg_tst_FlgDrMirrorReq()) {

l_flg_clr_FlgDrMirrorReq();

if (l_bool_rd_DrMirrorReq() &&

l_bool_rd_DrMirrorSwitchStatus()) {

u8DrMirrorPos = l_u8_rd_DrMirrorPosition();

} else {

u8DrMirrorPos = 0;

}

l_u8_wr_DrMirrorPos(u8DrMirrorPos);

}

} // end DrMirrorPosition

Listing 2: Usage of signal read/write calls and flags in a LIN application software

In this example, the specified LIN API calls are printed bold. The calls ‘l_flg_tst’ and
‘l_flg_tst’ return and set a C boolean variable that represents a flag status. The call
‘l_bool_rd’ reads a one-bit signal, while the calls ‘l_u8_rd’ and ‘l_u8_wr’ read and write
a signal of 1...8 bit, respectively.



J. W. Specks, A. Rajnák,
“LIN - Protocol, Development Tools, and Software Interfaces for Local Interconnect Networks in Vehicles“,
9th International Conference on Electronic Systems for Vehicles, Baden-Baden, Oct. 5/6, 2000

16

5. LIN Protocol

5.1 Features and Objectives

LIN is a single-wire serial communications protocol based on the common SCI (UART) byte-
word interface. UART interfaces as available as low cost silicon module on almost all micro-
controller and can also be implemented as equivalent in software or pure state machine for
ASICs. The medium access in a LIN network is controlled by a master node so that no arbi-
tration or collision management in the slave nodes is required, thus giving a guarantee of the
worst-case latency times for signal transmission.

A particular feature of LIN is the synchronization mechanism that allows the clock recovery
by slave nodes without quartz or ceramics resonator (see Section 5.6). The specification of
the line driver and receiver is following the ISO 9141 single-wire standard [3] with some en-
hancements. The maximum transmission speed is 20 kbit/s, resulting from the requirements
by electromagnetic compatibility (EMC) and clock synchronization.

A node in LIN networks does not make use of any information about the system config-
uration, except for the denomination of the master node. Nodes can be added to the LIN
network without requiring hardware or software changes in other slave nodes. The size of a
LIN network is typically under 12 nodes (though not restricted to this), resulting from the
small number of 64 identifier and the relatively low transmission speed.

The clock synchronization, the simplicity of UART communication, and the single-wire me-
dium are the major factors for the cost efficiency of LIN.

5.2 Communication Concept

A LIN network comprises one master node and one or more slave nodes. All nodes include a
slave communication task that is split in a transmit and a receive task, while the master node
includes an additional master transmit task. The communication in an active LIN network is
always initiated by the master task as illustrated in Figure 13: the master sends out a mes-
sage header which comprises the synchronization break, the synchronization byte, and the
message identifier.

Exactly one slave task is activated upon reception and filtering of the identifier and starts the
transmission of the message response. The response comprises two, four, or eight data



J. W. Specks, A. Rajnák,
“LIN - Protocol, Development Tools, and Software Interfaces for Local Interconnect Networks in Vehicles“,
9th International Conference on Electronic Systems for Vehicles, Baden-Baden, Oct. 5/6, 2000

17

bytes and one checksum byte. The header and the response part form one message frame
(see Section 5.4).

The identifier of a message denotes the content of a message but not the destination. This
communication concept enables the exchange of data in various ways: from the master node
(using its slave task) to one or more slave nodes, and from one slave node two the master
node and/or other slave nodes. It is possible to communicate signals directly from slave to
slave without the need for routing through the master node, or broadcasting messages from
the master to all nodes in a network. The sequence of message frames is controlled by the
master and may form cycles including branches.

data from slave to master

slave node

LIN slave task tran

LIN slave task rec

master node

LIN master funct.

LIN slave funct. tran

LIN slave task rec

data byte data byte checksum

synch field identifier synch break 

qu
ar

tz

slave node A

LIN slave task tran

LIN slave task rec

master node

LIN master task

LIN slave task tran

LIN slave task rec

data from master to slave(s)

slave node B

LIN slave task tran

LIN slave task rec

slave node A

LIN slave task tran

LIN slave task rec

master ECU

LIN master task

LIN slave task tran

LIN slave task rec

data from slave to slave(s)

slave node B

LIN slave task tran

LIN slave task rec

Figure 13: Various forms of data communication with LIN

5.3 Error Detection, Fault Confinement, and Data Protection

The actions that master and slave tasks undertake upon a corrupted communication (fault
confinement) depend almost on the system requirements and have to be specified in the ap-
plication layer. The LIN protocol defines only basic errors such as bit error (transmitted signal



J. W. Specks, A. Rajnák,
“LIN - Protocol, Development Tools, and Software Interfaces for Local Interconnect Networks in Vehicles“,
9th International Conference on Electronic Systems for Vehicles, Baden-Baden, Oct. 5/6, 2000

18

is different from monitored signal), checksum error, non-responding slave, and no bus activ-
ity. The fault confinement relies mainly on the master node that shall handle as much as pos-
sible of error detection and error recovery such as for example the re-scheduling a message.

An acknowledgment procedure for a correctly received message as known in CAN is not de-
fined by the LIN protocol. Errors can not directly signaled by slaves but must be polled by the
master. Local communication errors at the transmitter can be observed by comparing the
outgoing message stream with the monitored message stream. If a slave node has detected
an inconsistency it saves this as diagnostics information and provides it on request to the
master node. Checksum errors can detected by all network nodes (global error).

The identifier and the data fields in a LIN message are error protected by parity and check-
sum information, respectively (see Section 5.4). The particular protection of the identifier is
necessary as message header and response may origin from different sources. Thus, the
identifier can not be protected by the checksum in the message response.

5.4 Message Frame

The LIN communication is based on message frames in a fixed format of selectable length. A
message frame is built upon 8-bit characters (byte field) with 8N1-coding, known as SCI or
UART serial data format. Every byte field has a length of ten bits, beginning with a dominant
start bit, followed by eight data bits with the least significant bit (LSB) being sent first, and
ending with a recessive stop bit (see Figure 14).

synch break synch field identifier 2, 4, or 8 data fields checksum

message header message response

byte field

start bit stop bit

0 1 2 3 4 5 6 7

Figure 14: The LIN message frame is based on an 8N1 byte field.

A message frame is composed from a header being sent by the master task and a response
being sent by a slave task. The message header again is formed by a synchronization break,
a synchronization field, and the identifier field, while the message response is formed by two,
four, or eight data fields and one checksum field. All fields can be transmitted without spac-



J. W. Specks, A. Rajnák,
“LIN - Protocol, Development Tools, and Software Interfaces for Local Interconnect Networks in Vehicles“,
9th International Conference on Electronic Systems for Vehicles, Baden-Baden, Oct. 5/6, 2000

19

ing, giving the minimum length of a message as Tmsg,min = (44 + 10*Nfield) * Tbit. For the sim-
plicity of implementation, the LIN specification does not define the maximum spacing be-
tween single fields but defines a time budget for the transmission of a message. This maxi-
mum length is specified as Tmsg,max = 140% * Tmsg,min.

5.4.1 Message Header

The synchronization break is the only exception from the 8N1 coded byte stream and is
transmitted only by the master node. This particular pattern is longer than any regular se-
quence of dominant bits and can unambiguously be identified as start of a message (see
Figure 15). The synchronization break provides a regular opportunity for slave nodes to syn-
chronize to the bus clock, or to enter the LIN communication at any point in time, for example
after a controller reset.

The synchronization break must be at least 13 bit long to ensure proper synchronization of
salve node (see Section 5.6) but can be longer. UART modules on microcontroller that can
generate only generate multiples of 10-bit breaks will typically transmit 20 dominant bit. This
increases the minimum message length by 6% to 11%, depending on the number of data
bytes.

dominant level
≥13 bit

I
0 I

1
I
2 I

3
I
4 I

5
P
0

P
1

ID
parity

# data
bytes

ID
code

time base
8-bit

synchronization break synchronization field identifier field

synch delimiter
≥ 1 bit

Figure 15: Synchronization break, synchronization field, and identifier field

The synchronization field is a bit pattern with the hexadecimal equivalent of 0x55. A slave
node with in-accurate time base (e.g. on-chip oscillator without quartz stabilization) can
evaluate this pattern to retrieve the communication clock. One synchronization method is the
measurement of the period between first and last falling (i.e. recessive to dominant) edge
and dividing the result by 8, giving the master bit time Tbit. Depending on the hardware and
software resources in a slave node, other approaches might be more appropriate. In any
case the synchronization should be based only on the falling signal edges as those are ac-
tively driven by the line driver.

The identifier field denotes the content and length of a message. The field comprises six
identifier bits and two parity check bits (see Figure 15), forming a set of 64 identifiers. The
parity bits are calculated by a mixed-parity algorithm as



J. W. Specks, A. Rajnák,
“LIN - Protocol, Development Tools, and Software Interfaces for Local Interconnect Networks in Vehicles“,
9th International Conference on Electronic Systems for Vehicles, Baden-Baden, Oct. 5/6, 2000

20

42100 IDIDIDIDP ⊕⊕⊕=  (even) and 54311 IDIDIDIDP ⊕⊕⊕=  (odd) parity.

The bits ID4 and ID5 define the number of data fields in the message response. The coding
splits the set of 64 identifiers in three sub-sets of 32 identifiers for 2-byte data response, 16
identifier for 4-byte data response, and 16 identifier for 8-byte data response.

5.4.2 Message Response

The message response is composed of 2, 4, or 8 data fields (depending on the length code
in the identifier field) and one checksum field. The checksum is the inverted modulo-256 sum
over all data bytes. The sum is calculated by an 'add with carry' operation with the carry bit of
every addition being added to the LSB of the resulting sum. The addition with revolving carry
improves the protection against MSB failures. The sum of modulo-256 sum over all data
bytes and the checksum byte is ’0xFF’. Nodes for which message is irrelevant – e.g. in case
of an unknown identifier - may skip the checksum calculation.

5.5 Special Purpose Messages

Four identifier from the set with 8-byte response are reserved for particular message frames:
two command frames and two extended frames. The two command frames include an 8-byte
response and are used for data up- and downloads from the master to slave nodes and vice
versa. This feature is used for software updates, network configuration, and diagnostic pur-
poses. The frame structure is identical with a regular message. The response fields contain
user-defined command fields instead of data fields that put the slave nodes for example in a
service mode or in the sleep mode, as illustrated in Figure 16.

slave nodemaster node

down-load command header

2-byte service command

master sets slave to up-load mode

up-load command header

8-byte data up-load

slave in up-load mode sends data to master upon request

slave nodemaster node

Figure 16: Illustration of software up- and downloads in service mode



J. W. Specks, A. Rajnák,
“LIN - Protocol, Development Tools, and Software Interfaces for Local Interconnect Networks in Vehicles“,
9th International Conference on Electronic Systems for Vehicles, Baden-Baden, Oct. 5/6, 2000

21

The extended frame identifiers are defined to ensure upward compatibility of LIN slaves with
future revisions of the LIN protocol if required so. These identifiers will be used to embed fu-
ture extended formats of the LIN protocol into the existing specification. The extended frame
identifier announce an unspecified frame format to all bus participants. The identifier can be
followed by an arbitrary number of LIN byte fields. A slave receiving such an identifier must
ignore all subsequent byte fields until the next synchronization.

next synch break
resume regular
communication

undefined number and content
of data fields

extended frame
 header

Figure 17: The extended frame ensures upward compatibility to future revisions of LIN

5.6 Clock Synchronization

The LIN protocol provides a dedicated synchronization pattern with the start of every mes-
sage frame that allows slave nodes without quartz or ceramics resonator to synchronize their
local time base to that of the master. Two levels of synchronization are specified for slave
nodes in LIN:

'unsynchronized': slave clock unsynchF  differs less than ±15% from master clock masterF

'synchronized': slave clock synchF differs less than ±2% from master clock

A slave node with stabilized oscillator is always considered as synchronized, while a slave
node without stabilized clock is assumed to be unsynchronized after the end of a message,
after a reset, or after an exit from sleep mode. On-chip RC-oscillators can achieve a perma-
nent clock tolerance of better than ± 15% with simple pre-calibration. After synchronization,
the on-chip oscillator must be stable with unsynchF for the rest of the message, taking into ac-
count the impacts of temperature and voltage drift.

The actual capture range for synchronization is better than this specification value as will be
shown by the following calculations. The synchronization is performed in two steps: firstly the
detection of the synchronization break, and secondly the tuning of the local time base as de-
scribed in Section 5.4.1. Two requirements have to be considered for the detection of the
synchronization break, as illustrated in Figure 18:



J. W. Specks, A. Rajnák,
“LIN - Protocol, Development Tools, and Software Interfaces for Local Interconnect Networks in Vehicles“,
9th International Conference on Electronic Systems for Vehicles, Baden-Baden, Oct. 5/6, 2000

22

(a) An unsynchronized slave sampling the bus fast with %15+=+
masterunsynch FF must

not misconceive a regular ‘0x00’ data as break.

(b) The break signal must be long enough to be identified by an unsynchronized slave
sampling the bus slowly with %15−=−

masterunsynch FF .

0x00 data field from other slave

9 * T+
synch

slave node

sampling with fast clock
∆F = +15%

1 11 * T-
unsynch

(a)

synchronization break from master

slave node

sampling with slow clock
∆F = -15%

13 * Tmaster

1 11 * T+
unsynch

(b)

Figure 18: Illustration of the requirements (a) and (b) for the break detection

Requirement (a) leads to the specification of the break detection threshold SBRKTST  for
slaves. With the maximum length max

000xT  of a regular 0x00 data pattern on the bus being

( ) master
mastersynch

unsynchx T
FF

TT ⋅=
−⋅

==⋅=
−

+ 18.9
%21

999max
000 , (1)

where the term ’(1-2%)’ reflects that the 0x00 can be sent by a slave with -2% deviation. With
the LIN specification of 11=SBRKTST  slave bit times, a fast slave can not misconceive a 0x00

masterxunsynch T.TT ⋅=>⋅ 18911 max
000

min . (2)

Rewriting (2) with ( ) ( )+++
−

∆+
=

⋅∆+
==

F
T

FFF
T master

masterunsynch
unsynch 11

11
(3)

results in master
master T

F
T

⋅>
∆+

⋅
+

18.9
1

11  or ( ) 1%21
9
11 −−⋅<∆ +F , (4)

respectively. Solving Equation (4) results in ∆F+ < +19.7%. This is the maximum frequency
deviation under which a slave will synchronize.

Requirement (b) leads to the minimum length of the synchronization break, which is specified
in LIN as 13=SYNBRKT  master bit times. A slow slave with will detect the break if



J. W. Specks, A. Rajnák,
“LIN - Protocol, Development Tools, and Software Interfaces for Local Interconnect Networks in Vehicles“,
9th International Conference on Electronic Systems for Vehicles, Baden-Baden, Oct. 5/6, 2000

23

.1311 masterunsynch TT ⋅<⋅ + (5)

Rewriting (5) with ( ) ( )−−−
+

∆−
=

⋅∆−
==

F
T

FFF
T master

masterunsynch
unsynch 11

11 (6)

results in ( ) master
master T

F
T

⋅<
∆−

⋅ − 13
1

11  or 
13
111−<∆ −F , (7)

respectively. Equation (7) results in ∆F- < 15.3%. This is the minimum frequency deviation
under which a slave will synchronize. The calculation shows that the average capturing range

( ) %5.172/ ±=∆+∆=∆ −+ FFF  is wider than the specification, thus providing a safety margin.

6. LIN Physical Layer

The bus is a single line, wired AND bus being supplied via a termination resistor from the
positive battery node (VBAT) as illustrated in Figure 19. The bus line driver/receiver (‘trans-
ceiver’) is an enhanced implementation of the ISO 9141 standard [3]. The bus can take two
complementary logical values: the dominant value with an electrical voltage close to ground
and representing a logical ‘0’, and the recessive value with an electrical voltage close to the
battery supply and representing a logical ‘1’.

The bus a terminated with a pull-up resistance of 1kΩ in the master node and 30kΩ in a
slave node. A diode in series with the resistor is required to prevent the ECU from being
powered by the bus in case of a local loss of battery.

recessive level
logic ‘1’

dominant level
logic ‘0’

VBAT

GND

60%

40%

Bus Voltage

Time

UART
Rx

Tx

Electronic Control Unit

master: 1kΩ
slave: 30kΩ

Bus

master: ≈ 2.2nF
slave: 220pF

controlled slope
2V/µs

Figure 19: LIN physical layer and bus voltage levels

It has importantly to be noted that the specification of voltage levels in LIN refers to the in-
terface of the ECU with wire harness and not to ECU-internal voltages. This must be consid-
ered when designing for example a LIN transceiver IC: due reverse polarity protection and



J. W. Specks, A. Rajnák,
“LIN - Protocol, Development Tools, and Software Interfaces for Local Interconnect Networks in Vehicles“,
9th International Conference on Electronic Systems for Vehicles, Baden-Baden, Oct. 5/6, 2000

24

supply buffer capacitors in the ECU, the local supply or reference voltage at the transceiver
may be different from the external LIN connector voltages. Ideally, the design of the elec-
tronic component has to consider and compensate these differences.

The termination capacitance is typically pFCslave 220=  in the slave nodes, while the capaci-
tance of the master node is higher in order to make the total line capacitance less depended
from the number of slave nodes. The termination capacitance for the master is calculated by

linelineslaveslavebusmaster lCCnCC ⋅−⋅−= , (8)

where a typical target for total bus capacitance would be nFCbus 9=  and the line capaci-
tance mpFC line /150...100= .

The maximum baud rate is 20kbit/s due to the single wire medium. This value is a practical
compromise between the opposing requirements of synchronization for high signal slew
rates, and of slower slew rates for electromagnetic compatibility. The minimum baud rate is
1kbit/s to avoid conflicts with the practical implementation of time-out periods. The significant
electrical parameter of the LIN physical interface are listed in Table 3.

parameter typical value(s)

communication speed 2400, 9600, 19200 kbps

voltage level 13.5 V

signal slew rate 2 V/µs

termination resistor master / slave 1 kΩ / 30 kΩ

termination capacitance master /slave 220 pF / 2.2 nF

line capacitance 100 … 150 pF/m

Table 3: Major parameter of the LIN physical layer

7. References

[1] LIN Consortium, “LIN Specification, Version 1.1”, www.lin-subbus.org, March 2000
[2] W. Specks, A. Rajnák, “The Scaleable Network Architecture of the Volvo S80”, 8th Intl.

Conference on Electronic Systems for Vehicles, Baden-Bade, Oct 1998, pp. 597-641
[3] “Road Vehicles – Diagnostics Systems – Requirement for Interchange of Digital Infor-

mation”, International Standard ISO9141, 1st Edition, 1989


	Introduction
	The Need for LIN
	Performance and resource requirements of  LIN versus CAN

	The Vehicle EE Architecture with LIN
	Case Study: Seat, Steering, and Mirror Systems with LIN

	Network Design and Configuration
	Tool Chain and Workflow
	Definition of Network Objects
	Signals, Latencies, and  Encoding Types
	Nodes and Interfaces

	Definition of  Network Topology and Generation of Message Schedules
	Network  and Gateways
	Frame Packing and Schedule Table, and Timing Analysis

	LIN Configuration File and Language

	Software Configuration Manger and API
	LIN Protocol
	Features and Objectives
	Communication Concept
	Error Detection, Fault Confinement, and Data Protection
	Message Frame
	Message Header
	Message Response

	Special Purpose Messages
	Clock Synchronization

	LIN Physical Layer
	References

