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Preface

This book offers a broad introduction to magnetism and its applications,
designed for graduate students and advanced undergraduates as well as prac-
tising scientists and engineers. The approach is descriptive and quantitative,
treating concepts, phenomena, materials and devices in a way that emphasises
numerical magnitudes, and provides a wealth of useful data.

Magnetism is a venerable subject, which underwent four revolutionary
changes in the course of the twentieth century – understanding of the physics,
extension to high frequencies, the avalanche of consumer applications and,
most recently, the emergence of spin electronics. The reader probably owns
one or two hundred magnets, or some billions if you have a computer where
each bit on the hard disc counts as an individually addressable magnet. Sixty
years ago, the number would have been at best two or three. Magnetics, in part-
nership with semiconductors, has created the information revolution, which in
turn has given birth to new ways to research the subject – numerical simu-
lation of physical theory, automatic data acquisition and web-based literature
searches.

The text is structured in five parts. First, there is a short overview of the field.
Then come eight chapters devoted to concepts and principles. Two parts follow
which treat experimental methods and materials, respectively. Finally there are
four chapters on applications. An elementary knowledge of electromagnetism
and quantum mechanics is needed for the second part. Each chapter ends with a
short bibliography of secondary literature, and some exercises. SI units are used
throughout, to avoid confusion and promote magnetic numeracy. A detailed
conversion table for cgs units, which are still in widespread use, is provided
inside the back cover. There is some attempt to place the study of magnetism
in a global context; our activity is not only intellectual and practical, it is also
social and economic.

The text has grown out of courses given to undergraduates, postgraduates
and engineers over the past 15 years in Dublin, San Diego, Tallahassee, Stras-
bourg and Seagate, as well as from the activities of our own research group
at Trinity College, Dublin. I am very grateful to many students, past and
present, who contributed to the venture, as well as to numerous colleagues
who took the trouble to read a chapter and let me have their criticism and
advice, and correct at least some of the mistakes. I should mention particu-
larly Sara McMurray, Plamen Stamenov and Munuswamy Venkatesan, as well
as Grainne Costigan, Graham Green, Ma Qinli and Chen Junyang, who all



xii Preface

worked on the figures, and Emer Brady who helped me get the whole text into
shape.

Outlines of the solutions to the odd-numbered exercises are available at the
Cambridge website www.cambridge.org/9780521816144. Comments, correc-
tions and suggestions for improvements of the text are very welcome; please
post them at www.tcd.physics/magnetism/coeybook.

Finally, I am grateful to Wong May, thinking of everything we missed doing
together when I was too busy with this.

J. M. D. Coey
Dublin, November 2009
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1 Introduction

After a short historical summary, the central concepts of magnetic order and hystere-
sis are presented. Magnet applications are summarized, and magnetism is situated
in relation to physics, materials science and industrial technology.

1.1 A brief history of magnetism

The history of magnetism is coeval with the history of science. The mag-
net’s ability to attract ferrous objects by remote control, acting at a distance,
has captivated countless curious spirits over two millenia (not least the young
Albert Einstein). To demonstrate a force field that can be manipulated at will,
you need only two chunks of permanent magnet or one chunk of permanent
magnet and a piece of temporary magnet such as iron. Feeble permanent mag-
nets are quite widespread in nature in the form of lodestones – rocks rich
in magnetite, the iron oxide Fe3O4 – which were magnetized by huge elec-
tric currents in lightning strikes. Priests and people in Sumer, ancient Greece,
China and pre-Colomban America were familiar with the natural magic of these
magnets.

Sheng Kua, 1031–1095.

A lodestone carved in the shape of a Chinese spoon was the centrepiece of an
early magnetic device, the ‘South pointer’. Used for geomancy in China at the
beginning of our era (Fig. 1.1), the spoon turns on the base to align its handle
with the Earth’s magnetic field. Evidence of the South pointer’s application
can be seen in the grid-like street plans of certain Chinese towns, where the
axes of quarters built at different times are misaligned because of the secular
variation of the direction of the horizontal component of the Earth’s magnetic
field.

A propitious discovery, attributed to Zheng Gongliang in 1064, was that iron
could acquire a thermoremanent magnetization when quenched from red heat.
Steel needles thus magnetized in the Earth’s field were the first artificial perma-
nent magnets. They aligned themselves with the field when floated or suitably
suspended. A short step led to the invention of the navigational compass, which
was described by Shen Kua around 1088. Reinvented in Europe a century later,
the compass enabled the great voyages of discovery, including the European
discovery of America by Christopher Columbus in 1492 and the earlier Chinese
discovery of Africa by the eunuch admiral Cheng Ho in 1433.
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Figure 1.1

Some early magnetic
devices: the ‘South pointer’
used for orientation in
China around the beginning
of the present era, and a
Portuguese mariner’s
compass from the fifteenth
century.

A perpetuum mobile,
proposed by Petrus
Peregrinus in 1269.

William Gilbert, 1544–1603.

When we come to the middle ages, virtues and superstitions had accreted
to the lodestone like iron filings. Some were associated with its name.1 People
dreamt of perpetual motion and magnetic levitiation. The first European text
on magnetism by Petrus Peregrinus describes a perpetuum mobile. Perpetual
motion was not to be, except perhaps in the never-ending dance of electrons in
atomic orbitals with quantized angular momentum, but purely passive magnetic
levitation was eventually achieved at the end of the twentieth century. Much
egregious fantasy was debunked by William Gilbert in his 1600 monograph De
Magnete, which was arguably the first modern scientific text. Examination of the
direction of the dipole field at the surface of a lodestone sphere or ‘terella’, and
relating it to the observation of dip which by then had been measured at many
points on the Earth’s surface, led Gilbert to identify the source of the magnetic
force which aligned the compass needle as the Earth itself, rather than the stars
as previously assumed. He inferred that the Earth itself was a great magnet.2

The curious Greek notion that the magnet possessed a soul – it was animated
because it moved – was to persist in Europe well into the seventeenth century,
when it was finally laid to rest by Descartes. But other superstitions regarding
the benign or malign influences of magnetic North and South poles remain
alive and well, as a few minutes spent browsing the Internet will reveal.

Magnetic research in the seventeenth and eighteenth centuries was mostly
the domain of the military, particularly the British Navy. An important civilian
advance, promoted by the Swiss polymath Daniel Bernoulli, was the inven-
tion in 1743 of the horseshoe magnet. This was to become magnetism’s most
enduring archetype. The horseshoe is an ingenious solution to the problem of
making a reasonably compact magnet which will not destroy itself in its own
demagnetizing field. It has remained the icon of magnetism up to the present

1 In English, the word ‘magnet’ is derived through Latin from the Greek for Magnesian stone (Ŏ
µαγ νης λı̄θoς ), after sources of lodestones in Asia Minor. In Sanscrit ‘SÉÖ¨¤ÉE ’ and Romance
languages – French ‘l’aimant’, Spanish ‘imán’, Portuguese ‘imã’ – the connotation is the attrac-
tion of opposite poles, like that of man and woman.

2 ‘Magnus magnes ipse est globus terrestris’.
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day. Usually red, and marked with ‘North’ and ‘South’ poles, horseshoe mag-
nets still feature in primary school science books all over the world, despite the
fact that these horseshoes have been quite obsolete for the past 50 years.

A lodestone ‘terella’ used
by Gilbert to demonstrate
how the magnetic field of
the Earth resembles that of
a magnet.

Réné Descartes,
1596–1650.

An eighteenth century
horseshoe magnet.

The obvious resemblances between magnetism and electricity, where like or
unlike charges repel or attract, led to a search for a deeper connection between
the two cousins. Luigi Galvani’s ‘animal electricity’, stemming from his cele-
brated experiments on frogs and corpses, had a physical basis – nerves work
by electricity. It inspired Anton Messmer to postulate a doctrine of ‘animal
magnetism’ which was enthusiastically embraced in Parisian salons for some
years before Louis XVI was moved to appoint a Royal Commission to inves-
tigate. Chaired by Benjamin Franklin, the Commission thoroughly discredited
the phenomenon, on the basis of a series of blind tests. Their report, published
in 1784, was a landmark of scientific rationality.

It was in Denmark in 1820 that Hans-Christian Oersted eventually discov-
ered the true connection between electricity and magnetism by accident. He
demonstrated that a current-carrying wire produced a circumferential field
capable of deflecting a compass needle. Within weeks, André-Marie Ampère
and Dominique-François Arago in Paris wound wire into a coil and showed
that the current-carrying coil was equivalent to a magnet. The electromagnetic
revolution was launched.

The remarkable sequence of events that ensued changed the world for ever.
Michael Faraday’s intuition that the electric and magnetic forces could be con-
ceived in terms of all-pervading fields was critical. He discovered electromag-
netic induction (1821) and demonstrated the principle of the electric motor with
a steel magnet, a current-carrying wire and a dish of mercury. The discovery
of a connection between magnetism and light followed with the magneto-optic
Faraday effect (1845).

All this experimental work inspired James Clerk Maxwell’s formulation3 of a
unified theory of electricity, magnetism and light in 1864, which is summarized
in the four famous equations that bear his name:

∇ · B = 0, (1.1a)

ε0∇ · E = ρ, (1.1b)

(1/µ0)∇ × B = j + ε0∂E/∂t, (1.1c)

∇ × E = −∂B/∂t. (1.1d)

These equations relate the electric and magnetic fields, E and B at a point in
free space to the distributions of electric charge and current densities, ρ and j
in surrounding space. A spectacular consequence of Maxwell’s equations is the
existence of a solution representing coupled oscillatory electric and magnetic

3 ‘From a long view of the history of mankind there can be little doubt that the most significant event
of the nineteenth century will be judged as Maxwell’s discovery of the laws of electrodynamics’
(R. Feynman The Feynman Lectures in Physics. Vol. II, Menlo Park: Addison-Wesley (1964)).
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fields propagating at the speed of light. These electromagnetic waves extend over
the entire spectrum, with wavelength � and frequency f , related by c = �f .
The electric and magnetic constants ε0 and µ0 depend on definitions and the
system of units, but they are related by

√
ε0µ0 = 1

c
, (1.2)

where c is the speed of light in vacuum, 2.998 × 108 m s−1. This is also the ratio
of the average values ofE and B in the electromagnetic wave. Maxwell’s equa-
tions are asymmetric in the fields E and B because no magnetic counterpart of
electric charge has ever been identified in nature. Gilbert’s idea of North and
South magnetic poles, somehow analagous to Coulomb’s positive and negative
electric charges, has no physical reality, although poles remain a conceptual
convenience and they simplify certain calculations. Ampère’s approach, regard-
ing electric currents as the source of magnetic fields, has a sounder physical
basis. Either approach can be used to describe ferromagnetic material such as
magnetite or iron, whose magnetism is equally well represented by distributions
of magnetic poles or electric currents. Nevertheless, the real building blocks
of electricity and magnetism are electric charges and magnetic dipoles; the
dipoles are equivalent to electric current loops. Dielectric and magnetic mate-
rials are handled by introducing two auxiliary fields D and H , as discussed in
Chapter 2.

André Marie Ampère,
1775–1836.

Hans-Christian Oersted,
1777–1851.

Michael Faraday,
1791–1867.

An additional equation, due to Lorentz, gives the force on a particle with
charge q moving with velocity v, which is subject to electric and magnetic
fields:

f = q(E + v × B). (1.3)

Units of E are volts per metre (or newtons per coulomb), and the units of B
are newtons per ampere per metre (or tesla).

A technical landmark in the early nineteenth century was William Sturgeon’s
invention of the iron-cored electromagnet in 1824. The horseshoe-shaped core
was temporarily magnetized by the magnetic field produced by current flowing
in the windings. Electromagnets proved more effective than the weak permanent
magnets then available for excitation of electric motors and generators. By the
time the electron was discovered in 1897,4 the electrification of the planet
was already well advanced. Urban electrical distribution networks dispelled
the tyranny of night with electric light and the stench of public streets was
eliminated as horses were displaced by electric trams. Telegraph cables spanned
the Earth, transmitting messages close to the speed of light for the equivalent
of e20 a word.

4 The decisive step for the discovery of the electron was taken in England by Joseph John
Thompson, who measured the ratio of its charge to mass. The name, derived from �ηλεκτρoν
the Greek word for amber, had been coined earlier (1891 in Dublin) by George Johnston Stoney.
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Despite the dazzling technical and intellectual triumphs of the electromag-
netic revolution, the problem of explaining how a solid could possibly be ferro-
magnetic was unsolved. The magnetization of iron, M = 1.76 × 106 amperes
per metre, implies a perpetually circulating Ampèrian surface current density
of the same magnitude. Currents of hundreds of thousands of amperes coursing
around the surface of a magnetized iron bar appeared to be a wildly implausible
proposition. Just as preposterous was Pierre Weiss’s molecular field theory, dat-
ing from 1907, which successfully explained the phase transition at the Curie
point where iron reversibly loses its ferromagnetism. The theory postulated an
internal magnetic field parallel to, but some three orders of magnitude greater
than, the magnetization. Although Maxwell’s equation (1.1a) proclaims that
the magnetic field B should be continuous, no field remotely approaching that
magnitude has ever been detected outside a magnetized iron specimen. Fer-
romagnetism therefore challenged the foundations of classical physics, and a
satisfactory explanation only emerged after quantum mechanics and relativity,
the twin pillars on which modern physics rests, were erected in the early years
of the twentieth century.

A nineteenth century
electromagnet.

James Clerk Maxwell,
1831–1879.

Strangely, the Ampèrian currents turned out to be associated with quantized
angular momentum, and especially with the intrinsic spin of the electron, discov-
ered by George Uhlenbeck and Samuel Goudsmit in 1925. The spin is quantized
in such a way that it can have just two possible orientations in a magnetic field,
‘up’ and ‘down’. Spin is the source of the electron’s intrinsic magnetic moment,
which is known as the Bohr magneton: µB = 9.274 × 10−24 A m2. The mag-
netic properties of solids arise essentially from the magnetic moments of their
atomic electrons. The interactions responsible for ferromagnetism represented
by the Weiss molecular field were shown by Werner Heisenberg in 1929 to be
electrostatic in nature, originating from the quantum mechanics of the Pauli
principle. Heisenberg formulated a Hamiltonian to represent the interaction
of two neighbouring atoms whose total electronic spins, in units of Planck’s
constant � = 1.055 × 10−34 J s, are Si and Sj , namely

H = −2J Si · Sj , (1.4)

whereJ is the exchange constant;J /kB is typically in the range 1–100 K. Here
kB is Boltzmann’s constant, 1.3807 × 10−23 J K−1. Atomic magnetic moments
are associated with the electronic spins. The quantum revolution underpinning
modern atomic and solid state physics and chemistry was essentially complete
at the time of the sixth Solvay Congress in 1930 (Fig. 1.2). Filling in the
details has proved to be astonishingly rich and endlessly useful.5 For instance,
when the exchange interaction J is negative (antiferromagnetic) rather than

5 Already in 1930 there was the conviction that all the basic problems of the physics of solids had
been solved in principle; Paul Dirac said ‘The underlying physical phenomena necessary for a
mathematical explanation of a large part of physics and all of chemistry are now understood in
principle, the only difficulty being that the exact application of these laws leads to equations
much too complicated to be soluble’ (P. Dirac, Proc. Roy. Soc. A123, 714 (1929)).
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Figure 1.2

Participants at the 1930
Solvay Congress, which was
devoted to magnetism.

positive (ferromagnetic) there is a tendency for the spins at sites i and j to align
antiparallel rather than parallel. Louis Néel pointed out in 1936 and 1948 that
this leads to antiferromagnetism or ferrimagnetism, depending on the topology
of the crystal lattice. Magnetite, the archetypal natural magnetic material, is a
ferrimagnet.

Louis Néel, 1904–2000.

One lesson from a study of the history of magnetism is that fundamen-
tal understanding of the science may not be a prerequisite for technologi-
cal progress. Yet fundamental understanding helps. The progression from the
poorly differentiated set of hard and soft magnetic steels that existed at the start
of the twentieth century to the wealth of different materials available today, with
all sorts of useful properties described in this book, owes more to metallurgy
and systematic crystal chemistry than it does to quantum physics. Only since
the rare-earth elements began to be alloyed with cobalt and iron in new perma-
nent magnets from the late 1960s onwards has quantum mechanics contributed
significantly to magnetic materials development. Much progress in science is
made empirically, with no recourse to basic theory. One area, however, where
quantum mechanics has been of central importance for magnetism is in its
interaction with electromagnetic radiation in the radiofrequency, microwave
and optical ranges. The discovery of magnetic resonance methods in the 1940s
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Table 1.1. The seven ages of magnetism

Period Dates Icon Drivers Materials

Ancient period −2000–1500 Compass State, geomancers Iron, lodestone
Early modern age 1500–1820 Horseshoe magnet Navy Iron, lodestone
Electromagnetic age 1820–1900 Electromagnet Industry/infrastructure Electrical steel
Age of understanding 1900–1935 Pauli matrices Academic (Alnico)
High-frequency age 1935–1960 Magnetic resonance Military Ferrites
Age of applications 1960–1995 Electric screwdriver Consumer market Sm-Co, Nd-Fe-B
Age of spin electronics 1995– Read head Consumer market Multilayers

and 1950s and the introduction of powerful spectroscopic and diffraction tech-
niques led to new insights into the magnetic and electronic structure of solids.
Technology for generating and manipulating microwaves had been developed
in Great Britain for the Second World War.

Samuel Goudsmit,
1902–1978.

Georg Uhlenbeck,
1900–1988.

Recent decades have witnessed an immense expansion of magnetic appli-
cations. The science developed over a century, mostly in Europe, was ripe for
exploitation throughout the industrialized world. Advances in permanent mag-
netism, magnetic recording and high-frequency materials underpin much of the
progress that has been made with computers, telecommunications equipment
and consumer goods that benefit most people on Earth. Permanent magnets
have come back to replace electromagnets in a billion tiny motors manufac-
tured every year. Magnetic recording sustains the information revolution and
the Internet. There have been seminal advances in earth science, medical imag-
ing and the theory of phase transitions that can be laid at the door of magnetism.
This long and promising history of magnetism can be envisaged as seven ages,
which are summarized in Table 1.1. The third millenium sees us at the thresh-
old of the seventh age, that of spin electronics. Conventional electronics has
ignored the spin on the electron. We are just now beginning to learn how to
manipulate spin currents and to make good use of them.

1.2 Magnetism and hysteresis

The most striking manifestation of magnetism in solids is the spontaneous mag-
netization of ferromagnetic materials such as iron or magnetite. Spontaneous
magnetism is usually associated with hysteresis,6 a phenomenon studied by
James Ewing, and named by him in 1881.7

6 ‘Hysteresis’ was coined from the greek ῠσ τερειν, to lag behind.
7 Ewing, a Scot, was appointed as a foreign Professor of Engineering at the University of Tokyo

by the Meiji government in 1878. He is regarded as the founder of magnetic research in Japan.
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H

M

Ms

Mr

−Hc Hc

Figure 1.3

The hysteresis loop of a
ferromagnet. Initially in an
unmagnetized, virgin state.
Magnetization appears as
an imposed magnetic field
H , modifies and eventually
eliminates the
microstructure of
ferromagnetic domains
magnetized in different
directions, to reveal the
spontaneous
magnetization Ms. The
remanence Mr which
remains when the applied
field is restored to zero,
and the coercivity Hc,
which is the reverse field
needed to reduce the
magnetization to zero, are
marked on the loop.

1.2.1 The ferromagnetic hysteresis loop

The essential practical characteristic of any ferromagnetic material is the irre-
versible nonlinear response of magnetization M to an imposed magnetic field
H . This response is epitomized by the hysteresis loop. The material responds to
H , rather than B, for reasons discussed in the next chapter where we distinguish
the applied and internal fields. Magnetization, the magnetic dipole moment per
unit volume of material, and the H -field are both measured in amperes per
metre (A m−1). Since this is a rather small unit – the Earth’s magnetic field
is about 50 A m−1 – the multiples kA m−1 and MA m−1 are often employed.
The applied field must be comparable in magnitude to the magnetization in
order to trace a hysteresis loop. The values of spontaneous magnetization Ms

of the ferromagnetic elements Fe, Co and Ni at 296 K are 1720, 1370 and
485 kA m−1, respectively. That of magnetite, Fe3O4, is 480 kA m−1. A large
electromagnet may produce a field of 1000 kA m−1 (1 MA m−1).

Hard magnetic materials8 have broad, square M(H ) loops. They are suitable
for permanent magnets because, once magnetized by applying a field H ≥ Ms

sufficient to saturate the magnetization, they remain in a magnetized state
when the field is removed. Soft magnetic materials have very narrow loops.
They are temporary magnets, readily losing their magnetization as soon as
the field is removed. The applied field serves to unveil the spontaneous ferro-
magnetic order that already exists on the scale of microscopic domains. These
domain structures are illustrated schematically on the hysteresis loop of Fig. 1.3
for the unmagnetized state at the origin, the saturated state whereM = Ms , the
remanent state in zero field whereM = Mr and the state at H = Hc, the coer-
cive field where M changes sign. Mr and Hc are known as the remanence and
the coercivity. Magnetic domains were proposed by James Ewing and the prin-
ciples of domain theory were established by Lev Landau and Evgenii Lifschitz
in 1935.James Ewing, 1855–1935.

8 The terms hard and soft for magnets originated from the mechanical properties of the corre-
sponding magnetic steels.
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The hysteresis loop is central to technical magnetism; physicists endeav-
our to explain it, materials scientists aim to improve it and engineers
work to exploit it. The loop combines information on an intrinsic mag-
netic property, the spontaneous magnetization Ms which exists within a
domain of a ferromagnet, and two extrinsic properties, the remanence Mr
and coercivity Hc, which depend on a host of extraneous factors including
the sample shape, surface roughness, microscopic defects and thermal his-
tory, as well as the rate at which the field is swept in order to trace the
loop.

1.2.2 The Curie temperature

The spontaneous magnetization due to alignment of the atomic magnetic
moments depends on temperature, and it falls precipitously to zero at the Curie
temperature TC . The magnetic ordering is a continuous thermodynamic phase
transition with a λ-shaped anomaly in specific heat, associated with disordering
of the atomic dipole moments. Above TC , Ms(T ) is zero; below TC , Ms(T ) is
reversible. This behaviour is illustrated for nickel in Fig. 1.4.

The Curie temperatures of the three ferromagnetic metals, iron, cobalt and
nickel, are 1044 K, 1388 K and 628 K, respectively. No material is known to
have a higher Curie temperature than cobalt. Magnetite has a Curie temperature
of 856 K.

Pierre Curie, 1859–1906.

1.2.3 Coercivity

The progress in the twentieth century which has spawned such a range of
magnetic applications can be summarized in three words – mastery of coercivity.
No new ferromagnetic material has been discovered with a magnetization
greater than that of ‘permendur’, Fe65Co35, for whichMs = 1950 kA m−1, but
coercivity which barely spanned two orders of magnitude in 1900, from the
softest soft iron to the hardest magnet steel, now ranges over eight orders of



10 Introduction

101

107

106

105

104

103

102

1

1000 1900 2000

Hard 

Lodestone

Steel
Iron

SteelW, Cr steel
Co steel

Alnico
Co–Cr

Sm–CoNd–Fe

Iron

Ni–Fe

Ba ferrite

NiZn ferrite

Ni–Fe–Mo
aFe–Co–BSoft

Year

Figure 1.5

Progress in expanding the
range of coercivity of
magnetic materials during
the twentieth century.

magnitude, from less than 0.1 A m−1 to more than 10 MA m−1, as shown in
Fig. 1.5.

Easy axis

MqH

Magnetization is not
necessarily parallel to
applied field, unless H is
applied in an easy
direction.

1.2.4 Anisotropy

The natural direction of magnetization in a microscopic ferromagnetic domain
is usually constrained to lie along one or more easy axes. Since magnetism is
associated with circulating electron currents, time reversal symmetry requires
that a state with a certain magnetization distribution M(r) should have the same
energy as the state with reversed magnetization along the same axis, −M(r).
This tendency is represented by the anistropy energy Ea , of which the leading
term is

Ea = Ku sin2 θ, (1.5)

where θ is the angle between the direction of M and the easy axis. HereEa and
Ku, the anistropy constant, are measured in J m−3. Typical values range from
less than 1 kJ m−3 to more than 10 MJ m−3. Anisotropy limits the coercivity
available in hard magnets. We show in Chapter 7 that

Hc < 2Ku/µ0Ms, (1.6)

where the magnetic constant µ0 is 4π × 10−7 J A−2 m−1. Anisotropy also
leads to unwanted coercivity in soft magnets. It may be noted from the units
that µ0 always multiplies H 2 or MH in expressions for magnetic energy per
unit volume.

Atomic densities in solids are around n = 1029 m−3, so if anisotropy energy
per atom is expressed in terms of an equivalent temperature usingEa/n= kBT ,
it is in the range 1 mK–10 K. The energy is usually small in relation to the
Curie temperature, but it is nevertheless decisive in determining the hysteresis.
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1.2.5 Susceptibility

At temperatures above TC , where the ferromagnetic order collapses, and the
material becomes paramagnetic, the atomic moments of a few Bohr magnetons
experience random thermal fluctuations. AlthoughMs is zero, an applied field
can induce some alignment of the atomic moments, leading to a small mag-
netization M which varies linearly with H , except in very large fields or very
close to the Curie point. The susceptibility, defined as

χ = M/H, (1.7)

is a dimensionless quantity, which diverges as T → TC from above. Above TC
it often follows a Curie–Weiss law

χ = C/(T − TC), (1.8)

where C is known as the Curie constant. Its value is of order 1 K.
The magnetic response to an applied field of materials which do not order

magnetically may be either paramagnetic or diamagnetic.9 In isotropic param-
agnets, the induced magnetization M is in the same direction as H , whereas in
diamagnets it is in the opposite direction. Superconductors exhibit diamagnetic
hysteresis loops below their superconducting transition temperature Tsc, and
their susceptibility can approach the limiting value of −1.

The susceptibility of many paramagnets follows a Curie law,

χ = C/T , (1.9)

but for some metallic paramagnets and almost all diamagnets χ is independent
of temperature. The sign of the room-temperature susceptibility is indicated on
the magnetic periodic table (Table A, see endpapers) and the molar suscepti-
bility χmol is plotted for the elements in Fig. 3.5. There it is appropriate to look
at the molar susceptibility because some of the elements are gasses at room
temperature. A cubic metre of a solid contains roughly 105 moles, so χmol is
approximately five orders of magnitude less than χ. From Table A, it can be
seen that the transition metals are paramagnetic, whereas main group elements
are mostly diamagnetic.

1.2.6 Other types of magnetic order

The spontaneous magnetization of a ferromagnet is the result of alignment
of the magnetic moments of individual atoms. But parallel alignment is not
the only – or even the most common – type of magnetic order. In an antifer-

romagnet, the atomic moments form two equivalent but oppositely oriented

9 Faraday was the first to classify solids as diamagnetic, paramagnetic or ferromagnetic, according
to their response to a magnetic field.
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magnetic sublattices. Although Ms = 0, the material nonetheless exhibits a
phase transition with a λ-shaped specific heat anomaly where the moments
begin to order. The antiferromagnetic transition occurs at the Néel temperature

TN . Occasionally it is possible to switch an antiferromagnet into a ferromagnet
if a sufficiently large field is applied. This discontinuous change of magnetic
order is known as a metamagnetic transition.

If the sublattices are inequivalent, with sublattice magnetizationsMA andMB
where MA �= −MB , there is a net spontaneous magnetization. The material is
a ferrimagnet. Most of the useful magnetic oxides, including magnetite, are
ferrimagnetic.

The alignment of the atomic moments in the ordered state need not be
collinear. Multiple noncollinear sublattices are found in manganese and some of
its alloys. Other materials such as MnSi or Mn3Au have helical or spiral magnetic
structures that are incommensurate with the underlying crystal lattice. In some
disordered and amorphous materials the atomic moments freeze in more or less
random directions. Such random, noncollinear magnets are known collectively
as spin glasses. The original spin glassses were magnetically dilute crystalline
alloys, but several different varieties of random spin freezing are encountered
in noncrystalline (amorphous) solids.

Finally, we remark on the behaviour of ferromagnetic fine particles whose
volume V is so small that the product KuV is less than or comparable to
the thermal energy kBT ; in that case the total sum moment, m, of all the
coupled atoms fluctuates randomly like that of a large paramagnetic atom
or macrospin. The susceptibility follows a Curie law with a huge value of
C. The name superparamagnetism was coined by Néel for this phenomenon,
which is important for ferrofluids (magnetic liquids which are really colloidal
suspensions of ferrimagnetic fine particles) and in rock magnetism.

Figure 1.6 portrays the magnetic family tree, summarizing the behaviour of
the magnetization or susceptibility for the different types of magnetic order in
crystalline and amorphous solids.

1.2.7 The magnetic periodic table

Table A (endpapers) displays the magnetic properties of the elements, distin-
guishing those that are paramagnetic, diamagnetic, ferromagnetic or antiferro-
magnetic at room temperature, and those that order magnetically at some lower
temperature. Only sixteen elements have a magnetically ordered ground state,
and all but oxygen belong to the 3d or 4f transition series. Besides iron, cobalt
and nickel, only gadolinium can be ferromagnetic at room temperature, but that
depends on the weather! The Curie temperature of gadolinium is just 292 K.
Many other elements become superconducting at low enough temperature. The
remainder are neither magnetic nor superconducting. No element manages to
be both at the same time.
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1.3 Magnet applications

1.3.1 Overview of the world market

Magnetic materials, recording media, heads and sensors constitute a market
worth over $30 billion per year. Since the population of the Earth is approaching
7 billion, this means an average of about $5 per head. The world’s goods
are unevenly distributed. The richest billion, living mainly in North America,
Europe and East Asia, consume the lion’s share, but most people derive some
benefit from magnetic technology, whether in the form of a cassette recorder,
an electric pump in a tube well or a communal mobile phone.
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Permanent magnets  20%
          Hc > 400 kA m−1

Soft magnets 40% 
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Figure 1.7

Breakdown of the market
for magnetic materials,
based on material type and
coercivity. The total pie
represents about $30
billion per annum.

A first view of the global market is given in Fig. 1.7. The breakdown is by
material, distinguishing hard magnets with Hc > 400 kA m−1, soft magnets
with Hc < 10 kA m−1 and magnetic recording media with intermediate val-
ues of coercivity. In this breakdown, it is easy to account for bulk permanent
magnets and soft magnetic magnets which are commodities sold by the kilo-
gram at a price depending on the grade and form. The disc and tape media used
for magnetic recording incorporate a film of magnetic material on a rigid or flex-
ible substrate. Sophisticated magnetic multilayer structures used in read/write
heads for magnetic recording, magnetic sensors and magnetic random-access
memory, are the first products of the spin electronic age. It is more difficult
to assign a value to the magnetic constituent of a medium or a device which
is composed of nonmagnetic as well as magnetic materials. The value added
by the complex processing far exceeds the cost of the minuscule amounts of
magnetic raw material involved.

Further breakdowns are made in terms of materials and applications. In the
hard magnet sector, the great bulk of production and over half the value is
represented by the hard ferrites Ba2Fe12O19 and Sr2Fe12O19. These materials
are used for colourful fridge magnets, as well as numerous motors, actuators,
sensors and holding devices. Rare-earth compounds, especially Nd2Fe14B, are
important in high-performance applications, and magnets based on Sm–Co
alloys continue to be produced in smaller quantities.

Hard discs generally use thin films of a Co–Pt alloy. Thin film heads for
magnetic recording typically use films of Fe–Ni or Fe–Co alloys in the writer
and thin film stacks comprising Fe–Co and Mn-based alloys in the reader. These
are soft magnetic films with a good high-frequency response, except for the
Mn alloy which is an antiferromagnet. For flexible magnetic recording media,
tapes and floppy discs, acicular fine particles of Fe, or Co-doped γ -Fe2O3, are
commonly used.

Bulk soft magnetic materials are principally electrical steels. These Fe–Si
alloys are produced in sheets about 300 µm thick for laminated temporary
magnet cores in transformers and electrical machines. The better grades are
grain-oriented with a specific crystalline texture. Soft ferrite is used for radiofre-
quency and microwave applications. Ferromagnetic metallic glasses, thin rib-
bons (≈ 50 µm thick) of rapidly quenched amorphous Fe- or Co-based alloys
are used in an intermediate frequency range (kHz–MHz).
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To put everything in context, imagine a shopping basket with the average
person’s e5 worth of magnetic materials. It would include about 30 g of ferrite
magnets, 1 g of rare-earth magnets, 1 m2 of flexible recording media, an eighth
of a hard disc, a quarter of a thin film head, 0.25 m2 of electrical sheet steel,
30 g of soft ferrite and a few square centimetres of metallic glass.

Perhaps 95% of the market for magnetic materials is accounted for by barely
a dozen different ferromagnetic and ferrimagnetic materials. That this is only a
tiny fraction of the thousands that are known to order magnetically is testimony
to the difficulty of developing new materials with the right combination of
properties to bring to the market. The Curie temperature, for example, must
be well above the maximum operating temperature for any practical magnetic
material. A typical operating temperature range is −50 to 120 ◦C, so the Curie
temperature needs to be at least 500 or 600 K. The distribution of magnetic
ordering temperatures in Fig. 1.8 shows that only a small fraction of all known
magnetic materials meet this requirement. Nevertheless, the magnetics indus-
try has a far wider materials base than the semiconductor industry, with its
overwhelming reliance on silicon.

Figure 1.9 is an attempt to break down the market by materials and applica-
tions. Magnetism is a pervasive and largely unnoticed component of the tech-
nology underpinning modern life. Our electricity is generated by movement
of conductors in a magnetic field. Key components of audiovisual equipment,
telephones, kitchen machines and the microwave oven are magnetic. Electri-
cal consumer goods, where something moves when you switch on, invariably
involve temporary or permanent magnets. Powerful medical imaging depends
on magnetic resonance. Magnetic sensors offer contactless monitoring of posi-
tion or velocity. Unimaginable amounts of information are stored and retrieved
from magnetic discs in computers and servers throughout the world. Some non-
volatile memory is magnetic. In 2008, consumers bought 500 million hard disk
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drives and over a billion permanent-magnet motors. Magnetics is the partner
of electronics in the global information revolution.

Ask any one of the wealthy billion how many magnets they own. A correct
answer could be a couple of hundred or some billions depending on whether
or not they possess a computer. On a hard disc drive every bit counts as an
individually addressable magnet. Fifty years ago the answer might have been
two or three. Fifty years hence, who knows?

1.3.2 Economics

Magnet applications depend critically on the cost and performance of ferro-
magnetic materials. For bulk magnets, the raw material cost may be significant.
To a rough approximation, this cost is related to the abundance of the element
in the Earth’s crust. The composition of the crust is shown in Fig. 1.10. It
can be expressed either as atom %, which emphasizes the light elements and
relates to chemical formulae, or as weight %, which emphasizes the heavy
elements. Note that abundances plotted in Fig. 1.10a) are in atomic % and
those in Fig. 1.10b) are in weight %. Luckily, one ferromagnetic element, iron,
features among the eight most abundant in the crust by either measure. Iron
represents about 5% by weight of the crust, and it is the most abundant element
overall when the composition of the entire globe is considered. In fact, it is
40 times as plentiful as all the other magnetic elements put together. We are
truly fortunate that the cheapest metal is in many respects the best ferromag-
net. Its rival, cobalt, is a thousand times scarcer, and about one hundred times
more expensive. Some of the light rare-earth elements at the beginning of the
4f series have abundances comparable to cobalt (Fig. 1.11), but the heavy
rare-earths live up to their name. Thulium, for example, sells for much more
than gold or platinum. In thin-film devices, however, the cost of the element is
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largely irrelevant because the mass of material used per device is measured in
micrograms or less. Ruthenium, for example, is a rare metal used in spin-value
stacks in layers a nanometre thick. A single sputtering target suffices to coat
hundreds of wafers, with millions of devices.

The performance of magnetic materials improved by leaps and bounds in the
twentieth century, although the records for magnetization and Curie temper-
ature were not broken. Following from the progressive mastery of coercivity,
and the relentless miniaturization in the feature size for magnetic recording,
there has been an exponential improvement in properties in all three market
segments.

In soft materials, the 60 Hz core losses halved every 18 years throughout the
twentieth century (Fig. 1.12); the maximum available susceptibility doubled
every 6 years over the first half. Further improvements here seem pointless,
although there is a pressing need to improve the properties of temporary mag-
nets at frequencies above 1 MHz.
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available for permanent
magnets.10

Hard magnets improved beyond recognition, breaking the shape barrier in
1950. This means that they could be made in any desired shape, without having
to resort to horseshoes and bars to avoid self-demagnetization. The figure of
merit here is the energy product, which is twice the energy stored in the magnetic
field produced surrounding unit volume of an optimally shaped permanent
magnet. Energy product has doubled every 14 years (Fig. 1.13). The best
permanent magnets have square hysteresis loops withHc > Mr/2. The energy
product cannot exceed µ0M

2
r /4.

An early eighteenth
century lodestone, a ferrite
magnet (right) and a
Nd–Fe–B magnet (front),
which all store about a
joule of energy.

10 In industry, units of MG Oe are used for energy product. 100 kJ m−3 = 12.57 MG Oe. Units
are discussed in Appendix B.
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magnetic recording.11

Most remarkable of all has been the progress of magnetic recording, illus-
trated in Fig. 1.14. For over a decade, the areal density doubled almost every
year, the magnetic analogue of ‘Moore’s law’ for semiconductors.

The extraordinary technological progress epitomized by the three magnetic
exponentials has translated into an improvement in the capabilities of consumer
goods and services that economics struggles to quantify. The consumer takes
it all for granted, ignorant of the struggle of scientists and engineers to achieve
their current mastery of nature, and of the science on which our civilization is
based.

One thing is certain: exponential improvement cannot continue indefinitely.
Permanent magnets are approaching the limit of energy product, 1200 J m−3,
defined by the remanence of permendur, the alloy of iron and cobalt having
greatest room-temperature magnetization. Magnetic recording densities may
saturate as magnetic instability is encounterd at densities well in excess of
1000 bits µm−2, where each bit is so tiny that the corresponding volume of
magnetic medium is too small to withstand thermal fluctuations.

Future improvements in the performance of bulk magnetic materials will
probably focus on achieving desirable combinations of properties, e.g. a per-
manent magnet stable at 500 ◦C, a material combining low anisotropy and
high magnetostriction, a multiferroic material that is both ferromagnetic and
ferroelectric, all at the lowest possible cost. In devices, the trend is towards
increasing integration of magnetic functionality with optics and electronics. As
for the methods of investigation, intelligent experimentation will be supple-
mented increasingly by computer simulation and combinational synthesis.

1.4 Magnetism, the felicitous science

Magnetism is a wonderful example of how basic science, flowing from a mag-
ical natural phenomenon can become ubiquitous in our lives, thanks to the

11 Industry prefers Gbits per square inch. 1 bit µm−2 = 0.645 Gbits per square inch.
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labours of successive generations of specialists. The twentieth century is a con-
venient time frame in which to trace how leaps in theoretical understanding and
advances in experimental practice can relate to the emergence of a technology
that creates wealth and facilitates our life. Figure 1.15 portrays the work in
basic theory, normal science, materials development and industrial production
(the latter two in relation to permanent magnetism). The four are interlinked,
but cause-and-effect relations are not always obvious.

The context of magnetic research and development is schematized in
Fig. 1.16. The activity employs roughly 30 000 people worldwide, at a cost
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of over e1 billion per year. It is instructive to contrast attitudes of academic
and industrial scientists to new knowledge and technology. One seeks diffusion,
the other ownership. Academic research is rewarded by peer recognition, indus-
trial development by profit. Both share an understanding that by interrogating
nature in a structured and rational way, trustworthy and objective knowledge of
practical importance can be obtained. This is what unites the geomancer, the
telegraph engineer, the PhD student struggling for data, the corporate scientist
whose invention could trigger a billion dollar investment providing employ-
ment for thousands and the professor attempting to draw the strands together
in a book on this felicitous science.
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EXERCISES

1.1 As a rule of thumb, a field 3 times greater than the spontaneous magnetization is
needed to magnetize a permanent magnet. Given that the current in a lightning
strike is 106 A, make an estimate of the time that will elapse before a particular
rock outcrop of lodestone becomes magnetized.

1.2 Find one documented historical reference to magnetism, before 1200, from your
own part of the world.

1.3 Estimate, and rank in decreasing order:
(a) the magnetostatic energy stored in space around a 10 g permanent magnet;
(b) the chemical energy stored in 10 g of cornflakes;
(c) the gravitational potential energy in a 10 g pencil sitting on your desk;
(d) the kinetic energy of a 10 g bullet moving at the speed of sound;
(e) the mass energy released by fission of 10 g of 235U.

1.4 When does the extrapolation of Fig. 1.14 ‘predict’ that a bit will have dimensions
smaller than an atom?
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1.5 Given two apparently identical metal bars, one a temporary (soft) magnet, the
other a permanent (hard) magnet and a piece of string, how could you distinguish
between them?

1.6 Write two paragraphs on the area of magnetism which you think will have greatest
commercial potential in 10 years time, explaining why. You may consult the last
four chapters of the book.



2 Magnetostatics

Back to basics

The dipole moment m is the elementary magnetic quantity, and magnetization
M(r) is its mesoscopic volume average. The primary magnetic field B is related
to the auxiliary magnetic field H and the magnetization by B = µ0(H + M).
Sources of magnetic field are electric currents and magnetized material. The field
produced by a given distribution of magnetization can be calculated by integrat-
ing the dipole field due to each volume element M(r)dV, or using the equivalent
distributions of electric currents or magnetic charge. Magnetic scalar and vector
potentials ϕm and A are defined for H and B, respectively. The internal, external and
demagnetizing fields are distinguished. Internal field may be defined on a meso-
scopic or a macroscopic scale, the latter in terms of the demagnetizing factor N .
Magnetic forces and energies are related to magnetization and external field.

We begin with magnetostatics, the classical physics of the magnetic fields,
forces and energies associated with distributions of magnetic material and
steady electric currents. The concepts presented here underpin the magnetism
of solids. Magnetostatics refers to situations where there is no time dependence.

2.1 The magnetic dipole moment

The elementary quantity in solid-state magnetism is the magnetic moment m.
On an atomic scale, intrinsic magnetic moments are associated with the spin
of each electron and a further contribution is associated with its orbital motion
around the nucleus. The nucleus itself may possess spin, but the corresponding
nuclear moments are three orders of magnitude smaller than those associated
with electrons, because the magnetic moment of a particle scales as 1/mass.
We can often neglect them.

The spin and orbital moments of the atomic electrons add in ways governed
by the laws of quantum mechanics, discussed in the next two chapters. Suffice
it to say that most of them manage to cancel out, and only a few transition
metal atoms or ions retain a resultant moment on the atomic scale in solids.
Again these atomic moments sum to zero in the paramagnetic state, unless
an external magnetic field is applied, but for a different reason – they are
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disordered by thermal fluctuations. However, resultant moments do arise spon-
taneously within domains in the ferromagnetically ordered state.

We can therefore imagine a local magnetic moment density, the local mag-
netization M(r,t) which fluctuates wildly on a subnanometre scale, and also
rapidly in time on a subnanosecond scale. But for our purposes, it is more
useful to define a mesoscopic average 〈M(r,t)〉 over a distance of order a few
nanometres, and times of order a few microseconds to arrive at a steady, homo-
geneous, local magnetization M(r). The time-averaged magnetic moment δm
in a mesoscopic volume δV is

δm = MδV . (2.1)

This magnetization may be the spontaneous magnetization Ms within a ferro-
magnetic domain, or the uniform magnetization of a paramagnet or a diamagnet
induced by an applied field. The representation of the magnetization of a solid
by the quantity M(r) which varies smoothly on a mesoscopic scale is the
continuous medium approximation. It is fundamental in magnetostatics.

The concept of magnetization of a ferromagnet is often extended to cover
the macroscopic average over a sample:

M =∑
i

M i Vi
/∑

i

Vi, (2.2)

where the sum is over all the domains, which have volume Vi. The sum
∑
i Vi

is the sample volume. Hysteresis loops are plots of the macroscopic average
magnetization. For example, remanence Mr is a macroscopic average. Usually
it will be clear from the context whether we are referring to a mesoscopic or a
macroscopic average.

According to Ampère, a magnet is equivalent to a circulating electric current;
the elementary magnetic moment m can be represented by a tiny current loop.
If the area of the loop is A square metres, and the circulating current is I
amperes, then

m = IA. (2.3)

The shape of the loop is unimportant provided the current flows in a plane.
Units of m are A m2, and M from (2.1) has units of A m−1. The relation
between the directions of m and I are given by the right-hand corkscrew rule.

M (r)
Ms

The local magnetization
M (r ) fluctuates on an
atomic scale – dots
represent the atoms. The
mesoscopic average,
shown by the dashed line,
is uniform.

I

The corkscrew rule. When
the tip of the right thumb
turning in a clockwise
sense traces the current,
the index finger points
along m.

A generalization of the relation (2.3) between the magnetic moment and the
current is

m = 1
2

∫
r × j (r)d3r, (2.4)

where j (r) is now the current density at a point r in A m−2, and j = I/a, where
a is the cross section in which the current flows. Considering an irregular plane
loop, the current element is given by Iδl = jδV . Hence 1

2

∫
r × j (r)d3r =

1
2

∮
r × Idl = I ∫ dA = m.

r

The area of a loop,
obtained by summing the
area of the elementary
triangles, is 1

2

∮
r × dl. The

vector dA is into the plane
of the paper.
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Magnetic moment and magnetization are axial vectors. They are unchanged
under spatial inversion, r → −r , but they do change sign under time reversal
t → −t. Axial vectors differ from normal polar vectors such as position, force,
velocity and current density, which change sign on spatial inversion but not
necessarily on time reversal. Strictly speaking, axial vectors are tensors; they
can be written as a vector product of two polar vectors, as in (2.4), but their
three independent components can be manipulated like those of a vector.

I

A magnetic moment m is
equivalent to a current
loop.

2.1.1 Fields due to electric currents and magnetic moments

In a steady state, the magnetic field δB created by a small current element
jδV at a point P is given by the Biot–Savart law, which follows from Maxwell’s
equations (1.1a) and (1.1c):

δB = −µ0

4π

r × j

r3
δV . (2.5)

Written in terms of electric current I in a circuit element of length δl, where
I = j · a and δV = a · δl , the law of Biot and Savart is

δB = −µ0

4π
I

r × δl
r3

, (2.6)

where the vector r goes from the current element to the point P .

I

B

The field due to a current
element. When the right
index finger points along
the current direction, the
tip of the thumb traces the
field as the right hand turns
clockwise.

Hence it is possible by integration to calculate the field created by any
distribution of electric currents. Currents flow in circuits, so (2.6) has to be
integrated over a complete circuit in order to acquire a physical meaning. The
field falls as the square of the distance from the current element that creates it,
with a constant of proportionality µ0/4π which is exactly 10−7, according to
the definition of the ampere given in the next section. The units of the magnetic
constant µ0 are J A−2 m−1 , so the units of B are J A−1 m−2 or, equivalently,
kg s−2 A−1 . In view of the importance of the B-field in magnetism, the unit
has its own special name, the tesla1 (abbreviated to T). Equivalent units for
µ0 are T m A−1. It is natural to think of the magnetic constant in these terms
in expressions relating B with H or M , but when energies or interactions are
involved, the form J A−2 m−1 is more convenient.

We use (2.6) to calculate the field created by a magnetic moment associated
with a small current loop, firstly at the centre, and secondly at a distance r much
greater than the size of the loop. For the first calculation, we look at a circular
loop of radius a. Each element Iaδθ contributes µ0Iaδθ/4πa

2, so the field at
the centre is

BO = µ0I

2a
. (2.7)

I

B

Field due to a current loop. 1 The tesla is named for Nikola Tesla, the Serbian pioneer of electromagnetism.
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A

B

r

I

dl

dB

r
C

A

B

q

Figure 2.1

Calculation of the dipolar
field due to a magnetic
moment m.

To simplify the second calculation, we choose a square loop of side δl � r

and first evaluate the field at two special positions, point ‘A’ on the axis of
the loop and point ‘B’ in the broadside position. At point ‘A’, there are four
contributions like the one shown in Fig. 2.1, and their resultant is parallel to
m since the horizontal components cancel. Its magnitude is BA = 4δB sin ε =
4µ0Iδl sin ε/4πr2. Since sin ε = δl/2r, and m = I (δl)2 according to (2.3), we
obtain

BA = 2
µ0

4π

m

r3
. (2.8)

Nikola Tesla, 1856–1943.

At point ‘B’ we must consider the contribution of the two sides of the square
perpendicular to r as well as the two sides parallel to r . Hence the magnitude

BB = µ0

4π
Iδl

{
1

(r − δl/2)2
− 1

(r + δl/2)2
− 2 sin ε

r2

}

≈ µ0

4π

Iδl

r2

{(
1 + δl

r

)
−
(

1 − δl

r

)
− δl

r

}
:

BB = µ0

4π

m

r3
. (2.9)

The field in the ‘B’ position is half as large as that in the ‘A’ position, and
oppositely directed relative to m. To find the field at a general position ‘C’ far
from the loop, we just resolve m into two components, m cos θ parallel to r and
m sin θ perpendicular to r . The dipole field in polar coordinates is therefore

Br = 2
( µ0m

4πr3

)
cos θ ; Bθ =

( µ0m

4πr3

)
sin θ ; Bφ = 0. (2.10)

The field falls off rapidly, as the cube of the distance from the magnet. It has
axial symmetry about m.

en

q

The angle of dip.

Faraday represented magnetic fields using lines of force. (The basic idea
dates back to Descartes.) The lines provide a picture of the field by indicating
its direction at any point; its magnitude is inversely proportional to the spacing
of the lines. The direction of the field of a point dipole relative to the normal
to r is known as ‘dip’. The angle of dip I given by tan I =Br/Bθ is related
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Figure 2.2

The field due to a magnetic
dipole, illustrated by lines
of force.

to θ by

Br

Bθ
= tan I = 2cotθ. (2.11)

Setting tan I = dr/rdθ gives the differential equation for the line of force
dr/rdθ =2cotθ and integration gives the parametric equation of a line of force,
r = c sin2 θ , where c is a different constant for each line. The field of a small
current loop or the equivalent magnetic moment is illustrated in Fig. 2.2.

The field of the magnetic moment has the same form as that of an electric
dipole p = qδl formed of positive and negative charges ±q which are separated
by a small distance δl. The vector p is directed from −q to +q. Hence the
magnetic moment m may somehow be regarded as a magnetic dipole; its
associated magnetic field is called the magnetic dipole field.

There are other ways of writing the dipole field which are equivalent to
(2.10). One uses Cartesian coordinates, with m in the z-direction:

B = µ0m

4πr5

[
3xzex + 3yzey + (3z2 − r2)ez

]
, (2.12)

where ei are unit vectors; another resolves the field into components parallel to
r and m:

B = µ0

4π

[
3

(m · r)r

r5
− m

r3

]
. (2.13)

2.2 Magnetic fields

The magnetic field that appears in the Biot–Savart law and in Maxwell’s equa-
tions in vacuum is B, but the hysteresis loop of Fig. 1.3 traced M as a function
of H . It is time to explain why we need these two magnetic fields, with different
units and dimensions.
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2.2.1 The B-field

The existence of magnetic monopoles that could act as sources and sinks of
magnetic field was originally suggested by Dirac as a means of explaining
the quantization of electric charge. Their magnetic charge is qm ≈ h/µ0e.

Monopoles feature prominently in supersymmetric gauge theories, but they
have never been observed in nature. They have nothing to do with the humble
magnet. This truth is enshrined in Maxwell’s equation (1.1a) which states that
the magnetic field is divergenceless:2

∇ · B = 0. (2.14)

d

The B field is
divergenceless, with no
sources or sinks.

Fields with this property are said to be solenoidal; the lines of force all form
continuous loops. Expressing this in integral form, and using the divergence
theorem the equation requires that the flux B into any region enclosed by a
surface S exactly balances the flux out of the same region. The net flux of B
across any closed surface is zero, a result known as Gauss’s theorem:∫

S

B · dA = 0. (2.15)

In (2.15), the vector element of area dA is defined to be in the direction of
the outward normal at a point on the closed surface S, and d� = B · dA is the
element of magnetic flux flowing out of the surface S through area dA. Hence
B = d�/dA, and an alternative name for the B-field is magnetic flux density.
Flux has a named (but little used) unit of its own, the weber, abbreviated to
Wb. A unit equivalent to T is Wb m−2. The other synonym for B is magnetic

induction.
Magnetic flux is quantized in superconducting circuits, and the fundamental

flux quantum �0 = h/2e is equal to 2.068 × 10−15 Wb.
Sources of the B-field are:

(i) electric currents flowing in conductors;
(ii) moving charges (which constitute an electric current); and

(iii) magnetic moments (which are equivalent to current loops).

Time-varying electric fields are also a source of magnetic fields, and vice versa,
but we are restricting our attention to magnetostatics, which deals only with
the magnetic fields created by steady currents j (r) and static distributions of
magnetic moments M(r). The relation between the magnetic flux density B
and the current density j can also be written in differential or integral form. In
a steady state, the relation at any point is given by Maxwell’s equation (1.1c):

∇ × B = µ0 j . (2.16)

2 Important definitions and results of vector calculus are summarized in Appendix C.
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I

B

Figure 2.3

Ampère’s law: the integral
of B around any closed loop
is proportional to the
current threading the loop.
The figure also illustrates
the field due to a current in
a long straight conductor.

Expressed in integral form, this becomes Ampère’s law:∮
B · dl = µ0I. (2.17)

The integral, known as the circulation of B, is taken around any closed path,
and I is here the algebraic sum of the currents threading the path (Fig. 2.3). It
is used to calculate the field due to highly symmetric current distributions. For
example, a long straight wire produces a field that encircles the wire, as shown
in Fig. 2.3. It is constant in magnitude at a distance r from the axis. Integrating
(2.17) around such a circle of radius r gives

B(r) = µ0I

2πr
. (2.18)

Electric and magnetic fields represent the interactions of electric charges,
currents and magnetic moments located at different points in space. The fields
provide the connection between charges, currents and moments, transferring
information at the speed of light. All the sources of B are moving charges, but
B itself interacts with charges only when they move. The fundamental relation
between the fields and the force f exerted on a charged particle is the Lorentz
expression (1.3)

f = q(E + v × B). (2.19)

The electric and magnetic fields can therefore be expressed in terms of the basic
quantities of mass, length, time and current. The units of these four quantities
in the Système International (SI) are the kilogram, metre, second and ampere.
A coulomb is an ampere second. Hence the units of E and B are, respectively,
newtons per coulomb (N C−1), and N C−1 m−1 s. The latter reduces to kg s−2

A−1, or tesla. Units and dimensions are discussed in Appendix A.
Equation (2.19) establishes the dimensions of B, but the magnitude of the

tesla depends on the definition of the ampere. According to (2.18) the field
at a distance r from a long, straight conductor carrying a current I1 is B1 =
µ0I1/2πr. It follows from (2.19) that the force per metre on another long,
parallel conductor carrying current I2 is I2B1 or µ0I1I2/2πr. The ampere is
then defined as the current flowing in conductors in vacuum which produces a
force of precisely 2 × 10−7 N m−1 when the two conductors are 1 metre apart
(Fig. 2.4). The force is attractive when the currents flow in the same sense.
With this definition of the ampere, the constant µ0 appearing in (2.5), (2.16)
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I1

I2

F21

Figure 2.4

Force between two long
straight conductors carrying
currents I1 and I2. The field
due to one of the
conductors is shown .
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Magnitudes of some
magnetic fields in tesla.

and (2.18) is precisely 4π × 10−7 T m A−1. The field at a distance of 1 metre
from a long straight conductor carrying a current of one ampere is 2 × 10−7 T,
or 0.2 µT. This cumbersome definition of the unit of electric current will
be replaced in coming years by one based on a precisely defined number of
electrons flowing per second in a high-frquency single-electron pump.

The tesla is a rather big unit. The largest continuous field ever produced in a
laboratory is 45 T. Fields of order 1 T are created by electromagnets, and close
to the surfaces of permanent magnets. The field a millimetre from a conductor
carrying 5 A is only a millitesla. The field at the Earth’s surface is a few tens
of microtesla. The range of natural and man-made magnetic fields is illustrated
further in Fig. 2.5.

2.2.2 Uniform magnetic fields

We have seen that the magnetic field far from flux sources that are confined
in a limited region of space falls off in an anisotropic manner as 1/r3 (2.10).
Nevertheless it is possible to devise structures of currents or magnets that create
a field that is uniform in some limited volume; these are the magnetic analogues
of the parallel-plate capacitor in electrostatics. We offer some examples.



32 Magnetostatics

(a) (b) (c)

a

a

Figure 2.6

Structures that produce a
uniform magnetic field in
their bore: (a) a long
solenoid, (b) Helmholtz
coils and (c) a Halbach
cylinder.

An infinitely long solenoid creates a uniform field that is parallel to its axis in
the bore, and zero everywhere outside. If there are n turns per metre carrying a
current I , application of Ampère’s law (2.17) around the closed paths shown in
Fig. 2.6(a) together with the symmetry argument that the field must lie parallel
to the axis of the solenoid, gives

B = µ0nI, (2.20)

everywhere inside the solenoid and B = 0 outside.
Helmholtz coils are a pair of matched coaxial coils whose separation is equal

to their radius a (Fig. 2.6(b)). The field is uniform, with zero second derivative
at the centre. It is given by

B = [4/5]3/2µ0NI/a, (2.21)

where N is the number of turns in each coil, and I is the current flowing in
each.When the connections are reversed, the Helmholtz coils produce a uniform
field gradient parallel to their axis.

The dipole ring or Halbach cylinder of Fig. 2.6(c) is an elongated cylindrical
configuration of permanent magnets that creates a uniform field in the bore of
the cylinder. The structure can be considered to be made up of long thin rods
which are magnetized perpendicular to their axis, with a magnetic moment
per unit length of λ A m. Integration of (2.10) or (2.12) shows that there is
no difference in the magnitude of the field created in the A and B positions
(Fig. 2.1) or at any other point at a distance r from the transversely magnetized
long rod; |B| = µ0λ/2πr

2; the fields created by a long rod in cylindrical polar
coordinates is

Br =
(
µ0λ

2πr2

)
cos θ, Bθ =

(
µ0λ

2πr2

)
sin θ, Bz = 0. (2.22)

The structure of Fig. 2.6(c) is composed of many such elementary rods, all ori-
ented so that the angle between their magnetization direction and the vertical
y-axis is α = 2θ, so that the direction of the field created by each element is par-
allel to y. Further integration over these elementary rods yields the expression
for the magnitude of the flux density in the bore,

B = µ0Mln(r2/r1), (2.23)
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and B = 0 outside. Here M is the magnetization of the permanent magnet,
assumed to be uniform in magnitude, and r1 and r2 are the inner and outer
radii, respectively.

2.2.3 The H-field

Now we come to the H-field, also known as the magnetic field strength or
magnetizing force. It is an indispensable auxiliary field whenever we have to
deal with magnetic or superconducting material. The magnetization of a solid
reflects the local value of H .

The distinction between B and H is trivial in free space. They are simply
related by the magnetic constant µ0:

B = µ0 H . (2.24)

The previous discussion of fields created by currents and magnetic moments,
and Maxwell’s equations themselves could as easily have been cast in terms
of H in place of B, provided we remain in free space. Equations (2.5)–(2.13)
become equations for H if we dropµ0.The problem arises in a material medium
with (2.16), which leads to Ampère’s law. The curl of B is related to the total
current density

∇ × B = µ0( j c + jm), (2.25)

where jc is the conduction current in electrical circuits and jm is the Ampèrian
magnetization current associated with the magnetized medium. The difficulty
is that j c can be measured, but jm cannot. We have no experimental method,
direct or indirect, of precisely determining the currents circulating within a
solid that create its magnetization. Indeed the nature of these huge currents is
quantum mechanical; mostly they represent the intrinsic spin of the electron.

The relation between jm and M is simply3

jm = ∇ × M. (2.26)

In order to retain Ampère’s law in a practically useful form, we will define a
new field

H = B/µ0 − M, (2.27)

so that ∇ ×H = ∇ ×B/µ0 − ∇ ×M, and hence from (2.25) and (2.26)

∇ × H = j c. (2.28)

3 This equation follows from the fact that the magnetization is associated with bound, atomic-scale
magnetization currents; this is expressed by the result

∫
s

jm · dA = 0 over any surface. This
implies that jm must be expressible as the curl of another vector M. By Stokes’s theorem,∮

M · dl = ∫
s
(∇ × M)dA, hence by choosing the path to lie entirely outside the magnetized

body, it follows that
∫
s
(∇ × M)dA = 0 for any surface, so we can identify jm with ∇ × M.



34 Magnetostatics

In integral form, Ampère’s law for theH -field produced by conduction currents
is ∮

H · dl = Ic, (2.29)

where Ic is the total conduction current threading the path of the integral. The
new field is no longer divergenceless, but has sources and sinks associated with
nonuniformity of the magnetization. From (1.1a) and (2.27),

∇ · H = −∇ · M. (2.30)

This equation is the basis of the Coulombian approach to magnetic field cal-
culations presented in §2.4. In particular, the discontinuity at the surface of
a piece of magnetized material constitutes a sheet of sources or sinks of H .
We can imagine that H , like the electric field E, arises from a distribution of
positive and negative magnetic charge qm. The field emanating from a single
charge would be

H = qmr/4πr3. (2.31)

Units of qm are A m. The magnitude of the field falls off as 1/r2. The force on
the magnetic charge in a field is

f m = µ0qmH . (2.32)

These fictitious charges are the fabled North and South poles4 which used to
feature so prominently in magnetism texts and remain, with the red horseshoe,
embedded in popular imagination. The poles have no physical existence, but
they have coloured our thinking about magnetism for centuries. The North
seeking pole (positively charged) of magnets was painted red, the South seek-
ing (negatively charged) pole was painted blue. Rather than using the letters N
and S to denote the approximate positions of nonexistent poles, it is preferable
to represent a magnet by an arrow denoting its direction of magnetization, a
convention we adopt here. That said, magnetic charges do offer a mathemat-
ically convenient way of representing the H-field, and some force and field
calculations become much simpler if we make use of them. Charge avoidance
is a useful principle in magnetostatics.

The relation (2.28) does not imply that H is only created by conduction
currents. Any magnet will produce an H-field both in the space around it and
within its own volume. We can write the field as the sum of two contributions

H = Hc + Hm,

4 There are conflicting conventions for naming the poles. The ‘North seeking’ or positive pole of
a bar magnet is the end that points North. The Earth’s ‘South’ magnetic pole is therefore the one
near the geographic North pole, as the magnetic field direction runs from ‘N’ to ‘S’. Gilbert, and
some modern charlatans, adopt the opposite convention.
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Figure 2.7

B, M and H for a magnet.

where Hc is created by conduction currents and Hm is created by the mag-
netization distributions of other magnets and of the magnet itself. The second
contribution is known as the stray field outside a magnet or as the demagnetizing

field within it. It is represented by the symbol Hd .

Equation (2.27) relating the fundamental field B, the auxiliary field H and
the magnetization M of the medium is normally rearranged as

B = µ0(H + M). (2.33)

In free space, M = 0 and B = µ0 H . There B and H are indistinguishable,
apart from the constantµ0,which is so small that no confusion should ever arise
between them. Units of H , like those of M, are A m−1. One tesla is equivalent
to 795 775 A m−1 (or approximately 800 kA m−1). The quantities B, H and
M for a uniformly magnetized block of material in the absence of any external
field are illustrated in Fig. 2.7, where the relation (2.33) between them is shown
at a point ‘P’. Inside the magnet the B-field and the H-field are quite different,
and oppositely directed. H is also oppositely directed to M inside the magnet,
hence the name ‘demagnetizing field’. The field lines of H appear to originate
on the horizontal surfaces of the magnet, where a magnetic charge of density
σm = M · en resides; en is a unit vector normal to the surface. The H-field is
said to be conservative (∇ × H = 0), whereas the B-field, whose lines form
continuous closed loops, is solenoidal (∇ · B = 0).

When considering magnetization processes, H is chosen as the independent
variable, M is plotted versus H, and B is deduced from (2.33). The choice
is justified because it is possible to specify H at points inside the material in
terms of the demagnetizing field, acting together with the fields produced by
external magnets and conduction currents.

2.2.4 The demagnetizing field

It turns out that in any uniformly magnetized sample having the form of an
ellipsoid the demagnetizing field Hd is also uniform. The relation between Hd
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Table 2.1. Some demagnetizing factors for simple shapes

Shape Magnetization direction N

Long needle Parallel to axis 0
Perpendicular to axis 1/2

Sphere Any direction 1/3
Thin film Parallel to plane 0

Perpendicular to plane 1
General ellipsoid of revolution Nc = (1 − 2Na)

and M is

Hdi = −NijMj i, j = x, y, z, (2.34)

where Nij is the demagnetizing tensor, which is generally represented by a
symmetric 3×3 matrix. A sum over the repeated index is implied. Along the
principal axes of the ellipsoid, Hd and M are collinear and the principal
components of N in diagonal form (Nx,Ny,Nz) are known as demagnetizing

factors. Only two of the three are independent because the demagnetizing tensor
has unit trace:

Nx + Ny + Nz = 1. (2.35)

It is common practice to use a demagnetizing factor to obtain approximate
internal fields, even in nonellipsoidal shapes such as cylinders and blocks
where the demagnetizing field is not quite uniform. Demagnetizing factors for
some simple shapes can be deduced by symmetry from (2.35). Examples are
given in the Table 2.1.

Formulae for an ellipsoid of revolution having major axes (a, a, c) with
α = c/a > 1 and α = c/a < 1 are

Nc = 1

(α2 − 1)

[
α√
α2 − 1

cosh−1(α) − 1

]
, (2.36a)

Nc = 1

(1 − α2)

[
1 − α√

1 − α2
cos−1(α)

]
. (2.36b)

For nearly spherical shapes with α ≈ 1, Nc = 1
3 − 1

15 (α − 1). Formulae valid
in the limits α � 1 and α � 1 are Nc = (ln 2α − 1)/α2 and 1 − πα/2, respec-
tively. Figure 2.8(a) is a plot of the values of Nc for ellipsoids of revolution.
Appendix D provides numerical values. From Table 2.1, the value of Na is
1
2 (1 − Nc).

The fields in cylindrical and rectangular magnetized bodies are not uniform,
even if the magnetization is assumed to be uniform. An effective demagnetizing
factor can be obtained by representing the magnetization by a distribution of
surface charge (§2.4) and calculating the field at the centre. Results for magnets
of length 2c with circular and square cross sections of diameter or side 2a
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Demagnetizing factors for
ellipsoids: (a) ellipsoids of
revolution, (b) general
ellipsoids. The letters O
and P denote oblate and
prolate ellipsoids. (M.
Bellegia, M. de Graff and Y.
Millev, Phil. Mag. 86, 2451
(2006)).

are N eff
c = 1 − α/√α2 + 1 and N eff

c = (2/π ) sin−1[1/(1 + α)], respectively.
Slightly different values are obtained from volume integrals over real, nonu-
niform magnetization distributions (e.g. Fig. 2.10(b)).

The general ellipsoid has major axes (a, b, c). Defining τ a = a/c, τ b = b/c
a general expression for Nc is

Nc(τ a, τ b) = 1

2

∫ ∞

0

1

(1 + u)3/2(1 + uτ 2
a)

1/2(1 + uτ 2
b)

1/2
du.

The other principal components are obtained by rotation: Na =
Nc(1/τ a, τ b/τa), Nb = Nc(τa/τ b, 1/τ b). All three components can be read
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Figure 2.9

Ways of measuring
magnetization with no
need for a demagnetizing
correction: (a) a toroid, (b)
a long rod and (c) a thin
plate.

off the plot of Fig. 2.8(b), where the ratios τ are plotted on a logarithmic scale
over four orders of magnitude. The axes in the plot represent ellipsoids of
revolution.

2.2.5 Internal and external fields

The external field H ′, acting on a sample that is produced by steady electric
currents or the stray field of magnets outside the sample volume, is often
called the applied field. The sample itself makes no contribution to H ′. The
internal field in the sample in our continuous medium approximation is the
sum of the external field H ′ and the demagnetizing field Hd produced by the
magnetization distribution of the sample itself:

H = H ′ + Hd . (2.37)

So far we have been considering the magnetization M of the material as
rigid and uniform, essentially independent of the demagnetizing field. This
is justified only for highly anisotropic permanent magnets having rectangular
M(H) hysteresis loops for which the coercivity Hc > Hd . More generally,
magnetization is induced or modified by the externally applied field H ′. The
internal field in the magnet H(r) depends, in turn, on the magnetization M(r).
Easiest to interpret are measurements of M(H) carried out in closed magnetic
circuits, where the demagnetizing field is absent. An example is the toroid of
Fig. 2.9(a) where N = 0 and the field is that of a long solenoid H = nI . An
alternative is to use a long bar or a thin film, and apply the field in the direction
where N ≈ 0. If it is inconvenient to produce the sample in one of these forms,
the best solution is to make it into a sphere for which the magnetization is
uniform and the demagnetizing factor N = 1

3 is precisely known. Failing this,
a cylindrical or block shape is used that can be approximately assimilated to an
ellipsoid, and the applied field is corrected by the appropriate demagnetizing
factor to obtain the internal field

H � H ′ − N M. (2.38)

The approximation is double: H is not uniform because the sample is not an
ellipsoid, consequently M cannot be uniform either (Fig. 2.10).
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Figure 2.10

Magnetization of (a) a
ferromagnetic sphere and
(b) a ferromagnetic cube
in an applied field.

A common form of sample is a powder composed of irregularly shaped
but roughly spherical particles. The demagnetizing field Hd (r) then fluctuates
rapidly on the scale of the particle size. When the particles pack isotropically
with a packing fraction f into a sample holder having a shape with a demag-
netizing factor N , the effective demagnetizing factor for the powder sample is

Np � 1
3 + f

(
N − 1

3

)
. (2.39)

Spatial fluctuations in Hd appear near protrusions and surface irregularities.
The magnetization curves and hysteresis loops measured for any of these less-
than-ideal shapes will evidently deviate from those determined for a fully dense,
smooth toroid or sphere.

2.2.6 Susceptibility and permeability

The simplest materials are linear, isotropic and homogeneous (LIH). For mag-
netism, this means that the susceptibility or applied field is small and a small
uniform magnetization is induced in the same direction as the external field:

M = χ ′ H ′, (2.40)

where χ ′ is a dimensionless scalar known as the external susceptibility. The
magnetization is related to the internal field H (2.37) by

M = χH, (2.41)

where χ is the internal susceptibility. It follows from (2.38) that

1/χ = 1/χ ′ − N . (2.42)

As long as χ is small, as it is for typical paramagnets and diamagnets (≈10−5–
10−2 and ≈ −10−5, respectively), the difference between χ ′ and χ can be safely
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neglected. Exceptions are superparamagnets and paramagnets close to the Curie
point, and, of course, ferromagnets. The internal susceptibility χ diverges as
T → TC (1.8) but the external susceptibility χ ′ never exceeds 1/N .

For single crystals, the susceptibility may be different in different crys-
tallographic directions, and M = χH becomes a tensor relation with χij a
symmetric second-rank tensor, which has up to three independent components
in the principal-axis coordinate system.

Permeability is related to susceptibility. It is defined in the internal field. In
LIH media the permeability µ is given by

B = µH . (2.43)

Hence the magnetic constant µ0 in (2.24) is just the permeability of free space.
The relative permeability µr is a dimensionless quantity defined as µ/µ0. It fol-
lows from (2.33) and (2.43) that µr = 1 + χ. Permeability is usually discussed
in relation to soft ferromagnetic materials, whereµr can take very large values,
up to 104 or more.

The relation between permeability of a soft magnetic material and magnetic
field is akin to the relation between conductivity of a metal and electrical
current. Flux density in a magnetic circuit is the analogue of current density
in an electric circuit. A quantitative difference between magnetic and electric
circuits, however, is that excellent insulators, including free space, exist to
prevent current leakage, but free space is an imperfect magnetic insulator into
which flux inevitably leaks. The magnetic equivalent of an insulator is a type
I superconductor, where no flux penetrates, so its permeability is zero. The
analogy between electric and magnetic circuits will be pursued in Chapter 13.

Consider the example of an isotropic, soft ferromagnetic sphere with high
permeability and no hysteresis. The domains are supposed to be much smaller
than the size of the sample, which has volume V . The macroscopic magneti-
zation is averaged over a length scale greater than the domain size, so that the
uniform average magnetization is M = m/V , where m is magnetic moment
of the sphere. M is zero in the multidomain state that exists before the field is
applied. The ideal soft material has χ ∼ ∞, hence the full spontaneous magne-
tization Ms is revealed in a very small internal field. Since N = 1

3 for a sphere,
it follows from (2.42) that χ ′ = 3, and an applied fieldH ′ = 1

3Ms is needed to
achieve saturation, as shown in Fig. 2.11. During the magnetization process, M
increases from zero toMs in the external field, while the internal field remains
zero.5 The assumption of uniform macroscopic magnetization breaks down in
small spheres which contain few domains.

The flux density induced by the applied field reaches the saturation value
Bs = µ0Ms in an external field of 1

3Ms and an internal field of zero. Thereafter
the B(H ′) or B(H ) curve is linear with slope µ0. Once the magnetization is

5 An ideal soft ferromagnet behaves like a perfect conductor, where the external electric field E′
is shielded by induced charges so that the internal field E is zero.
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Figure 2.11

Magnetization, M , and
induction, B , for a
ferromagnetic sphere
plotted as a function of the
applied field, H ′, or the
internal field, H. (a)–(d) are
for a soft magnetic sphere
and (e)–(h) are for a
permanently magnetized
sphere. The working point,
where the sphere is subject
only to its own
demagnetizing field, is
shown by the dot.

saturated, the magnetic medium becomes ‘transparent’, with the same perme-
ability as free space.

The behaviour of a hard ferromagnetic sphere is quite different. It is per-
manently magnetized with M = Ms ; in zero applied field, there is an internal
field H = − 1

3Ms and the flux density is B = 2
3µ0Ms = 2

3Bs throughout the
sphere. When a field is applied parallel to M, B(H ) is linear, with slope µ0.

The working point of the magnetic sphere in its own demagnetizing field is
marked in Fig. 2.11. A permanent magnet is one where the coercivity exceeds
the demagnetizing field, giving a working point in the second quadrant.6

Generally, magnetic media are not linear, isotropic and homogeneous but
nonlinear and hysteretic and often anisotropic and inhomogeneous as well! Then
B, like M, is an irreversible and nonsingle-valued function of H , represented
by the B(H) hysteresis loop deduced from the M(H) loop using (2.33). A
typical B(H ′) loop is shown in Fig. 2.12. The coercivity on the B(H ′) loop,
denoted as BHc is always less than or equal to Hc shown on the M(H ′) loop
in Fig. 1.3. The quantity Hc is sometimes (confusingly) called the ‘intrinsic
coercivity’. The switching for a macroscopic magnet is usually not the one-shot,
square loop process assumed for the sphere in the previous example.

2.3 Maxwell’s equations

Just as an auxiliary magnetic field is needed to account for a magnetically
polarized medium, so an auxiliary electric field is needed to account for an

6 Quadrants of a hysteresis loop are counted anticlockwise. The first is the one where M and H
are both positive.
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B

H '

Figure 2.12

A B(H ′) hysteresis loop.

electrically polarized one. This field is the electrical displacement D, related to
the electrical polarization P (electrical dipole moment per cubic metre) by

D = ε0 E + P . (2.44)

The constant ε0, the permittivity of free space, is 1/µ0c
2 = 8.854 ×

10−12 C V−1 m−1. Engineers frequently brand the quantity J = µ0 M as the
magnetic polarization, where J , like B, is measured in tesla so that the relation
between B, H and M can be writted in a superficially similar form:

B = µ0 H + J . (2.45)

This is slightly misleading because the positions of the fundamental and auxil-
iary fields are reversed in the two equations. The form (2.27) H = B/µ0 − M
is preferable insofar as it emphasizes the relation of the auxiliary magnetic
field to the fundamental magnetic field and the magnetization of the material.
Maxwell’s equations in a material medium are expressed in terms of all four
fields:

∇ · D = ρ, (2.46)

∇ · B = 0, (2.47)

∇ × E = −∂B/∂t, (2.48)

∇ × H = j + ∂D/∂t. (2.49)

Here ρ is the local electric charge density and ∂D/∂t is the displacement current.
A consequence of writing the basic equations of electromagnetism in this neat

and easy-to-remember form is that the constants µ0, ε0 and 4π are invisible.
But they inevitably crop up elsewhere, for example in the Biot–Savart law (2.5).
The fields naturally form two pairs: B and E are a pair, which appear in the
Lorentz expression for the force on a charged particle (2.19), and H and D are
the other pair, which are related to the field sources – free current density j and
free charge density ρ, respectively.
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In magnetostatics there is no time dependence of B, D or ρ. We only
have magnetic material and circulating conduction currents in a steady state.
Conservation of electric charge is expressed by the equation,

∇ · j = −∂ρ/∂t, (2.50)

and in a steady state ∂ρ/∂t = 0.The world of magnetostatics, which we explore
further in Chapter 7, is therefore described by three simple equations:

∇ · j = 0 ∇ · B = 0 ∇ × H = j .

In order to solve problems in solid-state physics we need to know the response
of the solid to the fields. The response is represented by the constitutive relations

M = M(H), P = P(E), j = j (E),

portrayed by the magnetic and electric hysteresis loops and the current–
voltage characteristic. The solutions are simplified in LIH media, where
M = χH, P = ε0χeE and j = σ E (Ohm’s law), χe being the electrical sus-
ceptibility and σ the electrical conductivity. In terms of the fields appearing in
Maxwell’s equations, the linear constitutive relations are B = µH, D = εE,
j = σ E, where µ = µ0(1 + χ) and ε = ε0(1 + χe). Of course, the LIH
approximation is more-or-less irrelevant for ferromagnetic media, where
M = M(H) and B = B(H) are the hysteresis loops in the internal field, which
are related by (2.33).

2.4 Magnetic field calculations

In magnetostatics, the only sources of magnetic field are current-carrying con-
ductors and magnetized material. The field from the currents at a point r in
space is generally calculated from the Biot–Savart law (2.5). In a few situations
with high symmetry such as the long straight conductor or the long solenoid, it
is convenient to use Ampère’s law (2.17) directly.

To calculate the field arising from a piece of magnetized material we are
spoilt for choice. Alternative approaches are:

(i) calculate the dipole field directly by integrating over the volume distribu-
tion of magnetization M(r);

(ii) use the Ampèrian approach and replace the magnetization by an equivalent
distribution of current density jm;

(iii) use the Coulombian approach and replace the magnetization by an equiv-
alent distribution of magnetic charge qm.

The three approaches are illustrated Fig. 2.13 for a cylinder uniformly mag-
netized along its axis. They yield identical results for the field in free space
outside the magnetized material but not within it. The Amperian approach gives
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Calculation of the magnetic
field outside a uniformly
magnetized cylinder by
summing: (a) the fields
produced by volume
distribution of magnetic
moments, (b) the fields
produced by the
distribution of currents, and
(c) the fields produced by
the distribution of
magnetic charge.

B correctly everywhere, whereas the Coulombian approach gives H correctly
everywhere. The Coulombian approach is usually easiest from a computational
point of view, especially when the field can be derived from a scalar potential,
as explained in the next section.

The calculation for a distribution of magnetization M(r) proceeds by sum-
ming the fields produced by each magnetic dipole element Md3r , given by
(2.13). Hence

B(r) = µ0

4π

[ ∫ {
3M(r ′) · (r − r ′)

|r − r ′|5 (r − r ′) − M(r ′)
|r − r ′|3

+ 2

3
µ0 M(r ′)δ(r − r ′)

}
d3r ′

]
. (2.51)

The last term is needed to take care of the divergence of the dipole field at
the origin, r ′ = 0. This approach yields the B-field both inside and outside the
solid medium.

The second approach considers the equivalent current distributions in the
bulk and at the surface of the magnetized material:

jm = ∇ × M and jms = M × en, (2.52)

where en is the outward normal at a point on the surface. Using the Biot–Savart
law (2.5) and adding the effects of the bulk and surface contributions to the
current density,

B(r) = µ0

4π

{∫
(∇′ × M) × (r − r ′)

|r − r ′|3 d3r ′ +
∫

(M × en) × (r − r ′)
|r − r ′|3 d2r ′

}
.

(2.53)
The first integral is zero for a uniform distribution of M , because ∇′ × M is
then zero, and the calculation reduces to evaluating the integral of the surface
current density. ∇′ indicates differentiation with respect to r ′.
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The third approach uses the equivalent distributions of magnetic charge in
the bulk and at the surface of the magnetized material:

ρm = −∇ · M and σm = M · en. (2.54)

From (2.31), the H-field due to a small charged volume element δV is δH =
(ρmr/4πr3)δV . Hence

H(r) = 1

4π

{
−
∫
V

(∇′ · M)(r − r ′)
|r − r ′|3 d3r ′ +

∫
S

M · en(r − r ′)
|r − r ′|3 d2r ′

}
. (2.55)

Again, the first integral is zero for a uniform distribution of M because ∇ · M
is then zero. When the integrals are evaluated at a point r within the magnetized
material, methods 1 and 2 yield B, the solenoidal field, whereas method 3 yields
H , the conservative field.

Field calculations are frequently simplified by introducing a potential func-
tion, and taking the appropriate spatial derivative to obtain the field. Next we
introduce the potentials corresponding to B and H .

2.4.1 The magnetic potentials

Vector potential The flux density invariably satisfies ∇ · B = 0. Since the
quantity ∇ · (∇ × A)7 is identically zero, we can always write

B = ∇ × A, (2.56)

where A is a magnetic vector potential. Units ofA are T m. There is substantial
latitude in the choice of vector potential for a given field. For example, a uni-
form field in the z-direction (0, 0, B) may be represented by a vector potential
(0, xB, 0), or by (−yB, 0, 0) or by (− 1

2yB,
1
2xB, 0). Then A can be chosen so

that its equipotentials are the lines of force. The definition of A is not unique,
because it is permissible to add on the gradient of any arbitrary scalar function
f (r). Then if A′ = A + ∇f (r), B = ∇ ×A′ because ∇ × ∇f (r) is identically
zero. B is unchanged by the transformation A → A′, which is known as a
gauge transformation. A useful gauge is the Coulomb gauge, where f is chosen
so that ∇ · A = 0. A convenient expression for A in the Coulomb gauge is

A = 1
2 B × r. (2.57)

It does not matter that the definition of A is not unique, because the observed
effects depend on the magnetic field, not on the potential from which it is
mathematically derived.

Since (r − r ′)/|r − r ′|3 = −∇[1/|r − r ′|], where ∇ refers to differentiation
with respect to the field position r , the expression for the field due to a distri-
bution of currents obtained by integrating the Biot–Savart law (2.5) over the

7 This, and other useful vector identities are collected in Appendix C.
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variable r ′,

B(r) = µ0

4π

∫
( j (r ′) × (r − r ′))

|r − r ′|3 d3r ′, (2.58)

may be written in the form B(r) = (µ0/4π )∇ × ∫ ( j (r ′)/|r − r ′|)d3r ′. Hence

A(r) = µ0

4π

∫
j (r ′)

|r − r ′|d3r ′. (2.59)

In other words, a small contribution δA(r) = (µ0/4π )Iδl/r to the vector
potential is made by each small current element Iδl and A, like j is a
polar vector. Ampère’s law ∇ × B = µ0 j can be written in terms of A as
∇ × (∇ × A) = µ0 j . Since ∇ × (∇ × A) = ∇(∇ · A) − ∇2 A, we see that in
the Coulomb gauge, the vector potential satisfies Poisson’s equation

∇2 A = −µ0 j . (2.60)

By expanding 1/|r − r ′| as (1/r)[1 + (r ′/r) cos θ + · · · ], where θ is the angle
between r and r ′, it follows that at large distances the vector potential for a
magnetic moment m equivalent to a current loop is

A(r) = µ0

4π

m × r

r3
. (2.61)

The expression for a distribution of magnetization M(r ′) is

A(r) = µ0

4π

∫
M(r) × (r − r ′)

|r − r ′|3 d3r ′. (2.62)

Equations (2.59) and (2.62) specify the vector potential, and hence the magnetic
flux density for any given distribution of magnetization or electric current. For
example, the field due to a dipole is B(r) = (µ0/4π)∇ × [(m × r)/r3] which
can be shown to be equivalent to (2.13).

Scalar potential When the H-field is produced only by magnets, and not
conduction currents, it too can be expressed in terms of a potential. The field
is then conservative, and Ampère’s law (2.28) becomes ∇ × H = 0. Since
∇ × ∇f (r) = 0 for any scalar f (r), we can expressH in terms of the magnetic
scalar potential ϕm:

H = −∇ϕm. (2.63)

Units of ϕm are amperes. From (2.14) and (2.33), ∇ · (H + M) = 0, so the
scalar potential satisfies Poisson’s equation:

∇2ϕm = −ρm, (2.64)

where the magnetic charge density ρm = −∇ · M in the bulk and σm = M · en
at the surface. The potential due to a limited magnetized volume is

ϕm(r) = 1

4π

{∫
v

ρm

|r − r ′|d3r ′ +
∫
s

σm

|r − r ′|d2r ′
}
. (2.65)
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Figure 2.14

Boundary conditions of B
and H at the interface
between two media. B⊥
and H‖ are continuous.

In other words, each small element of magnetic charge δqm = ρmδV makes
a contribution δϕm = ρmδV/4πr to the scalar potential. A small magnetic
moment creates a potential m · r/4πr3. Magnetostatic calculations are easier
with the scalar potential, but it should be understood that it is only permissible
to use it for problems where no conduction currents are present.

2.4.2 Boundary conditions

The two magnetic fields B and H satisfy different boundary conditions at an
interface between two media. According to Gauss’s law, (2.15), the integral of
B over the surface of the thin flat ‘pill box’ in Fig. 2.14 is zero, hence

(B1 − B2) · en = 0. (2.66)

The perpendicular component of B is continuous.
For H , however, Ampère’s law gives

∮
H · dl = 0 for the circuit in Fig. 2.14.

with two arms parallel to the boundary, provided there is no conduction current
density at the surface. Hence

(H1 − H2) × en = 0. (2.67)

The parallel component of H is continuous.
The corresponding boundary conditions on the potentials A and ϕm are

obtained as follows. Since B = ∇ × A, by Stokes’s theorem the circulation of
A is equal to the flux of B;

∮
A · dl = ∫

s
B · dA. Consider the small rectangular

loop in Fig. 2.14, which is perpendicular to the surface; the flux of B though it
is zero, hence the parallel component of A is continuous at the interface; hence

(A1 − A2) × en = 0. (2.68)

The scalar potential is continuous at the interface:

ϕm1 − ϕm2 = 0. (2.69)
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The image of a magnetic
dipole in: (a) a soft
ferromagnetic mirror
mx → −mx, my → −my,
mz → mz and (b) a
superconducting mirror
mx → mx, my → my,
mz → −mz. The magnetic
field is perpendicular to the
mirror surface in (a), but
parallel to it in (b). When we are dealing with LIH media where B = µrµ0 H , the boundary

condition (2.66) becomes B1 · en = B2 · en, or H1 · en = (µr2/µr1)H2 · en.
If medium 1 is air and medium 2 has a high permeability, this shows that
the lines of magnetic field strength inside a highly permeable medium tend
to lie parallel to the interface, whereas in air they tend to lie perpendic-
ular to the interface. This is the reason why soft iron acts as a magnetic
mirror as shown in Fig. 2.15. The reflected image of a magnetic moment
is antiparallel to the magnet, and the magnet is attracted to its image in
iron.

The situation is reversed if the iron is replaced by a sheet of superconductor.
Ideally, the superconductor is a perfect diamagnet, with χ = −1, into which
flux does not penetrate. It follows that B is parallel to the surface, and the image
is repulsive. Less than perfect diamagnets, like graphite for which χ � −10−3,
produce weakly repulsive images, which can nonetheless create a point where
equilibrium in free space is stable, as in the levitation device illustrated in
Fig. 15.4.

2.4.3 Local magnetic fields

Up to this point, we have worked in the continuous-medium approximation,
assuming the magnetic material to be a homogeneous continuum with no
atomic-scale structure. The local fluctuations of B and M on a 1 nm scale
are smoothed out in the mesoscopic average (2.1). The B- and H-fields are
supposed to be at most slowly varying within the solid. The minimum length-
scale of the fluctuations in a ferromagnet is the exchange length, which is
of order a few nanometres; this length scale is introduced in Chapter 7. In
the example of a uniform, permanently magnetized sphere (Fig 2.10(a)), B
and H are constant, equal to (2/3)µ0 M and –(1/3)M, respectively. In reality,
solids are made up of atoms with a particular crystal structure, and we have
the ability to probe the magnetic fields at the atomic nuclei experimentally via
the hyperfine interactions. The question then arises: ‘What is the value of the
local magnetic field H loc at a point in a solid?’ The point may be an atomic
site.
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Figure 2.16

Calculation of the
magnetism inside a solid.
The sphere is the Lorentz
cavity.

The calculation of B at any point r may be carried out in principle by
replacing the integral (2.51) by a sum over atomic point dipoles mi . Lorentz
gave an argument to simplify the calculation. He divided the sample into two
regions: region 1 which can be treated as a continuum, and the Lorentz cavity
region 2, where the atomic-scale structure is taken into account (Fig. 2.16).
Here r1 � r2 � a, where r1 and r2 are the average radii of the two regions,
and a is the interatomic separation.

H loc = H1 + H2. (2.70)

The Lorentz cavity is chosen to be spherical. The field due to region 1 can be
evaluated from the distribution of surface charges σm = M · en on the inner
and outer surfaces. Here we can use the continuum approximation to obtain
H1 = −N M + 1

3 M, where the second part

HL = M/3, (2.71)

is known as the Lorentz cavity field. The field H2 produced by the atoms
contained within the cavity is evaluated as a dipole sum∑

i

[
3(mi · ri)ri

r5
− mi

r3

]
.

The delta function in (2.51) is dropped unless we need the field acting at the
nucleus. This atomic dipole sum can be expressed as Hdip = fdip M, where
fdip is a geometric factor of order 1 which depends on the crystal structure
of the lattice. In the particular case of a cubic latice, fdip = 0, and the field
H2 at the centre is zero. The contributions of all the dipoles on a cubic lattice
exactly cancel out. When the sample itself is spherical, N = 1/3 and H1 is
also zero. There is therefore no local magnetic field at the centre of a uniformly-
magnetized sphere of cubic material.

In general, fdip is a tensor, so that Hdip depends on the direction of M relative
to the crystal axes. This is a significant source of intrinsic magnetic anisotropy
in non-cubic materials, since the interaction of M with Hdip defines certain
easy directions of magnetization in the crystal. ‘Intrinsic’ here means that there
is no dependence on the sample shape. This contribution is sometimes referred
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to as two-ion anisotropy because a central ion has a pairwise dipole interaction
with all the other ions in the crystal.

2.5 Magnetostatic energy and forces

There are two main contributions to the energy of a ferromagnetic body: atomic-
scale electrostatic effects like exchange or single-ion anisotropy, and magne-
tostatic effects. The magnetostatic effects, which involve the self-energy of
interaction of the body with the field it creates by itself, as well as the inter-
action of the body with steady or slowly varying external magnetic fields, are
considered here. Exchange and other electrostatic effects are the subject of
Chapter 5.

The magnetostatic interactions are rather weak compared to the short-range
exchange forces responsible for ferromagnetism, but they are important in fer-
romagnets nonetheless because the domain structure and magnetization process
depends on them. It is the long-range nature of the dipole–dipole interaction,
varying as r−3, that allows these weak interactions to determine the magnetic
microstructure. The magnetization of a typical ferromagnet is of order
1 MA m−1 and the demagnetizing fields Hd (2.37) though smaller, are similar
in magnitude. Magnetostatic energies, − 1

2µ0 Hd · M, are therefore of order
106 J m−3. An atomic volume is typically (0.2 nm)3, so the corre-
sponding energy per atom, 1 × 10−23 J, is equivalent to a temperature of
about 1 K.

Generally, any product of a quantity with the dimensions of B with a quan-
tity with the dimensions of H such as B · H , B · M, µ0H

2 or µ0M
2 has

dimensions of energy per unit volume.
Magnetic fields do no work on electric currents or moving charges because

the magnetic part of the Lorentz force ( j × B) per unit volume or (v × B)
per unit charge is always perpendicular to the motion. We cannot associate a
potential energy function with the magnetic force. It is necessary to consider
the work done by the transient electric fields when establishing a particular
magnetic configuration M(r), or in setting up a particular current distribution
j c (r), in order to calculate the associated energy. Magnetostatic energy calcu-
lations can be rather subtle, and it is necessary to be clear about which energies
are taken into account. For example, when a spanner is attracted towards an
electromagnet, the energy of the spanner is lowered, but there are also modifi-
cations of the field both inside and outside the magnet, as well as the appear-
ance of a demagnetizing field in the spanner. The energies associated with all
these changes cancel out. Forces are nonetheless exerted, and damage may be
done.

Let us first consider a small rigid magnetic dipole m in a pre-existing steady
field B. We omit a prime, because the dipole has no internal structure. The
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moment experiences a torque � N m:

� = m × B. (2.72)

Taking the reference state at θ = 0, where θ is the angle between m and B,
and integrating the torque gives the ‘potential energy’ εm = ∫ θ0 �dθ ′, which
depends on angle. Apart from a constant,

B

A magnet in a field. The
energy is −mBcos θ and the
torque is mBsin θ .

εm = −m · B. (2.73)

We assume that turning the magnetic dipole has no effect either on its moment
or on the sources of B. Equation (2.73) is the Zeeman energy of the magnetic
moment in the external field. Although there is a torque, there is no net force on
a magnetic moment in a uniform field; the ‘potential energy’ does not depend
on position. However, if B is nonuniform, the energy of the dipole does depend
on its position. The net force fm = −∇εm resulting from (2.73) is

f m = ∇(m · B). (2.74)

The energy εm is minimized for a ferromagnet or paramagnet by this force
tending to pull the material into a region where the field is greatest, but a
diamagnet is pushed out to a region where the field is smallest.

Next we consider the mutual interaction of two parallel dipoles m1 at r1 and
m2 at r2. The interaction between the pair εp may be considered as the energy
of m1 in the field B21 created by m2 at r1 or vice versa, εp = −m1 · B21 =
−m2 · B12. Hence εp = − 1

2 (m1 · B21 + m2 · B12).
(a) (b)

‘Nose-to-tail’ and
‘broadside’ configurations
for a pair of magnetic
dipoles; (a) is lower in
energy and (b) is unstable.

The interaction of the parallel pair is anisotropic. From (2.10) and
(2.73), εp = −2µ0m

2/4πr3 in the ‘nose-to-tail’ configuration, whereas εp =
µ0m

2/4πr3 in the ‘broadside’ configuration. Here we have taken m1 = m2 and
set r = |r1 − r2| .Hence freely suspended dipoles tend to aggregate in threads.

Reciprocity The two dipoles are an example of the reciprocity theorem, a
useful result in magnetostatics, which states that the energy of interaction of
two separate distributions of magnetization M1 and M2 producing fields H1

and H2 is

ε = −µ0

∫
M1 · H2d3r = −µ0

∫
M2 · H1d3r, (2.75)

where ε is the interaction energy (Fig. 2.17). The reciprocity theorem is used
to simplify magnetic energy calculations such as the interaction of a magnetic
medium with a read head, for example.

2.5.1 Self-energy

These ideas can be extended to calculate the dipole–dipole interaction energy
in a solid. We consider the energy of a body with magnetization M(r) in a
magnetic field. The result is different according to whether the field in question
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M1

H2

Figure 2.17

Mutual interaction of two
distributions of magnet-
ization.

is an external field H ′ or the demagnetizing field Hd created by the body itself.
Here we discuss the second case, considering first a small moment δm at a
point inside the macroscopic magnetized body. The energy needed to bring the
small moment into position is δε = −µ0δm · H loc.We neglect H2 in (2.70) in
the mesoscopic approximation, where

H loc = Hd + HL. (2.76)

Then, δε = −µ0δm · (Hd + HL). Since HL = 1
3 M (2.71), integration over

the whole sample gives

ε = − 1
2

∫
V

µ0 Hd · Md3r − 1
6

∫
V

µ0M
2d3r. (2.77)

The factor of 1
2 which always appears in expressions for the self-energy is

needed to avoid double counting because each element δm contributes as a
field source and as a moment. This energy is plotted in Fig. 2.18 for a uni-
formly magnetized ellipsoid of revolution, for which ε = 1

2µ0V (N − 1
3 )M2.

The second term is actually unimportant; it tends to align the moments all in
the same direction but it is much smaller than the exchange energy which has
the same effect. The magnetostatic self-energy is conventionally defined as
εm = ε + 1

6

∫
v
µ0M

2d3r so that

εm = − 1
2

∫
V

µ0 Hd · Md3r. (2.78)

Since M = B/µ0 − H , the integral may be written in an equivalent form:

εm = 1
2

∫
µ0H

2
d d3r, (2.79)

where the integral is now over all space. We have used the handy result that for
a magnet in its own field, when no currents are present,∫

B · Hdd3r = 0, (2.80)

where the integral is again over all space.8

8 The proof is as follows: setting B = ∇ × A and using the vector identity H · (∇ × A) =
∇ · (A × H) + A · (∇ × H), where the second term is zero in the absence of conduction currents,
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The dipolar self-energy for
an ellipsoid of revolution.

This shows that the energy associated with a permanent magnet can be either
associated with the integral of H 2

d over all space (2.79), or with the integral of
−Hd · M over the magnet (2.78), but not both. These are alternative ways of
regarding the same energy term.

In the special case of a uniformly magnetized ellipsoid (2.78) gives

εm = 1
2µ0VNM2, (2.81)

which is the same as the energy plotted in Fig. 2.18, apart from the constant
term. The expression (2.78) assumes the magnetization is known in advance,
so we can evaluate the magnetostatic energy in the field produced by the
magnetization configuration. In practice, the magnetization tends to adopt a
configuration which minimizes its self-energy. For an ellipsoid, there may be
uniform magnetization along the axis where N is smallest.

A current loop, with
inductance L creates flux
� = BA = L I .

2.5.2 Energy associated with a magnetic field

An expression for the energy associated with a static magnetic field may be
obtained by considering an inductorL consisting of a current loop which creates
a flux � = LI. By Faraday’s law, E = −d�/dt where E is the electromotive
force (emf) developed in a circuit and � is the flux threading it, so the power
needed to maintain a current I in the inductor is −EI = LIdI/dt . Integrating
from 0 to I gives an expression for the energy associated with the inductor:
ε = 1

2LI
2 = 1

2�I. The same energy can be associated with the field in space
created by the current in the inductor. First the flux is expressed in terms of
the vector potential A using Stokes’s theorem

∫
s

B · dA = ∮ A · dl and the
energy is written as ε = 1

2

∮
I A · dl. This can be generalized from a single

the integral
∫

B · Hd3r = ∫ H · (∇ × A)d3r = ∫ ∇ · (A × H)d3r. By the divergence theorem,
the volume integral can be converted to a surface integral

∫
s
(A × H)d2r. Far from the magnet,

A ∼ 1/r2 and H ∼ 1/r3, so the integral over a surface of infinite radius is zero.
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current loop to a continuous current density by replacing Idl by jd3r since
d3r = d2rdl = da · dl and j is parallel to the area vector, a ‖ dl therefore
jd2ra · dl = j · ad3r where jda is the current dI in a tube of cross section
da. The general expression for the energy associated with a magnetic field
distribution is therefore

ε = 1
2

∫
j · Ad3r. (2.82)

This is analogous to the expression for the electrostatic energy ε = 1
2

∫
ρϕed

3r.

Finally, (2.82) is expressed in terms of the magnetic field. Since j = ∇ × H
and (∇ × H) · A = ∇ · (H × A) + H · (∇ × A), there are two terms in the
integral. The first is zero for a localized field source since by the divergence
theorem the integral is equal to the flux of H × A through a surface at infinity.
Hence, the only remaining term is ε = 1

2

∫
H · Bd3r: in free space this becomes

ε = 1
2

∫
µ0H

2d3r. (2.83)

The local energy density associated with the magnetic field is 1
2µ0H

2. This
is actually a general statement irrespective of whether the field is created by
electric currents or magnetic material (2.79).

When designing magnetic circuits that include permanent magnets, the aim is
usually to maximize the energy associated with the field created by the magnet
in the space around it. From (2.78) and (2.79)

1
2

∫
µ0H

2
d d3r = − 1

2

∫
V

µ0 Hd · Md3r. (2.84)

which may be rewritten as

Ideal shape for a
permanent magnet.

1
2

∫
o

µ0H
2
d d3r = − 1

2

∫
i

µ0H
2
d d3r − 1

2

∫
i

µ0 M · Hdd
3r, (2.85)

where the indices o and i indicate integrals over space outside and inside the
magnet. The integral on the left is the one to be maximized. For a uniformly
magnetized ellipsoid, the sum of the two integrals on the right over the volume of
the magnet is − 1

2µ0M
2(N 2 − N ); this is maximum when the demagnetizing

factor N equals 1
2 . The ideal shape for a permanent magnet is therefore an

ellipsoid of revolution with c/a = 0.5. A squat cylinder with height equal to
radius is almost as good.

If you dismantle some consumer electronics where something moves or
makes a noise, an earphone for example, you are likely to discover a cylindrical
magnet of approximately this shape. Alas, the magnificent modern perma-
nent magnet, shaped like a pill, has none of the iconic value of a horseshoe!
From (2.33) and (2.85), the energy stored in the field outside the magnet,
on the left-hand side of (2.85), is equal to − 1

2

∫
i
µ0 B · Hdd3r . The integral

− ∫
i
µ0 B · Hdd3r is known as the energy product. It is twice the energy stored

in the stray field of the magnet. Again, the usable energy may be associated
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either with the stray field 1
2

∫
o
µ0H

2
d d3r , or with the demagnetizing field in the

magnet itself − 1
2

∫
i
µ0 B · Hdd3r , but not both. The two terms have the same

absolute values, but their sum is zero. It is a matter of taste.

2.5.3 Energy in an external field

To extend the energy expression of a point dipole in an external field (2.73)
to ferromagnetic materials, it is not adequate simply to fill the inductor with
a medium of permeability µ, because ferromagnets are generally nonlinear;
B �= µH . They exhibit hysteresis, so that the energy needed to prepare a
state described by B and H depends on the path followed. We can, however,
evaluate the increment of work δw done to produce a small change in flux δ�;
δw = −EIδt = Iδ�. But, by Ampère’s law I = ∮ H · dl where the integral
is taken around a closed loop. Hence δw = ∮ δ�H · dl. This is generalized to
the expression for magnetic work done on the system

δw = ∫ H · δBd3r, (2.86)

where the integral is over all space. When the magnetization is uniform, this
expression becomes

δW = H · δB, (2.87)

where δW is the energy increment per unit volume.
More generally, we would love to have an expression for the energy of the

magnetization distribution M(r) in the external, applied field H ′, which is
supposedly undeformed by the presence of the magnetic material. It is rather
unrealistic, even for good permanent magnets, to assume a perfectly uniform
magnetization. M(r) is modified by the field applied during the magnetization
process, and it depends on the value of H(r) throughout the body. We do not
know what H(r) really looks like inside the magnet. It is not obvious that
it is possible to find such an energy expression in terms of H ′. The real H-
field which is present throughout the material, and the one which features in
Maxwell’s equations, is (2.37)

H = H ′ + Hd,

where Hd is the demagnetizing field produced by the material itself. The basic
constitutive relation for the material is M = M(H) not M = M(H ′), precisely
because we did not want it to depend on extraneous features like sample shape.

The applied field H ′ is supposed to be created by some external current
distribution j ′. It satisfies ∇ × H ′ = j ′ and ∇ · H ′ = 0 when there are no cur-
rents in the region of interest. The mesoscopic magnetostatic field Hd created
by the body satisfies ∇ · Hd = −∇ · M and ∇ × Hd = 0. The correspond-
ing induction is B = µ0(H + M) = µ0(H ′ + Hd + M). The general expres-
sion for the magnetic work done in changing the induction by δB is given by
(2.86) with H = H ′ + Hd .This expression includes a term associated with the
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H-field in empty space
∫
µ0 H ′δH ′d3r , which is unrelated to the magnetic

body, and should be subtracted to leave an expression for the work associated
with the energy changes of the magnetized body alone. The relevant magnetic
work is therefore

δw′ =
∫

(H · δB − µ0 H ′ · δH ′)d3r. (2.88)

Using the expressions (2.37) and (2.33) for H and B, H · δB = µ0(H ′ +
Hd ) · (δH ′ + δHd + δM). Hence

δw′ = µ0

[∫
δ(H ′ · Hd )d

3r +
∫

HdδHdd
3r +

∫
H · δMd3r

]
. (2.89)

The first integral is zero for the same reason that
∫

B · Hdd3r is zero over all
space (2.80) (∇ · H ′ = 0; ∇ × Hd = 0).The second integral is the contribution
to the magnetostatic self-energy (2.79),

δw′ = δεm + µ0

∫
V

H · δM d3r,

where the integral is over the volume of the magnet as M = 0 elsewhere. This
expression relates the magnetic energy to the self-energy and the constitutive
relation M = M(H). From (2.78)

δεm = − 1
2µ0

∫
V

(Hd · δM + M · δHd )d
3r, (2.90)

δεm = −µ0

∫
V

Hd · δM d3r, (2.91)

by reciprocity. From (2.37), (2.89) and (2.91).

δw′ = µ0

∫
V

H ′ · δM d3r. (2.92)

Equation (2.92) is the expression we sought for work done on the body by the
applied field. The integral is over the body. Even though H ′ is not the field
appearing in the constitutive relations, the work is expressed in terms of the
quantities of direct physical interest, the applied field H ′ and the magnetization
M. This expression reduces to

δW ′ = µ0 H ′ · δM, (2.93)

where δW is the energy increment per unit volume.
If we consider a magnetic material with the B(H ′) and M(H ′) curves shown

in Fig. 2.19, the integrals are as indicated in the figure caption. The energy∫ M
0 µ0 H ′ · dM expended to magnetize a sample is related to its anisotropy

energy, including shape anisotropy, since the magnetization process in the
external field depends on the orientation of the sample.

If the M(H ′) relation is hysteretic, energy is expended on cycling the field
H ′. For example, Fig. 2.19(b) shows the energy expended to magnetize the
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The energy associated with
the magnetization curve.
The shaded area in (a)
indicates the energy
associated with the applied
field, whereas that in (b)
represents the work done
to magnetize the material,
and that in (c) represents
the hysteresis energy loss
per cycle.

sample to remanence, and Fig. 2.19(c) shows the hysteresis loss on a complete
cycle

∮
µ0 H ′ · dM.

An expression for the energy needed to magnetize an LIH paramagnetic
material in an external field may be deduced. Here the moment is induced by
the field, according to (2.40). Hence, from (2.93)

W =
∫ M

0
µ0H

′dM ′ = 1
2µ0MH

′. (2.94)

2.5.4 Thermodynamics of magnetic materials

In thermodynamics, the first law is written in terms of pairs of conjugate
variables HX and X, where HX represents some external action on the system,
and X is a state variable. The work done on the system is HXdX, and the first
law is written

dU = HXdX + dQ, (2.95)

where each term is an energy per unit volume. U refers to the internal energy
of the system, and dQ is the heat absorbed by the system in the transformation.
It is expressed in terms of entropy S, which for a reversible transformation is
given by dQ = T dS. Here, T and S are the conjugate variables for thermal
energy. The system is usually defined by fixing one variable in each of the
(T , S) and (HX,X) pairs. Four thermodynamic potentials can be defined by
fixing two variables experimentally and leaving the other two variables free.
The potentials are internal energy U (X, S), enthalpy E(HX, S), Helmholtz
free energy F (X, T ) and Gibbs free energy G(HX, T ). All have units of J m−3

Thermodynamic equilibrium is reached when the appropriate potential reaches
a minimum. When T is fixed, as is often the case, the relevant potentials are F
= U − T S and G = F −HXX, for which

dF = HXdX − SdT (2.96)
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and

dG = −XdHX − SdT . (2.97)

We have encountered two expressions for magnetic work per unit volume when
the magnetization is uniform, H · δB (2.87) and µ0 H ′ · δM (2.93). The latter
is more practical, as it is usually the external field and temperature which are the
experimental variables, soG is the potential of interest. The energy stored in the
applied magnetic field is included inU . In transformations at constant tempera-
ture the Helmholtz free energyF (M,T ) and the Gibbs free energyG(H ′, T ) are
related by

G = F − µ0 H ′ · M. (2.98)

At thermodynamic equilibrium

dF = µ0 H ′ · dM − SdT (2.99)

and

dG = −µ0 M · dH ′ − SdT (2.100)

The changes inF andG at constant temperature are associated with the areas
under the reversible H ′(M) or −M(H ′) curves. In the case of an LIH medium,
the changes of Helmholtz free energy and Gibbs free energy on magnetizing
the medium are 1

2µ0MH
′ and − 1

2µ0MH
′ respectively.

M

H'

DF

−DG

Changes in the
thermodynamic free
energies F and G
associated with a reversible
magnetization curve.

The spontaneous magnetization of a ferromagnet falls with increasing tem-
perature. The fall becomes precipitous just below the Curie point, where the
entropy of the spin system increases rapidly as the spin moments become dis-
ordered. In this temperature range, large entropy changes can be produced by
modest applied fields. The entropy and magnetization of the ferromagnet are
obtained as partial derivatives of the Gibbs free energy (2.100).

S = −
(
∂G

∂T

)
H ′
, µ0M = −

(
∂G

∂H ′

)
T

. (2.101)

Since δQ = T δS, the specific heat of magnetic origin Cm is equal to
−T (∂2G/∂T 2)H ′ .

Moreover, from the second derivatives of the four thermodynamic potentials,
four Maxwell relations are obtained. For example, from the Gibbs free energy,
using the fact that (∂2G/∂H ′∂T ) = (∂2G/∂T ∂H ′),(

∂S

∂H ′

)
T

= µ0

(
∂M

∂T

)
H ′
. (2.102)

According to the third law of thermodynamics, the entropy of the system tends
to zero as T → 0, regardless of magnetic field. It follows that ∂S/∂H ′ → 0
as T → 0, hence ∂M/∂T → 0 as T → 0. The temperature variation of the
magnetization at T = 0 must have zero slope.
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Another useful thermodynamic quantity in magnetism is the chemical poten-

tial, defined as µ = ∂G/∂n, where n is the number density of particles (elec-
trons) in the system. The chemical potential is the increase of energy on adding
an extra electron to the system. In metals, it is practically equivalent to the
Fermi energy. The chemical potentials of spin-up and spin-down electrons will
be different in an applied magnetic field. The spin-dependent chemical poten-
tial is used to analyse phenomena in spin electronics such as spin accumulation
and giant magnetoresistance.

2.5.5 Magnetic forces

Forces in thermodynamics are related to the gradient of the free energy, which
represents the ability of the system to do work. The Gibbs free energy whenH ′

and T are the independent variables isG = U − T S − µ0 H ′ · M. From (2.98),
the force density due to a nonuniform field acting at constant temperature on a
magnetized body Fm = −∇G is

Fm = ∇(µ0 H ′ · M). (2.103)

Using an identity for ∇(A · B) (Appendix C), the expression takes a simpler
form when M is uniform and independent of H ′ (∇ × M = 0), and no currents
are present (∇ × H ′ = 0). The first term on the right is zero because the curl
is zero:

∇(H ′ · M) = (H ′ · ∇)M + (M ·∇)H ′

Fm = µ0(M · ∇)H ′. (2.104)

This is known as the Kelvin force. When M is parallel to the z-direction and the
change in H ′ is also in the z-direction, the expression is Fz = µ0M(∂H ′/∂z).
In any case, the force is always in the direction of the gradient of the magnitude
of the applied field. A general expression for the force density when M is not
independent of H is

Fm = −µ0∇
[∫ H

0

(
∂Mυ

∂υ

)
H,T

dH

]
+ µ0(M ·∇)H . (2.105)

Note that H in this expression is the internal field, not the applied field H ′,
and υ = 1/d, where d is the density. Hence Mυ = σ , the specific magnetic
moment per kg of sample. When this is independent of density, as it is for
dilute solutions or suspensions of magnetic particles, the first term is zero and
the force Fm is given by the Kelvin expression for a paramagnet withH ′ = H.
The demagnetizing field is negligible in dilute paramagnetic solutions, but in
more concentrated samples such as ferrofluids, the first term takes care of the
dipole–dipole interactions.
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FURTHER READING

J. D. Jackson, Classical Electrodynamics, third edition, New York: Wiley (1998). This
classic textbook is now written in SI units.

G. Bertotti, Hysteresis, San Diego: Academic Press (2000). A monograph on all aspects
of magnetostatics and the hysteresis loop.

E. S. Shire, Classical Electricity and Magnetism, London: Cambridge University Press
(1960). A good basic account.

A. Rosencwaig, Ferrohydrodynamics, Mineola: Dover (1997). This includes a clear
account of magnetic energy and forces, with particular reference to ferrofluids.

L. D. Landau and E. M. Lifschitz, Electrodynamics of Continuous Media, second edition,
Oxford: Pergammon Press (1989). The definitive text.

EXERCISES

2.1 Use the Biot–Savart law to obtain an expression for the magnetic field at a point
B(r) in terms of the integral of the local current density j (r ′). Hence show that
the divergence of B is zero.

2.2 Refer to the table of dimensions in Appendix B to show that T m A−1 and H
m−1 are equivalent units for µ0. Express the units in terms of another pair of SI
quantities.

2.3 Show that (2.6) reduces to (a) (2.7 ) for a circular current loop and (b) (2.8) for
a square current loop.

2.4 Show that the expressions for the dipolar field in (2.8), (2.9) and (2.10) are all
equivalent.

2.5 Show that (2.10) is equivalent to (2.12). Repeat for (2.12) and (2.13).
2.6 (a) What is the flux density at a distance of 0.1 nm from an atom with moment

m = 1µB?
(b) Use the expression for the dipolar field in Cartesian coordinates to show that

the dipole field at any point on a cubic lattice is exactly zero.
2.7 Calculate the magnetic field due to electric currents I flowing in opposite direc-

tions in two parallel wires separated by a distance d, at a perpendicular distance
R from the axis of the wires. Assume R � d.

2.8 (a) Using the expression for the magnetic field of a uniformly magnetized long
rod, show that the Halbach cylinder of Fig. 2.6(c) produces a field B =
µ0Mr ln(r2/r), whereM is the magnetization of the permanent magnet.

(b) If the cylinder is made of a permanent magnet with remanence 1.5 T, what
is the outer diameter of a cylinder which will produce a field of 2.0 T in a
25 mm bore? Make an estimate of the field near the ends of the cylinder. Is
it possible to replace any of the permanent magnet by soft iron?

2.9 (a) A flake of graphite and (b) a bismuth needle are freely suspended in a uniform
magnetic field. What happens?

2.10 Calculate the external susceptibility of a long, needle-shaped sample of gadolin-
ium at the Curie point TC if the magnetization is constrained to lie along the
c-axis, which is oriented at 12◦ to the sample axis. (The internal susceptibility
diverges at TC.)
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2.11 Show that the magnetic field of a point dipole m can be derived from the vector
potential A = (µ0/4πr

2)m × er .
2.12 (a) Use the expression (2.65) for the scalar potential to derive the expression

(2.55) for the magnetic field.
(b) Use the expression (2.59) for the vector potential to derive the expression

(2.53) for the magnetic field in terms of the current distribution.
2.13 Show that there is no magnetic force acting on a tube containing a paramag-

netic solution with a concentration gradient c(z) when it is placed in a uniform
magnetic field.

2.14 Show that the energy density in a magnetic field is given by (2.83) for the special
case of a long solenoid.

2.15 By considering the forces (2.32) on the surface charges of a small volume
element, show that the force density on a uniformly magnetized material in a
magnetic field gradient is given by (2.104).

2.16 Use Cartesian coordinates, and the vector identity [A × (∇ × B)]j =∑
i[Ai∇jBi − Ai∇ iBj ] to show that (2.104) and Fz = µ0M(∂H ′/∂x) follow

from (2.103). Show that in dilute, linear, isotropic media, Fm = (µ0χ/2)∇H 2.

2.17 Express the polarization of iron (2.15 T) as the equivalent magnetization in
A m−1, and also in the cgs units, gauss and emu. What is the specific magneti-
zation of iron in SI and cgs units?



3 Magnetism of electrons

Could anything at first sight seem more impractical than a body
which is so small that its mass is an insignificant fraction of the mass
of an atom of hydrogen?

J. J. Thompson (Atomic Physics, film sound track (1934))

The magnetic moments in solids are associated with electrons. The microscopic
theory of magnetism is based on the quantum mechanics of electronic angular
momentum, which has two distinct sources – orbital motion and spin. They are
coupled by the spin–orbit interaction. Free electrons follow cyclotron orbits in a
magnetic field, whereas bound electrons undergo Larmor precession, which gives
rise to orbital diamagnetism. The description of magnetism in solids is fundamen-
tally different depending on whether the electrons are localized on ion cores, or
delocalized in energy bands. A starting point for discussion of magnetism in metals
is the free-electron model, which leads to temperature-independent Pauli param-
agnetism and Landau diamagnetism. By contrast, localized noninteracting electrons
exhibit Curie paramagnetism.

The nature of the electron as a tiny negatively charged particle was established
at the outset of the twentieth century. Louis de Broglie proposed in 1924 that
wave–particle duality extended to matter as well as light, and that the wavelength
λe of an electron is related to its momentum by

p = h/λe. (3.1)

This de Broglie relation, combined with Niels Bohr’s postulate that the angular
momentum of electrons in atoms was quantized in multiples of h̄, |r × p| = nh̄,
led to the idea that the allowed orbits of electrons in atoms were stationary states
with an integral number of de Broglie wavelengths. This opened the door to
the development of quantum physics.

Our understanding of the magnetism of the electron is rooted in quantum
mechanics. Two basic approaches are wave mechanics, due to Schrödinger,
and matrix mechanics, due to Heisenberg. In wave mechanics, the electron is
represented by a complex wave function �(r) whose physical significance is
that �∗(r)�(r)δ3r is the probability of finding an electron in a volume of δ3r

at r . Here �∗ denotes the complex conjugate of �. The basic equation is the
Schrödinger equation:

H� = ε�, (3.2)
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(a) (b)

Figure 3.1

Magnetic moments
associated with (a) orbital
and (b) spin angular
momenta of an electron.

where H is the Hamiltonian operator. The solutions are the eigenstates or
stationary states of the system �i(r), and the eigenvalues are the energy levels
εi , i = 1, 2, . . . The eigenfunctions are orthogonal,

∫
�∗
i �jd

3r = 0, and form
a basis of the system The Heisenberg formulation which is especially useful
in magnetism when only a small number of eigenstates are relevant, uses an
n× n matrix representation for the Hamiltonian. All physical observables can
be represented by matrix operators. The eigenstates are n× 1 column vectors,
and the eigenvalues are real numbers. The procedure to determine them often
involves diagonalizing a matrix to find its eigenvalues. Corrections due to small
additional terms in the Hamiltonian are deduced from perturbation theory.

Equation (3.2) is used to find stationary states (energy eigenstates). When
there is time dependence, � = �(r, t), the time-dependent Schrödinger equa-
tion must be used instead:

H� = ih̄
∂�

∂t
. (3.3)

For energy eigenstates, the solutions are of the form � ∼ e−iεt/h̄, and (3.3)
determines the evolution of any wave function.

3.1 Orbital and spin moments

Magnetism is intimately connected with angular momentum of elementary par-
ticles, so the quantum theory of magnetism is closely linked to the quantization
of angular momentum. Protons, neutrons and electrons possess an intrinsic
angular momentum 1

2h̄ known as spin, where h̄ is Planck’s constant h divided
by 2π .

Nuclear spin creates much smaller magnetic moments than electronic spin
because of the much greater nucleon mass, ≈1.67 × 10−27 kg. In practice, the
nuclear magnetism can often be neglected. Electrons are the main source of
magnetic moments in solids. The electron is an elementary particle with charge
−e and mass me which has two distinct sources of angular momentum, one is
associated with orbital motion around the nucleus, the other is spin (Fig. 3.1).
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Table 3.1. Properties of the electron

Mass me 9.109 × 10−31 kg
Charge −e −1.6022 × 10−19 C
Spin quantum number s 1/2
Spin angular momentum 1

2h̄ 5.273 × 10−34 J s
Spin g-factor g 2.0023
Spin magnetic moment m −9.285 × 10−24 A m2

Classical radius µ0e
2/4πme re 2.818 × 10−15 m

3.1.1 Orbital moment

The orbital moment can be introduced in terms of the Bohr model of the
atom, where electrons revolve around a nucleus of charge Ze in circular orbits
under the influence of the Coulomb potential ϕe = −Ze/4πε0r . An electron
circulating in its orbit is equivalent to a current loop where the current direction
is opposite to the sense of circulation because of the negative electronic charge.
If the speed of the electron is v, its period of rotation is τ = 2πr/v and
the equivalent current is I = −e/τ . The magnetic moment associated with the
current loop m = IA (2.3) is − 1

2er × v, where the vector product shows the
direction of m. In terms of angular momentum, � = mer × v, the moment is

Electron

Nucleus

Ze

The Bohr atom. The
electron moves in a circular
orbit where its quantized
angular momentum � and
magnetic moment m are
oppositely directed. m = − e

2me
�. (3.4)

The proportionality between magnetic moment and angular momentum is a
general result,

m = γ �, (3.5)

where the proportionality factor γ is known as the gyromagnetic ratio. For orbital
motion of electrons, γ is −(e/2me); the minus sign means that m and � are
oppositely directed because of the negative electron charge.

The orbital angular momentum is quantized in units of h̄, in such a way that
the component of m in some particular direction, chosen as the z-direction, is

mz = − e

2me
m�h̄, where m� = 0,±1,±2, . . . (3.6)

Herem� is an orbital magnetic quantum number. The natural unit for electronic
magnetism is therefore the Bohr magneton, defined as

µB = eh̄

2me
; (3.7)

1µB = 9.274 × 10−24 A m2. The z-component of the quantized orbital mag-
netic moment is an integral number of Bohr magnetons.

The remarkable difference between an electron in a quantum-mechanical
stationary state and a classical charged particle is that the former can circu-
late indefinitely in its orbit as some sort of perpetual motion or electronic
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supercurrent – whereas the classical particle, or an electron in an unquantized
orbit, must radiate energy on account of its continuous centripetal acceleration.
Classical orbital motion will soon cease as a result of radiation loss.

The relation (3.5) is alternatively expressed in terms of a g-factor, which is
defined as the ratio of the magnitude of the magnetic moment in units of µB
to the magnitude of the angular momentum in units of h̄: (|m|/µB) = (g|�|/h̄).
Hence g is exactly 1 for orbital motion.

The derivation of (3.4) can be generalized to noncircular orbits. From
(2.3),m = IA for a planar loop of any shape and area A. The angular
momentum of an electron moving with angular velocity ω, � = mer2ω, is
a constant around the orbit. The current I = −e/τ = −(e�/me)〈1/2πr2〉av =
−e�/2meA, where 〈· · · 〉avis the average over the orbit.Hence m = −(e/2me)�.

The Bohr model, a simplified version of the quantum mechanics of the
atom, provides us with the natural units of length and energy for atomic
physics. If Z = 1, Newton’s second law for the centrally accelerated elec-
tron, e2/4πε0r

2 = mev2/r , and angular momentum quantization,mevr = nh̄,
give r = n2a0, where the Bohr radius, a0, is defined as

a0 = 4πε0h̄
2

mee2
. (3.8)

The value of a0 is 52.92 pm. The corresponding binding energy of the electron is
Z2R0/n

2, whereR0 = (me/2h̄2)(e2/4πε0)2 is a constant known as the Rydberg.
The value of R0 is 2.180 × 10−18 J, which is equivalent to 13.606 eV.

3.1.2 Spin moment

The electron possesses intrinsic spin angular momentum with quantum number
s = 1

2 . There is an associated intrinsic magnetic moment, unrelated to any
orbital motion, which can only adopt one of two discreet orientations relative to
a magnetic field. The electron is really a point particle, with radius <10−20 m,
much smaller than the classical radius (Table 3.1), so the image of a spinning ball
of charge in Fig. 3.1 is ultimately misleading. The mysterious built-in angular
momentum emerges as a consequence of relativistic quantum mechanics (§3.3).
All fermions have spin and an associated magnetic moment. It turns out that
the magnetic moment associated with the electron spin is not a half, but almost
exactly one Bohr magneton. The gyromagnetic ratio γ is −(e/me) and the
g-factor is close to 2.

m = − e

me
s. (3.9)

The spin magnetic magnetic quantum number is ms = ± 1
2 , so there are only

the two possible angular momentum states. The component of spin along any



66 Magnetism of electrons

axis is ± 1
2h̄:

mz = − e

me
msh̄ with ms = ±1

2
. (3.10)

Spin angular momentum is therefore twice as efficient as orbital angular
momentum at creating a magnetic moment. With higher-order corrections, g
for the electron’s intrinsic spin moment turns out to be 2.0023. The spin moment
of the electron is 1.00116 µB . For practical purposes, this small correction can
be ignored.

The reality of the link between magnetism and angular momentum, known
as the Einstein–de Haas effect, was demonstrated in an experiment carried out by
John Stewart in 1917. A ferromagnetic rod is suspended from a torsion fibre so
that it can turn about its own axis. A vertical magnetic field created by a solenoid
is sufficient to overcome the demagnetizing field and saturate the magnetization
of the ferromagnet. The current in the solenoid is then reversed, switching the
direction of magnetization of the rod, thereby delivering an angular impulse due
to the reversal of the angular momentum of the electrons. The impulse causes
the rod to rotate, and from the angle of rotation and the torsion constant of the
fibre it is possible to deduce the change of angular momentum. In the case of
iron, for which the spontaneous magnetizationMs = 1710 kA m−1, the g-factor
is found to be 2.09. This shows that the magnetization of iron is essentially
due to electron spin. More surprising is the magnitude of the ferromagnetic
moment, which works out at only 2.2µB per atom.1 The number of electrons
per iron atom is equal to the atomic number, Z = 26, yet the ferromagnetic
moment of iron corresponds to the spin moment of barely two of them. All the
others form pairs with oppositely aligned spins, and contribute nothing.

Torsion fibre

Ferromagnetic rod

Coil

The Einstein–de Haas
effect, demonstrating the
relation between angular
momentum and magnetic
moment. A ferromagnetic
rod is suspended on a fibre
and the field in the
solenoid is reversed,
switching the direction of
magnetization; the rod
turns.

3.1.3 Spin–orbit coupling

Generally, an atomic electron possesses both spin and orbital angular momen-
tum. They may be coupled by spin–orbit interaction to create a total electronic
angular momentum j , with resultant magnetic moment

m = γ j . (3.11)

It is conventional to use lower-case letters �, s, j to denote the the angular
momentum quantum numbers of a single electron. Upper-case letters L, S, J
are reserved for the multielectron atoms and ions discussed in the next chapter.
The numbers may be integral or half-integral, except for � and L, which can

1 To calculate the magnetic moment m in µB per molecular unit from σ the magnetic moment per
kilogram, multiply σ by the molecular weight M and divide by 5585 (m = σM/1000NAµB ,
where NA is Avogadro’s number). By chance, M/5585 is exactly 1/100 for iron, which
has atomic mass number = 55.85; σ = Ms/ρ = 217 A m2 kg−1 for iron at 300 K, hence
m=2.2 µB. Other magnetization conversions can be found in Appendix E.
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only be integral. Bold symbols represent angular momentum vectors, which
have units of h̄.

Ze

Bso

Spin–orbit interaction from
the viewpoint of the
electron.

From the electron’s geocentric point of view, the nucleus revolves around it
with speed v. The motion is equivalent to a current loop In = Zev/2πr , which
creates a magnetic fieldµ0In/2r (2.7) at the centre. The spin–orbit interaction is
due to this magnetic field,Bso = µ0Zev/4πr

2, acting on the intrinsic magnetic
moment of the electron. The electron’s magnetic moments associated with �

and s are oppositely aligned. The interaction energy (2.73) εso = −µBBso can
be written approximately in terms of the Bohr2 magneton and the Bohr radius,
since r � a0/Z for an inner electron and r = na0 for an outer electron, and
mevr ≈ h̄. In the former case,

εso ≈ −µ0µ
2
BZ

4

4πa3
0

. (3.12)

The Z variation means that the spin–orbit interaction, while weak for light
elements becomes much more important for heavy elements and especially
for inner shells. The associated magnetic field is of order 10 T for boron
or carbon. The correct version of the spin–orbit interaction, resulting from a
relativistic calculation, is given in §3.3.3. The expression (3.12) is modified by
a factor 2. The interaction for a single electron is represented by the spin–orbit
Hamiltonian

Hso = λl̂ · ŝ, (3.13)

where λ is the spin–orbit coupling energy. l̂ and ŝ are dimensionless operators
– the h̄2 has been absorbed into λ, thus giving it dimensions of energy.

3.1.4 Quantum mechanics of angular momentum

The Bohr model is an oversimplification of the quantum theory of angular
momentum. In quantum mechanics, physical observables are represented by
differential operators or matrix operators, which we denote by bold symbols
with a hat. For example, momentum is represented by p̂ = −ih̄∇ and kinetic
energy by p̂2/2m = −h̄2∇2/2m. The allowed values of a physical observable
are given by the eigenvalues, λi , of the equation Ôψi = λiψi , where Ô is the
operator andψi are the eigenfunctions, which represent the possible observable
states of the system. The eigenvalues are determined by solving the equation
|Ô − λI | = 0 where |· · ·| denotes a determinant and I is the identity matrix.

The angular momentum operator is l̂ = r × p̂, with components

l̂ = −ih̄(y∂/∂z− z∂/∂y)ex − ih̄(z∂/∂x− x∂/∂z)ey − ih̄(x∂/∂y− y∂/∂x)ez.
(3.14)

2 We usually approximate the spin moment of the electron as 1 µB . Strictly, this equation should
be εso = −gµBmsBso.
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In terms of the spherical polar coordinates, the Cartesian coordinates are
x = r sin θ cosφ, y = r sin θ sinφ and z = r cos θ , and the operators for the
components of the angular momentum become

l̂x = ih̄(sinφ∂/∂θ + cot θ cosφ∂/∂φ),

l̂y = ih̄(−cosφ∂/∂θ + cot θ sinφ∂/∂φ), (3.15)

l̂z = −ih̄(∂/∂φ).

The square of the total angular momentum is

l̂
2 = l̂

2
x + l̂

2
y + l̂

2
z = −h̄2

(
∂2

∂θ2
+ cot θ

∂

∂θ
+ 1

sin2 θ

∂2

∂φ2

)
. (3.16)

r

x

y

z

f

q

Spherical polar coordinates.

An alternative way of representing angular momentum operators, which
is invaluable when considering the spin of electrons, is with matrices. The
magnetic systems have a small number ν of magnetic basis states, each denoted
by a different magnetic quantum number mi , and they can be represented by
ν × ν square hermitian matrices.3 For orbital angular momentum with quantum
number �, ν is (2�+ 1).

Similarly for spin, the electron with s = 1
2 has just two basis states, denoted

by ms = ± 1
2 . The spin angular momentum of the electron is represented by

a 2 × 2 spin operator ŝ. The three components of angular momentum are
represented by the operators ŝx, ŝy, ŝz. Of these, ŝz is conventionally chosen as
the diagonal one and it has eigenvalues 1

2h̄ and − 1
2h̄, corresponding toms = ± 1

2 .
The two possible states of the electron are known as the ↓ or ‘spin-up’ and ↑
or ‘spin-down’ states.4 Chemists refer to them as the β and α spin states. The

eigenvectors corresponding to |↓〉 and |↑〉 are

[
1
0

]
and

[
0
1

]
, so that ŝz takes

the matix form

[
1 0
0 −1

]
1
2h̄. A coordinate rotation about Oy by θ = π/2

yields ŝx =
[

0 1
1 0

]
1
2h̄ and a further rotation by φ = 1

2π about Oz yields

ŝy =
[

0 −i
i 0

]
1
2h̄. The eigenvectors are known as spinors. The dimensionless

operator σ̂ obtained by multiplying ŝ = (sx, sy, sz) by 2/h̄ has components
known as the Pauli spin matrices:

σ̂ =
([

0 1
1 0

]
,

[
0 −i
i 0

]
,

[
1 0
0 −1

])
. (3.17)

3 A Hermitian matrix [Aij ] is one for which Aij = A∗
ji , where ∗ denotes the complex conjugate,

obtained by replacing i by −i. Hermitian matrices have real eigenvalues, which correspond to
physically observable quantities.

4 The arrow indicates the direction of the magnetic moment. The negative charge of the electron
means (somewhat confusingly) that ↑ is spin down and vice versa.
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The fundamental property of angular momentum in quantum mechanics is
that the operators representing the x, y, and z components satisfy the commu-

tation rules

[ŝx, ŝy] = ih̄ŝz, [ŝy, ŝz] = ih̄ŝx, [ŝz, ŝx] = ih̄ŝy. (3.18)

The commutator is the square bracket, defined as ŝx ŝy − ŝy ŝx etc. All three
components ŝx, ŝy and ŝz satisfy the commutation rule, and all three of them
have eigenvalues ± 1

2h̄. These operators have to be Hermitian so that their
eigenvalues are real. A neat way of summarizing the commutation relations is

ŝ × ŝ = ih̄ŝ. (3.19)

The differential operators for orbital angular momentum, (3.15), also obey
these commutation rules, as all angular momentum operators must. Two oper-
ators are said to commute if their commutator is zero.

In quantum mechanics, only those physical quantities whose operators
commute can be measured simultaneously. The three components of angular
momentum do not commute and therefore cannot be measured at the same
time. A precise measurement of the z component, for example, means that the
x and y components are indeterminate. However, it is possible to measure
the total angular momentum and any one of its components (but conventionally
the z component) simultaneously. The square of the total spin angular momen-
tum, ŝ2 with eigenvalues s(s + 1)h̄2 is proportional to the identity matrix and
it is represented by

ŝ2 = ŝ2
x + ŝ2

y + ŝ2
z =

[
1 0
0 1

]
3h̄2/4.

It commutes with ŝx , ŝy and ŝz. The eigenvalue of the square of the total angular

momentum 〈ŝ2〉 = 〈i|ŝ2|i〉 is 3h̄2/4 for both eigenstates

[
1
0

]
and

[
0
1

]
. Both

ŝz and ŝ2 are diagonal, and diagonal matrices always commute.5 Hence the
possiblity of measuring simultaneously both the square of the total angular
momentum and its z-component.

Pictorially, the electronic angular momentum can be represented by a vector
of length

√
3h̄/2 which precesses aroundOz, and takes one of two orientations

relative to Oz (Fig. 3.2). The component of spin angular momentum parallel
to Oz can only take the values msh̄, where ms = ± 1

2 . The two states with

5 In the Dirac notation, 〈i|â|j〉 is the i, j matrix element of the operator â. The diagonal components
are 〈i|â|i〉. When the matrix has only diagonal terms, which can always be achieved by a suitable
transformation if the matrix is Hermitian, the diagonal matrix elements are the eigenvalues. If â
is the Hamiltonian, the eigenvalues are the energy levels of the system. |i〉, known as the ‘ket’,
is the eigenfunction – a column vector in the matrix representation. 〈i|, known as the ‘bra’, is
the complex conjugate row vector. Their product, the Dirac braket, 〈i|i〉 = 1 for normalized
eigenfunctions.



70 Magnetism of electrons

2mBB
m

s = + 1/2

ms = − 1/2

z

O

B

Figure 3.2

Vector model of electron
spin. The total spin vector,
of length

√
3h̄/2, precesses

around the applied field
direction with the Larmor
frequency. It has two
possible projections ±h̄/2
along O z, corresponding to
the |↑〉 and |↓〉 states. The
Zeeman splitting of the two
magnetic energy levels in
the field is shown.

ms = ± 1
2 have opposite magnetic moments and a Zeeman splitting of the

two energy levels develops in a magnetic field B. The Zeeman Hamiltonian
HZ = −m · B = (e/me)ŝ · B has eigenvalues gµBmsB ≈ ±µBB, which are
the energy levels in the applied field. The spin splitting of the states is therefore
2µBB. We normally take g for electron spin to be exactly 2.

Two other operators, useful for manipulations in quantum mechanics are the
ladder operators

ŝ+ = ŝx + iŝy and ŝ− = ŝx − iŝy.

They do not correspond to any measurable quantity, but they are helpful
because they raise or lower ms by unity while leaving s unchanged, which
in the case of s = 1

2 simply means that they transform |↓〉 to |↑〉 and vice
versa. The operators ŝ+ and ŝ− are represented by the non-Hermitian matri-

ces

[
0 1
0 0

]
h̄, and

[
0 0
1 0

]
h̄, respectively. Hence ŝ+|↑〉 = h̄|↓〉, ŝ+|↓〉 = |0〉,

ŝ−|↑〉 = |0〉, ŝ−|↓〉 = h̄|↑〉; ŝ2 may be written in the form

ŝ2 = 1
2 (ŝ+ ŝ− + ŝ− ŝ+) + ŝ2

z .

Other versions are ŝ2 = (ŝ+ ŝ− − h̄ŝz + ŝ2
z) and ŝ2 = (ŝ− ŝ+ + h̄ŝz + ŝ2

z). The
commutation relations for the ladder operators are [ŝ2, ŝ±] = 0 and [ŝz, ŝ±] =
±h̄ŝ±.

To summarize, an electron with spin quantum number s = 1
2 has total angular

momentum
√

3h̄/2. There are two spin states, ms = ± 1
2 with a projection of

the angular momentum along a specified direction Oz of ± 1
2h̄. The states are

degenerate in zero field, but split in a magnetic field. Alternative notations for
the two spin states of the electron are | 1

2 〉 and |− 1
2 〉, |↓〉 and |↑〉, or α and β.

The magnetic moment operator of the electron m̂ (in units of Bohr magne-
tons) is proportional to the associated angular momentum (in units of h̄) and can
be represented by a similar matrix, with the proportionality factor (g-factor) of
1 for orbital and 2 for spin moments. In fact, the meaning of (3.4) and (3.9)
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in quantum mechanics is that the matrix elements of the operators for m̂ and l̂
or ŝ are proportional. The total magnetic moment of an electron is generally a
vector sum of the spin and orbital magnetic moments:

m̂ = −(µB/h̄)(l̂ + 2ŝ). (3.20)

The Zeeman interaction of these moments with an applied field B is represented
by a term in the Hamiltonian:

HZ = (µB/h̄)(l̂ + 2ŝ) · B. (3.21)

When B is in the z-direction, this Zeeman term is (µB/h̄)(l̂z + 2ŝz)B.

s
j

Addition of an electron’s
angular momenta and
magnetic moments.

Polarization An electron in a general state has a wave function |ψ〉 = α|↑〉 +
β|↓〉, where α and β are complex numbers. If the wave function is normalized,
〈ψ |ψ〉 = 1, and α2 + β2 = 1. For example, the state with α = β = 1√

2
, ψ =

1√
2

[
1
1

]
corresponds to the spin lying in the xy-plane. It is an equal superposition

of |↑〉 and |↓〉 states. A measurement of sz of such an electron will give h̄/2 or
−h̄/2 with equal probability.

The polarization, P , of an ensemble of electrons is defined as

P = (n↑ − n↓)

(n↑ + n↓)
, (3.22)

where n↑ and n↓ are the densities of electrons in the two spin states. Units are
m−3. In the general case P = (α2 − β2)/(α2 + β2). When they are all in the
|↑〉 state, the electrons are completely spin polarized, and P = 1. When they
are equally likely to be in the |↑〉 or the |↓〉 state, the electrons are unpolarized,
and P = 0.

The quantization axis for electronsOz is defined by the local magnetic field
direction. In principle, one way to separate |↑〉 and |↓〉 electrons and prepare
an electron beam in a fully spin-polarized state is to pass an unpolarized beam
through a region of space where it is subject to a nonuniform magnetic field.
If the gradient is also in the z-direction, the field gradient force (2.74) is
∇(m · B) = ±µB(dBz/dz)ez on electrons in the two spin states with moments
of ±1µB . The incident beam is split in two.

Otto Stern and Walther Gerlach were the first to observe bifurcation of this
kind in 1921. Their experiment (Fig. 3.3) was performed, not with a beam
of electrons which would be deflected by the Lorentz force (2.19), but on a
beam of neutral silver atoms passing through the airgap of a specially shaped
magnet where dB/dz = 1000 T m−1. Atomic beams were expected to split into
(2L+ 1) subbeams, where L is an integer. Silver has a 5s1 outer shell with no
orbital moment, yet the silver beam splits in two, indicating a magnetic moment
associated with half-integer angular momentum. It was originally to explain
the fine structure in the spectrum of hydrogen in a magnetic field that Samuel
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B,∇B

Figure 3.3

The Stern–Gerlach
experiment. An unpolarized
atom beam enters a region
where there is a strong
magnetic field gradient
which splits the beam
according to the projection
of the magnetic moment
along the field direction.

Goudsmit and George Uhlenbeck proposed the intrinsic half-integer spin of the
electron. Their idea also explained the Stern–Gerlach experiment.

When a polarized electron beam enters a region where the magnetic field
direction has changed, it is necessary to project the states onto a new Oz′

direction in the xz-plane. If the angle between Oz and Oz′ is θ , the projection
of s on the new z axis s · ez′ = sz cos θ + sx sin θ.The eigenvalues in the rotated
frame are obtained by diagonalizing the matrix

s · ez′ =
[

cos θ sin θ
sin θ −cos θ

]
h̄

2
. (3.23)

The diagonalization procedure for a matrix M̂ is to solve the eigenvalue
equation |M̂ − λ Î | = 0, where Î is the unit matrix and | · · · | signifies the
determinant of the matrix. Solving the equation |s · ez′ − (h̄/2)λ Î | = 0 for λ
gives (cosθ − λ)(−cos θ − λ) − sin2 θ = 0.Hence λ2 = 1; the eigenvalues are
±h̄/2 as expected. The eigenvalues do not depend on the choice of coordi-

nates. If

[
c1

c2

]
is an eigenvector,

[
c1 cos θ + c2 sin θ
c1 sin θ − c2 cos θ

]
= λ

[
c1

c2

]
. This yields the

simultaneous equations

c1(cos θ − λ) + c2 sin θ = 0, c1 sin θ − c2(cos θ + λ) = 0.

Hence c1/c2 = −sin θ/(cos θ − λ). This leads to the expressions for the two
eigenvectors in the original frame:[

cos θ/2
sin θ/2

]
for λ = 1 and

[−sin θ/2
cos θ/2

]
for λ = −1. (3.24)

The transformation matrix R̂y(θ ) from the first frame, where ŝz is diagonal, to
the second, where ŝz′ is diagonal, is

R̂y(θ ) =
[

cos θ/2 −sin θ/2
sin θ/2 cos θ/2

]
. (3.25)

Any observable A′ in the new frame is related to the observable A in the
old frame by A′ = R̂−1AR̂. The matrix (3.23) in the transformed frame is
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diagonal, and must be equal to

[
1 0
0 −1

]
h̄/2.This can be checked by evaluating

R̂−1
y

[
cos θ sin θ
sin θ −cos θ

]
R̂y , where R̂−1

y (θ ) =
[

cos θ/2 sin θ/2
−sin θ/2 cos θ/2

]
.

Rotation by θ about the other coordinate axes is represented by the matrices

R̂x(θ ) =
[

cos θ/2 −i sin θ/2
−i sin θ/2 cos θ/2

]
, R̂z(θ ) =

[
e−iθ/2 0

0 eiθ/2

]
.

These can be deduced from the general rotation operator for angular momentum
R̂(θ ) = exp(−iθ · S/h̄) and the Pauli spin matrices (3.17).

These rotations reveal a remarkable property of the electron, and other spin 1
2

particles whose eigenvectors are spinors. Rotation through 2π is not equivalent
to the identity matrix. A rotation by 4π is needed to turn the spinor into itself.
Rotation of the quantization direction by 2π changes the phase of the spinor by
π. This is an example of a Berry phase. Similarly, a rotation change in an angle
φ about Oz introduces a Berry phase factor eiφ/2 into the spinors.

These ideas about angular momentum can be extended beyond the s = 1
2 case,

corresponding to the electron spin. For example, if an electron is in an orbital
p-state with � = 1, there are three possible eigenstates for l̂z, corresponding to
m� = 1, 0, −1. The three states are represented by column vectors


1

0
0


 ,


0

1
0


 ,


0

0
1


 .

The three components of the angular momentum l̂x, l̂y , l̂z can be represented
by the matrices


 0 1/

√
2 0

1/
√

2 0 1/
√

2
0 1/

√
2 0


 h̄,


 0 −i/√2 0
i/

√
2 0 −i/√2

0 i/
√

2 0


 h̄,


1 0 0

0 0 0
0 0 −1


 h̄,

which have eigenvalues h̄, 0, and −h̄. The square of the total angular momentum

l̂
2
, which has eigenvalue �(�+ 1)h̄2, equals 2h̄2. It is represented by the matrix

l̂
2 =


1 0 0

0 1 0
0 0 1


 2h̄2,

the raising and lowering operators l̂
+

and l̂
−

are

l̂
+ =


0

√
2 0

0 0
√

2
0 0 0


 h̄ and l̂

− =

 0 0 0√

2 0 0
0

√
2 0


 h̄.
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These ideas can be generalized further to any integral or half-integral quan-
tum number. The eigenvectors have (2�+ 1) elements, and the Hermitian matri-

ces have (2�+ 1) rows and columns. The diagonal matrices for l̂
2

and l̂z have

elements [l̂
2
]pq = �(�+ 1)h̄2δp,q and [l̂z]pq = (�+ 1 − p)h̄δp,q , where δp,q is

the Kronecker delta (δp,q = 1 for p = q; δp,q = 0 for p �= q). The operator l̂
−

has elements [ l̂
−

]pq = √
p(2�+ 1 − p)δp,q−1, [ l̂

+
] is the reflection of [l̂

−
]

in the diagonal, and l̂x = 1
2 (l̂

+ + l̂
−

), l̂y = −1
2 i(l̂

+ − l̂
−

).

3.2 Magnetic field effects

The effects of a magnetic field on an electron are to modify its linear or angular
motion, and to induce some magnetization in the direction of the field, as a
result of Boltzmann population of the energy levels obtained from (3.21). In
this section, we discuss the effects of a magnetic field on the electron motion
semiclassically.

3.2.1 Cyclotron orbits

If an electron travels with velocity v across a magnetic field B, the Lorentz
force −ev × B causes an acceleration perpendicular to the velocity, which
produces circular motion. Newton’s second law for the circularly accelerated
motion gives f = mev2

⊥/r = ev⊥B, so the cyclotron frequency fc = v⊥/2πr
is proportional to the field:

fc = eB

2πme
. (3.26)

The angular frequencyωc equals 2πfc.Any component of the electron velocity
parallel to the magnetic field is uninfluenced by the Lorentz force, so the
trajectory is a helix around the field direction. Electrons which follow cyclotron
orbits in vacuum radiate energy of frequency fc. The cyclotron frequency is
28 GHz T−1.

The cyclotron radius rc = mev⊥/eB is of order a few micrometres for elec-
trons in metals when B ≈ 1 T. It is less for semiconductors and semimetals,
where a smaller electron density leads to a lower Fermi velocity (§3.2.5) and
the effective electron mass m∗ may be less than me.

One example of the use of cyclotron radiation is the domestic microwave oven
discussed in §13.3.2. Another is the synchrotron, where electrons accelerated to
a large multiple γ e of their rest energy and constrained to move in curved paths
by bending magnets, emit linearly polarized white radiation in a narrow beam
of width 1/γ e radians. Synchrotron radiation is a valuable tool for probing the
electronic structure of solids.
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3.2.2 Larmor precession

If an electron is constrained somehow to move in an orbit, it has an associated
magnetic moment m =γ �, where γ is the gyromagnetic ratio (3.5). The effect
of the magnetic field is to exert a torque

� = m × B (3.27)

on the current loop. Newton’s law for angular momentum � = d�/dt gives

dm

dt
= γm × B. (3.28)

When B is along the z-axis, the vector product in Cartesian coordinates gives

dmx

dt
= γmyB

dmy

dt
= −γmxB

dmz

dt
= 0. (3.29)

The z component mz = m cos θ is independent of time, but the x and y
components oscillate. The solution is m(t) = (m sin θ sinωLt , m sin θ cosωLt ,
m cos θ ), whereωL = γB. The magnetic moment m therefore precesses around
the applied field direction at the Larmor frequency fL = ωL/2π ; here

fL = γB

2π
. (3.30)

The precession continues indefinitely if there is no way for the system to
dissipate energy, and the angular momentum remains constant. Note that the
Larmor precession frequency for an orbital moment (γ = −e/2me) is just half
the cyclotron frequency, 28 GHz T−1, whereas it is equal to the cyclotron
frequency for a spin moment (γ = −e/me). The precession of the spin angular
momentum around Oz occurs at the Larmor frequency.

Joseph Larmor, 1857–1942.

B

v||

v⊥

An electron moving freely
in a magnetic field follows
a helical path. The
projection of the path in a
plane normal to B is a circle
where the electron
circulates at the cyclotron
frequency eB/2πme.

B

Torque on a magnetic
moment in a magnetic field
induces a precession
around the field direction
at the Larmor frequency.
Note that γ is negative.

3.2.3 Orbital diamagnetism

A semiclassical expression for the diamagnetic susceptibility of electrons with
an orbital moment can be deduced from the Larmor precession. There is some
angular momentum, and therefore a magnetic moment is associated with the
precession of the electron orbit induced by the magnetic field. By Lenz’s law,
the induced moment is expected to oppose the applied field. The induced
angular momentum ismeωL〈ρ2〉, where 〈ρ2〉 = 〈x2〉 + 〈y2〉 is the mean square
radius of the electron’s orbit projected onto the plane perpendicular to B. Since
ωL = γB, the induced moment is −γ 2me〈ρ2〉B, which gives a susceptibility
µ0M/B of

χ = −nµ0e
2〈r2〉/6me, (3.31)

where n is the number of electrons per cubic metre, γ = −(e/2me) and 〈r2〉 =
(3/2)〈ρ2〉 is the average squared radius of the electron orbit. In atoms, the effect
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Table 3.2. Diamagnetic susceptibilities χm of common ions.
Units are 10−9 m3 kg−1(after Sellwood, 1956)

H+ 0 Be2+ 0.6 Sc3+ 1.7 C4+ 0.1 F− 7.2
Li+ 1.1 Mg2+ 1.6 Y3+ 1.8 Si4+ 0.4 OH− 8.8
Na+ 2.7 Ca2+ 2.5 La3+ 1.8 Ge4+ 1.2 Cl− 9.2
K+ 4.2 Sr2+ 2.1 Lu3+ 1.2 Sn4+ 1.7 Br− 5.6
Rb+ 2.9 Ba2+ 2.9 Pb4+ 1.4 I− 5.1
Cs+ 2.9 B3+ 0.2
Cu+ 2.4 Zn2+ 1.9 Al3+ 0.9 Ti4+ 1.3 O2− 9.4
Ag+ 2.8 Cd2+ 2.5 Ga3+ 1.4 Zr4+ 1.4 S2− 14.8
Au+ 2.5 Hg2+ 2.3 In3+ 2.1 Hf4+ 1.1 Se2− 7.6
NH+

4 8.0 Pb2+ 1.7 U6+ 1.0 Te2− 6.8

is dominated by the outer electron shells, which have the largest orbital radii.
Negative ions therefore tend to have the largest diamagnetic susceptibility.

The order of magnitude of the orbital diamagnetic susceptibility χ for an
element with n ≈ 6 × 1028 atoms m−3 and

√
〈r2〉 ≈ 0.2 nm is 10−5. The cor-

responding mass susceptibility χm = χ/d, where d, the density, is of order
10−9 m3 kg−1. Orbital diamagnetism is a small effect, present to some extent
for every element and molecule. It is the dominant susceptibility when there
are no partially filled shells, which produce a larger paramagnetic contribution
due to unpaired electron spins. Relatively large diamagnetic susceptibilities
are observed for aromatic organic materials. Benzene rings, for example, have
delocalized π electrons, where the induced currents can run around the carbon
rings. The diamagnetic susceptibility is then quite anisotropic, and it is
greatest in magnitude when the field is applied perpendicular to the plane
of the ring.

Benzene

χ χ
⊥

Napthalene

Anthracene

Pyrene

Susceptibility of some
aromatic molecules,
measured parallel and
perpendicular to the plane
of the molecular.

Unfortunately, there is an underlying problem with classical calculations of
the response of electrons to magnetic fields. Since the magnetic force f =
−e(v × B) is perpendicular to the electron velocity, the magnetic field does no
work on a moving electron, and cannot modify its energy. Hence δẃ is zero in
(2.92), and it follows that there can be no change of magnetization. The idea was
set out in the Bohr–van Leeuwen theorem, a famous and disconcerting result
of classical statistical mechanics which states that at any finite temperature and
in all finite electric or magnetic fields, the net magnetization of a collection of
electrons in thermal equilibrium vanishes identically. Every sort of magnetism
is impossible for electrons in classical physics! The semiclassical calculation
of the orbital diamagnetism works only because we have assumed that there is
a fixed magnetic moment associated with the orbit.

The orbital diamagnetism of common ions is tabulated in Table 3.2.
The core diamagnetism of a compound is found by adding the individual
ionic contributions. It is clear from Table A and Fig. 3.4 that the diamag-
netic susceptibility of more than half the elements in the periodic table is
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susceptibility of the
elements.

overwhelmed by a positive paramagnetic contribution. We now grant the elec-
tron its intrinsic spin moment, and examine how paramagnetic susceptibility
arises in the two extreme models of magnetism, those of localized and delocal-
ized electrons.

3.2.4 Curie-law paramagnetism

Considering an ensemble of single, localized electron spins in a magnetic field
that is applied alongOz, the |↑〉 and |↓〉 states are split as shown in Fig. 3.2. The
splitting is ≈2µBB. As the field increases, so does the Boltzmann population
of the |↑〉 state relative to the |↓〉 state. If we have n = (n↑ + n↓) electrons per
unit volume, the induced magnetization along Oz is (n↑ − n↓)µB , where n↑,↓

are the Boltzmann populations of the two energy levels which are proportional
to exp(±µBB/kBT ). Hence

M = cµB [(exp(µBB/kBT ) − exp(−µBB/kBT )],

and

n = c[exp(µBB/kBT ) + exp(−µBB/kBT )].

Hence the average z-component of the moment per atom 〈mz〉 = (n↑ − n↓)µB/
(n↑ + n↓) is given by

〈mz〉 = [exp(x) − exp(−x)]µB/[(exp(x) + exp(−x)], (3.32)
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2 .

where x = µBB/kBT , and as a result,

M = nµB tanh x. (3.33)

At room temperature, µBB � kBT , so x is small and we can make the approx-
imation tanh x ≈ x. Hence we find the Curie-law expression for the suscepti-
bility χ = µ0M/B:

χ = nµ0µ
2
B/kBT . (3.34)

The Curie law is often written

χ = C/T , (1.9)

where C = nµ0µ
2
B/kB is the Curie constant (Fig. 3.5). A typical value of n =

6 × 1028 m−3 for one unpaired electron per atom gives C = 0.5 K and a
susceptibility of 1.6 × 10−3 at room temperature. The susceptibility diverges
as T −→ 0, according to the Curie law.

3.2.5 The free-electron model

In order to calculate the susceptibility in the opposite, delocalized, limit we
introduce the simplest possible delocalized-electron model for a solid. The
electrons are described as noninteracting waves confined in a box of dimension
L. The Hamiltonian is the sum of terms representing the kinetic and potential
energy:

H = [(p2/2me) + V (r)]. (3.35)

When V (r) is a constant, which can be set to zero, and p is replaced by the
operator −ih̄∇, Schrödinger’s equation is

−(h̄2/2me)∇2ψ = εψ. (3.36)

Solutions are the free-electron waves ψ = L−3/2 exp(ik · r), where k is the
electron wavevector (k = 2π/λe) and the L−3/2 factor is required for normal-
ization. The corresponding momentum and energy of the electron obtained
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Table 3.3. Properties of the free-electron gas

Fermi wavevector kF (3π 2n)1/3 1.2 × 1010 m−1

Fermi velocity vF h̄kF /me 1.4 × 106 m s−1

Fermi energy εF (h̄kF )2/2me 9 × 10−19 J
Fermi temperature TF εF /kB 6.5 × 104 K
Density of states D↑,↓(εF ) 3n/4εF 5 × 1046 m−3 J−1

Pauli susceptibility χP 3µ0µ
2
Bn/2εF 1.1 × 10−5

Hall coefficient Rh 1/ne 1.0 × 10−10 m3 C−1

Numerical values are for n = 6 × 1028 m−3. Density of states is for one spin.

from the operators p̂ = −ih∇ and p̂2/2me are p = h̄k and ε = h̄2k2/2me,
respectively. The boundary conditions, which are periodic for free-electron
waves, restrict the allowed values of k so that the components ki(i = x, y, z)
are ±2πni/L, where ni is an integer. Since indistinguishable electrons obey
Fermi–Dirac statistics, each quantum state represented by the integersnx, ny, nz
can accommodate at most two electrons, one ↑, the other ↓. The allowed states
form a simple cubic lattice in k-space, where the coordinates of a lattice point
are (kx, ky, kz). Each state occupies a volume (2π/L)3, so the density of states
for one spin in k-space is (L3/8π3). Each state has two-fold spin degeneracy. At
zero temperature the N = nL3 electrons in the box occupy all the lowest avail-
able energy states, which occupy a sphere of radius kF , the Fermi wavevector.
Since 4

3πk
3
F = (N/2)(2π/L)3, it follows that

kF = (3π2n)
1
3 , (3.37)

and the corresponding energy, known as the Fermi energy, is

εF = (h̄2/2me)(3π
2n)2/3. (3.38)

The surface separating occupied and unoccupied states is the Fermi surface,
which in the free electron model is a sphere. The Fermi velocity vF is defined
by h̄kF = mevF , and the Fermi temperature TF is defined by εF = kBTF . The
density of states (states m−3 J−1) D↑,↓(ε) = 1

2 dn/dε for either spin is

D↑,↓(ε) = (1/4π2)(2me/h̄
2)3/2ε1/2. (3.39)

Values of all these quantities for an electron density of 6 1028 m−3 are given
in Table 3.3.

kx

ky

kF

k-space. Each point
represents a possible state
for the electrons in a
free-electron gas contained
in a box of side L. Each
state can accommodate a
↑ electron and a ↓ electron.
The Fermi surface has
radius kF .

Using (3.37) and the result that εF = h̄2k2
F /2me, the density of states at the

Fermi level for our sample with n electrons per unit volume can be written

D↑,↓(εF ) = 3n/4εF . (3.40)

The density of states of one of the bands is shown in Fig. 3.6. Units are states
of one spin J−1 m−3.

Provided the dimensions of the box are macroscopic, the electron states are
very closely spaced in energy, and the expression for the density of states does
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Density of ↑ or ↓ states in
the free-electron model.
The states are occupied
with a probability given by
the Fermi function (3.45),
which is approximately a
step function.

not depend on L or on the shape of the box. However, the energy structure and
density of states are drastically modified when the electron gas is confined in one
or more directions on a nanometre length scale. Generations of miniaturization
have made electron transport in such confined dimensions the focus of modern
electronics. When electrons are confined in one dimension, but are free in the
other two we have a quantum well. When they are confined in two dimensions,
but free in just one we have a quantum wire. If all three dimensions are of
order a nanometre, we are looking at a quantum dot, a sort of artificial atom.
Confinement leads to a coarse-grained momentum and energy structure, which
follows from the de Broglie relation (3.1).

1

4

9

e (h /8m )2
e

2

The lowest three modes for
an electron confined in a
well of width l . The energy
levels are dashed, and
energy is plotted on the
vertical scale in units of
h2/8mel2.

(a)

(b)

(c)

Confinement of the
free-electron gas: (a) in
two dimensions, (b) in one
dimension – a quantum
wire, and (c) in zero
dimensions – a quantum
dot.

Consider electrons confined in a well where the short dimension l is of
order 1 nm in the z-direction. Localized boundary conditions on the elec-
tron wave function ψi are ψi(0) = ψi(l) = 0, so that an integral number ni
of half-wavelengths fits into the well, l = niλe/2, where the electron wave-
length is given by (3.1). Hence pi = nih/2l and the corresponding energy
levels are εi = p2

i /2me = (1/2me)(nih/2l)2. The first three quantized modes
have energies h2/8l2me, 4h2/8l2me and 9h2/8l2me. The separation of the
first two when l = 1 nm is 1.1 eV, so only the lowest mode ni = 1 will
normally be occupied. We have a two-dimensional electron gas. The electron
energy is

εi = h̄2

2me

[
k2
x + k2

y +
(πni
l

)2
]
. (3.41)

The free electrons occupy a Fermi circle with πk2
F = (N/2)(2π/L)2 where

N = nL2. The Fermi energy εF equals (h̄2/2me)2πn, so the density of states
D↑,↓(εF ) = (1/4π )(2me/h̄2) is a constant, independent of electron density.
Likewise it can be shown that a quantum wire gives

εij = h̄2

2me

[
k2
x +

(πni
l

)2
+
(πnj
l

)2
]
, (3.42)
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and a density of states D↑,↓(εF ) = (me/2πh̄)(1/2meεF )1/2. Sharp singularities
are a feature of the density of states of one-dimensional conductors.

Electrons moving in the lattice of a crystalline solid are subject to the periodic
potential of the nuclei screened by their tightly bound ion cores. According to
Bloch’s theorem, the electronic states

ψ(r) ≈ exp(ik · r)uk(r)

can be described as modified electron waves, still labelled by a wavevector k.
The function uk(r) = uk(r + R) has the periodicity of the lattice, where R =
pa1 + qa2 + ra3 is a general lattice vector defined as a sum of the primitive
lattice vectors a1, a2, a3.When the wavevector for an electron moving in some
direction in k-space satisfies the Bragg condition,

2k · G = G2,

it will be reflected and a series of singularities will appear in the free-electron
dispersion relation, which can lead to sharp structure and even gaps in the
density of states. Here G is a lattice vector of the reciprocal lattice of the
crystal in k-space, whose lattice points are G = hb1 + kb2 + lb3, where b1 =
2π (a2 × a3)/(a1.(a2 × a3)) etc; h, k, l, like p, q, r , are integers. Compare the
density of states for a metal such as iron (Fig. 5.13) with the free-electron
density of states (Fig. 3.6). This structure in the density of states is critical for
the appearance of ferromagnetism in metals.

3.2.6 Pauli susceptibility

The effect of an applied magnetic field B acting on the spin moment is to shift
the two subbands by ±µBB, as shown in Fig. 3.7. Since µBB/kB = 0.67 K
for a field of 1 T and TF ≈ 65 000 K, the shifts induced by laboratory fields are
minuscule compared with the Fermi energy. From the figure, it can be seen that
magnetization M = (n↑ − n↓)µB is 2D↑,↓(εF )µ2

BB. Hence the susceptibility
χP = µ0M/B is given by

χP = 2µ0µ
2
BD↑,↓(εF ). (3.43)

This result is rather general. It is not restricted to the free-electron model as
it depends only on the density of states at the Fermi level, but for this model,
using (3.40) and setting εF = kBTF , the result can be written in the form

χP = 3nµ0µ
2
B

2kBTF
. (3.44)

The Pauli susceptibility is temperature-independent to first order. Comparison
with (3.34) shows that the Pauli susceptibilty is about two orders of magnitude
smaller than the Curie susceptibility at room temperature. It is of order 10−5.
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Spin splitting of the ↑ and
↓ densities of states in a
magnetic field. A net
moment results from the
transfer of electrons at the
Fermi level from the ↓ to
the ↑ band.

At finite temperature, the occupancy of the states given byD(ε) is determined
by the Fermi–Dirac distribution function:

f (ε) = 1

{exp[(ε − µ)/kBT ] + 1} , (3.45)

where µ is the chemical potential. At T = 0 K, µ = εF . The Fermi energy
increases slightly at high temperature, as it is necessary to go to higher energy
to accommodate the electrons, when some states below εF are unoccupied. The
relation is

µ = εF
[

1 − π2

12

(
T

TF

)2

+ · · ·
]
.

As a result of the decrease in the density of occupied states at εF there is a
small temperature-dependent correction to (3.44), varying as T 2:

χP = 3nµ0µ
2
B

2kBTF

[
1 − π2

12

(
T

TF

)2

+ · · ·
]
. (3.46)

3.2.7 Electrical conduction

We will now consider electrical conduction in the free electron model of a
metal, and how it is influenced by a magnetic field. When an electric field E is
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applied, a current density j flows in the same direction, given by Ohm’s law:

j = σ E, (3.47)

where σ is the electrical conductivity in S m−1. An equivalent formulation is

E = � j ,

where � = 1/σ is the resistivity in�m. The resistance R, in�, of a conductor
of length l and uniform cross section a is R = �l/a. Since E = V/l, where V
is the potential drop across the resistor, and I = ja, (3.47) gives the familiar
form of Ohm’s law for a resistor, V = IR.

ky

kx

dkx

E

The conduction process in a
metal. Electrons drift under
the influence of the applied
field, and are scattered into
unoccupied states on the
trailing edge of the Fermi
surface. The shift
δkx = mevd/h̄ is greatly
exaggerated in the
drawing.

Ohm’s law can be written in terms of the chemical potential, which is the
change of energy when one extra electron is added to the metal. In an electric
potential ϕe,

µ = µ0 − eϕe, (3.48)

where µ0 is the constant chemical potential in the absence of an electric field.
Since E = −∇ϕe = ∇(µ/e),

j = σ

e
∇µ. (3.49)

A constant gradient of chemical potential is therefore associated with a flow of
current in a conductor. The electrons are guided down the wire by a gradient
of charge density at the surface of the conductor.

The entire Fermi surface is very slightly shifted in the direction of E as the
electrons acquire a drift velocity vd in the field direction. The electric current
density j equals −nevd .Mobility, defined as µ = vd/E, is a quantity with units
m2 V−1 s−1, which is related to conductivity by

σ = neµ. (3.50)

The conductivity of copper at room temperature σ = 60 × 106� m, and its
electron density n = 8.45 × 1028 m−3, give a mobility of 4 × 10−3 m2 V−1 s−1.
A typical current density in copper of 1 A mm−2 corresponds to a drift velocity
of only 0.07 mm s−1. Electrons drift at the proverbial snail’s pace, but their
instantaneous Fermi velocity is an astonishing ten orders of magnitude greater.

The conduction process involves electrons being accelerated by the force
−eE in a direction opposite to the field for a time τ , on average, before they are
scattered across the Fermi surface into states where their velocity is randomized.
Newton’s second law gives eEτ = mevd , hence the expression for conductivity
in terms of relaxation time is

σ = ne2τ

me
. (3.51)

The mean free path travelled by an electron in time τ between collisions is
λ = vF τ . In our example of copper, the relaxation time is 2.5 × 10−14 s, and
the mean free path is 40 nm. The conduction model breaks down when the
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mean free path is equal to the interatomic spacing a ≈ 0.2 nm, which gives
a minimum metallic conductivity σmin = 0.3 × 106 � m. Values in semimetals
and semiconductors, where n is much less, are proportionately lower.

The Fermi surface of
copper.

+ + + + + +

VH

B

Z

y

x

The Hall effect.

The free-electron model is quite a good approximation for metals like copper
with a half-filled s-band and an almost-spherical Fermi surface. It can be
extended to other metals with nonparabolic densities of states by defining an
effective mass for the electrons as

m∗ = h̄2(∂2ε/∂k2)−1
εF
. (3.52)

Hence, narrow bands have high effective mass and low mobility, µ = eτ/m∗.
Generally, the conductivity or resistivity in Ohm’s law (3.47) is a diagonal

tensor, which reduces to the familiar scalar for cubic crystals or polycrystalline
material. When a magnetic field is applied in the z-direction, the diagonal
components �i = �xx, �yy, �zz of the resistivity may change. Magnetoresistance

is defined by

 �/� = [�i(B) − �i(0)]/�i(0).

The resistance of a metal is inversely proportional to the mean free path. The
change of resistance in an applied magnetic field results from the curtailing
of the mean free path in the current direction when the electrons complete
a significant fraction of a cyclotron orbit before they are scattered. Magne-
toresistance effects associated with cyclotron motion can be significant when
ωcτ � 1, where τ is the time between scattering events. The effect is initially
quadratic in B. The longer the relaxation time, the greater the influence of
magnetic field on the resistivity.6 This magnetoresistance depends on interband
scattering; and in fact it is strictly zero in the single-band free-electron model.
The magnetoresistance is small (≈1% in 1 T) in metals where scattering is
strong, but it may be much larger in semimetals and semiconductors, where the
electron mobility is high. Data on a bismuth film are shown in Fig. 3.8. Size
effects can be observed in thin films, when the film thickness is comparable
to rc.Magnetoresistive sensors made from semiconducting InSb are useful for
applications such as sensing the angular position of the rotor in a permanent
magnet motor, where the fields are of order 0.1 T and a linear response is not
required.

Furthermore, off-diagonal terms appear which are due to the Lorentz force.
This leads to the Hall effect. When an electric current jx of electrons moving with
drift velocity v in the negative x-direction flows in a conductor, and a transverse
magnetic field Bz is applied, the electrons are deflected and accumulate at the

6 The magnetoresistance for a gas of free electrons is strictly zero because of the Hall effect. A
compensating transverse electric field is set up in a solid, and there is no net force to deflect the
electrons. However, magnetoresistance becomes possible whenever there is interband scattering
of the electrons. This type of magnetoresistance is positive, in the sense that the applied field
increases the resistance. It is called ordinary magnetoresistance (OMR), to distinguish it from
effects encountered in ferromagnetic materials, which are often negative.
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Magnetoresistance of a
polycrystalline bismuth film
150 nm thick, measured
with the current parallel,
perpendicular or transverse
to the applied field. The
effects are large when B
and j are perpendicular,
and an influence of finite
sample thickness is evident
in the transverse geometry
when B > 10 T. The
variation in low fields is
�� ∝ B2. (Data courtesy of
J. McCauley)

edge of the sample until the electric field Ey they create is just sufficient to
balance the Lorentz force. Thus Ey = vxBz. Since jx = −nevx ,

Ey = −(1/ne)jxBz. (3.53)

The quantity Rh = −(1/ne) is known as the Hall coefficient, and the off-
diagonal Hall resistivity �xy is RhBz. The Hall effect is inversely proportional
to electron density, so it is large when n is small, as in semiconductors. The
free-electron model is a starting point for conduction by ionized donors or
acceptors, although for acceptors the conduction is due to free holes in the
valence band rather than free electrons in the conduction band. The carriers are
assigned an effective mass. Measurement of the Hall coefficient in a one-band
solid will give their mobility; σ = neµ, hence µ = Rh/�.

In summary, the resistivity of an isotropic solid in a magnetic field is repre-
sented by the tensor

�̂ =

�xx −�xy 0
�xy �xx 0
0 0 �zz


 ,

�xy ∝ B and �xx = �zz + αB2. The form of the resistivity is determined by
the Onsager principle, which requires that the off-diagonal terms in a response
function satisfy σ ij (B) = −σ ji(B) = σ ji(−B).

Interesting transport effects arise when the free-electron gas is confined. The
Hall resistance in the two-dimensional electron gas is quantized: Rxy = h/νe2,
where ν is an integer. The quantum Hall effect provides a precise standard
for resistance; the quantum h/e2 = 25.813 k�. Conductance in nanowires,
where the electron gas is free only in one dimension, is confined to channels,
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Temperature dependence
of the susceptibility of
electrons, comparing (a)
the Curie-law susceptibility
for localized electrons with
(b) the Pauli and (c) the
Landau contributions for
free electrons.

corresponding to quantized modes in the cross section. The maximum conduc-
tance is G0 per channel, assuming spin degeneracy, where G0 = e2/h. This is
discussed further in Chapter 14.

3.2.8 Landau diamagnetism

The free-electron model was used by Landau to calculate the susceptibility due
to orbital diamagnetism of the conduction electrons. The result is

χL = −nµ0µ
2
B/2kBTF , (3.54)

which is exactly one third of the Pauli paramagnetism, but of opposite sign
(Fig. 3.9). It looks as if the diamagnetism of the conduction electrons is just a
correction to their paramagnetism, and never the dominant contribution. But
this is not always correct if the real band structure of solids is approximately
taken into account, by using the effective mass m∗ (3.52) in the free-electron
model. Then (3.54) is replaced by χL = − 1

3 (me/m∗)2χP . For some semicon-
ductors, and semimetals such as graphite or bismuth,m∗ ≈ 0.01me; despite the
low electron densities, the diamagnetic susceptibility χL can be rather large
(≈ −10−4 for graphite). Quantum oscillations of the diamagnetic susceptibility
are discussed in the next section.

A summary of the susceptibility of the elements is provided in Fig. 3.4. Some
are gases at room temperature, so the definition χ = M/H , where M is the
induced magnetic moment per unit volume is not very useful. Instead, we plot
the molar susceptibility χmol = σM/H in Fig. 3.4, where σ (in A m2 kg−1) is
the induced magnetic moment per unit mass and M is the atomic weight in g
mol−1. Units of χmol are m3 mol−1. A mole of most solid elements occupies
roughly 10 cm3 = 10−5 m3, so the molar susceptibility is roughly five orders of
magnitude less than the dimensionless susceptibility χ. The mass susceptibility
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Table 3.4. Mass susceptibilities χm of some paramagnetic
and diamagnetic materials. Units are 10−9 m3 kg−1

MgO −3.1 C(diamond) −6.2 Cu −1.1
Al2O3 −4.8 C(graphite) χ‖ −6.3 Ag −2.3
LaAlO3 −2.7 χ⊥−138.0 Au −1.8
TiO2 0.9 Si −1.5 Al 7.9
SrTiO3 −1.3 Ge −1.4 Ta 10.7
ZnO −6.2 NaCl −6.4 Sc 88
ZrO2 −1.1 ZnSe −3.8 Zn −2.2
HfO2 −1.4 GaAs −3.1 Pd 67.0
SiO2 −7.1 GaN −4.2 Pt 12.68(4)a

MgAl2O4 −4.2 InSb −3.6 Ru 5.4
H2O −9.0 Perspex −5.0 In −7.0
D2O −8.1 DMSO −6.6 Bi −16.8

a NIST standard.

χm = σ/H , with units m3 kg−1 is three or four orders of magnitude less than
χ. Since Avogadro’s number NA = 6.022 × 1023 mol−1, the number density
of atoms in solids is about 6 × 1028 m−3. An atom occupies a volume of
approximately (0.25 nm)3.

Numerical values for the susceptibility of a selection of elements and com-
pounds are provided in Table 3.4. Mass susceptibilities are listed here, because
this is what is usually measured. The mass of a sample is much easier to measure
than its volume.

Susceptibility units and conversions are a rich source of confusion; they are
summarized in Appendix E and Table B, together with conversions to cgs units.
A table of illustrative values of all the different susceptibilities is included for
four representative materials.

3.3 Theory of electronic magnetism

Maxwell’s equations (2.46)–(2.49) relate magnetic and electric fields to their
sources. The other fundamental relation of electrodynamics is the Lorentz
expression for the force on a moving particle with charge q:

f = q(E + v × B). (3.55)

The two terms are respectively the electric and magnetic forces. In a moving
frame of reference, the separation of the electric and magnetic components may
differ, but the relation between the total force and the fields measured in the
same frame is invariant. The magnetic force produces the torque in (3.27).
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When the charged particle is moving in a magnetic field, the momentum and
energy are each the sum of kinetic and potential terms:

p̂ = p̂kin + qA; H = (1/2m) p̂2
kin + qϕe. (3.56)

It is the canonical momentum p̂, including the vector potential term qA, which
is represented by the operator −ih̄∇ in quantum mechanics. The vector potential
A relates to the magnetic field B (B = ∇ × A) and the electric scalar potential
ϕe relates to the electric field E (E = −∇ϕe). When the magnetic field is
time-dependent E = −∇ϕe − ∂A/∂t , hence the Hamiltonian of (3.56) for an
electron becomes

H = (1/2me)( p̂ + eA)2 + V (r), (3.57)

where q = −e, V (r) = −eϕe.

3.3.1 Orbital moment

The orbital paramagnetism and diamagnetism of the electron can be derived
from (3.57). Making use of the Coulomb gauge, where A and p̂ commute,
( p̂ + eA)2 is expanded as p̂2 + e2 A2 + 2eA · p̂, so there are three terms in the
Hamiltonian:

H = [ p̂2/2me + V (r)] + (e/me)A · p̂+(e2/2me)A
2, (3.58)

H = H0 + H1 + H2, (3.59)

where H0 is the unperturbed Hamiltonian, H1 gives the paramagnetic response
of the orbital moment and H2 describes its small diamagnetic response. Con-
sider a uniform field B along Oz. The vector potential in component form can
be taken as

A = 1
2 (−yB, xB, 0),

so B = ∇ × A = ez(∂Ay/∂x − ∂Ax/∂y) = ezB.
More generally, A = 1

2 B × r , (2.57). Hence

(e/me)A · p̂ = (e/2me)(B × r) · p̂ = (e/2me) B· (r × p̂) = (e/2me)B · l̂,

since l̂ = r × p̂. The angular momentum operator l̂ is therefore r × (−ih̄∇).
Its z-component, for example, is −ih̄(x∂/∂y − y∂/∂x), or in polar coordinates
l̂z = −ih̄∂/∂φ (3.15).

The second term in the Hamiltonian (3.58) is therefore the Zeeman interac-
tion for the orbital moment:

H1 = (µB/h̄)l̂zB, (3.60)

where the z axis has been chosen along the axis of B. The eigenvalues
of l̂z are m�h̄, where m� = −�,−�+ 1, . . . , �. The state with m� = −� is
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lowest in energy, due to the negative charge of the electron. The Hamil-
tonian (3.58) therefore gives an average orbital magnetic moment 〈mz〉 =∑�

−�−m�µB exp(−m�µBB/kBT )/
∑�

−� exp(−m�µBB/kT ), and an orbital
susceptibility n〈mz〉/H , where n is the number of atoms per cubic metre.

The third term in (3.58) is (e2/8me)(B × r)2 = (e2/8me)B2(x2 + y2). If the
electron orbital is spherically symmetric, 〈x2〉 = 〈y2〉 = 1

3 〈r2〉, so the energy
corresponding to H2 is ε = (e2B2/12me)〈r2〉. This is the Gibbs free energy,
because the Hamiltonian depends on the applied field B = µ0H. Hence from
(2.101) m = −∂ε/∂B. The diamagnetic susceptibility µ0nm/B is

χ = −nµ0e
2〈r2〉/6me, (3.61)

in agreement with the semiclassical expression (3.31).

3.3.2 Quantum oscillations

We now examine the diamagnetic response of the free-electron gas in more
detail. The Hamiltonian of an electron in a magnetic field without the spin part
is (3.57). Choosing a gauge A = (0, xB, 0) to represent the magnetic field,
which is applied as usual in the z-direction, and setting V (r) = 0 andme = m∗

we have Schrödinger’s equation

1

2m∗
[
p2
x + (py + exB)2 + p2

z

]
ψ = εψ, (3.62)

where pi = −ih̄∂/∂xi . It turns out that the y and z components of p commute
with H, so the solutions of this equation are plane waves in the y- and z-
directions,with wave function ψ(x)eikyyeikzz. Substituting ψ(x, y, z) back into
Schrödinger’s equation, we find[

− h̄2

2m∗
d2

dx2
+ 1

2
m∗ω2

c(x − x0)2

]
ψ(x) = ε′ψ(x), (3.63)

where ωc = eB/m∗ is the cyclotron frequency, x0 = −h̄ky/eB and ε′ =
ε − (h̄2/2m)k2

z . Equation (3.63) is the equation of a one-dimensional har-
monic oscillator, with motion centred at x0. The oscillations are at the
cyclotron frequency for a particle of mass m∗. The eigenvalues of the oscil-
lator are ε′ = εn = (n+ 1

2 )h̄ωc which are associated with the motion in the
xy-plane, and the energy levels labelled by the quantum number n are
known as Landau levels. The motion in the z-direction is unconstrained, so
that

ε = h̄2k2
z

2m∗ +
(
n+ 1

2

)
h̄ωc. (3.64)

The electron in the field, which classically follows the spiral trajectory, is rep-
resented in quantum mechanics by a plane wave along z and a one-dimensional
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The states of the
free-electron gas in a
magnetic field coalesce
onto a series of tubes. Each
tube represents a Landau
level. The dotted sphere is
the B = 0 Fermi surface.

harmonic oscillator in the xy-plane. The system is like a magnetically confined
quantum wire.

The states of the free-electron gas form a closely spaced lattice of points
in k-space with spacing 2π/L, where L is the dimension of the container.
When the magnetic field is applied, these states collapse onto a series of tubes,
as shown in Fig. 3.10. Each tube corresponds to a single Landau level, with
index n. As B increases, the tubes expand and fewer of them are contained
within the original Fermi sphere. The degeneracy of the Landau levels can be
calculated from the area of k-space in the xy-plane between one level and the
next

π
(
k2
n+1 − k2

n

) = (2m∗π/h̄2)
[(
n+ 1 + 1

2

)
h̄ωc − (n+ 1

2

)
h̄ωc

]
= 2m∗πωc/h̄,

where k2 = k2
z + k2

n. Each state occupies an area (2π/L)2. The degeneracy of
the Landau level is therefore

gn = 4m∗πωc/h̄(2π/L)2 = m∗L2ωc/πh̄.

The extra factor 2 accounts for the two electrons per level in the spin-degenerate
case.

Oscillatory variations of the magnetization, conductivity and other properties
with increasing field arise because of the periodic emptying of the uppermost
Landau level as the field is increased. The Landau tubes expand with B, and
an oscillatory variation of the energy as B−1 is observed. The oscillations of
magnetic moment are known as the de Haas–van Alphen effect, whereas the
corresponding oscillations of conductivity are known as the Shubnikov–de Haas

effect. From the periodicity of the oscillations, it is possible to deduce the
extremal areas of the Fermi surface normal to the direction of applied field.
Hence the Fermi surface can be mapped.
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3.3.3 Spin moment

The time-dependent Schrödinger equation

− h̄
2

2m
∇2ψ + Vψ = ih̄

∂ψ

∂t
(3.65)

is not relativistically invariant because the derivatives ∂/∂t and ∂/∂x in the
energy and momentum operators do not appear to the same power. A relativis-
tically invariant version would use a 4-vectorX = (ct, x, y, z) with derivatives
∂/∂Xi .

Dirac developed the relativistic quantum-mechanical theory of the electron,
which involves the Pauli spin operators ŝi , and coupled equations for electrons
and positrons. The nonrelativistic limit of his theory, including the interaction
with a magnetic field represented by the vector potential A, is represented by
the Hamiltonian

H =
[
h̄2

2m
( p̂ + eA)2 + V (r)

]

− p4

8m3
ec

2
+ e

me
(∇ × A) · ŝ + 1

2m2
ec

2r

dV

dr
�̂ · ŝ − 1

4m2
ec

2

dV

dr
.

(3.66)

� The first term is the nonrelativistic Hamiltonian (3.57).
� The second term is a higher-order correction to the kinetic energy.
� The third term is the interaction of the electron spin with the magnetic field.

Taken together with (3.57), this gives the complete expression for the Zeeman
interaction of the electron (3.21):

HZ = (µB/h̄)(l̂ + 2ŝ) · B.

The factor 2 is not quite exact. The correct value arising from quantum
electrodynamics is 2(1 + α/2π − · · · ) ≈ 2.0023, where α = e2/4πε0h̄c ≈

1/137 is the fine-structure constant.
� The fourth term is the spin–orbit interaction, which for a central potential
V (r) = −Ze2/4πε0r with Ze as the nuclear charge becomes −Ze2µ0�̂ · ŝ/
8πm2r3 since µ0ε0 = 1/c2. The one-electron spin–orbit coupling is usually
written as λ�̂ · ŝ (3.13). In an atom 〈1/r3〉 ∼ (0.1 nm)−3 so the magnitude of
the spin–orbit coupling λ is 8 K for lithium (Z = 3), 60 K for 3d elements
(Z ≈ 25), and 160 K for actinides (Z ≈ 65). For the innermost electrons,
r ∼ 1/Z, which yields the Z4 variation of (3.12).

In a noncentral potential, the spin–orbit interaction is (ŝ × ∇V ) . p̂.
� The final term just shifts the levels when � = 0.
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3.3.4 Magnetism and relativity

The classification of interactions according to their relativistic character is
based on the energy of a free particle, which is given by ε2 = m2

ec
4 + p2c2:

ε = mec
2√

[1 − (v2/c2)]
. (3.67)

The order of magnitude of the velocity of electrons in solids is αc, where c is the
velocity of light and α is the fine-structure constant defined above. Expanding
in powers of α shows the hierarchy of interactions:

ε = mec2 + 1
2α

2mec
2 − 1

8α
4mec

2. (3.68)

Heremec2 = 511 keV; the second and third terms, which represent the order of
magnitude of electrostatic and magnetostatic energies, are respectively 13.6 eV
(the Rydberg, R0) and 0.18 meV. Magnetic dipolar interactions are therefore of
order 2 K.

Note that the Pauli susceptibility (3.43) can also be written in terms of the
fine-structure constant as χP = α2kF a0/π , where kF is the Fermi wavevector
and a0 is the Bohr radius. The force on a charged particle given by the Lorentz
expression (2.19) does not change in a moving frame, but the relative con-
tributions of the electric and magnetic fields to the force are modified. What
looks like an electric field to a stationary electron acquires a magnetic field
component in the frame of a moving electron, and vice versa.

From (2.19), the electric field acting on an electron subject to a magnetic
field in a frame in which the electron is stationary is

E∗ = v × B. (3.69)

Conversely, the magnetic field acting on an electron subject to an electric field
in a frame where the electron is stationary is

B∗ = −(1/c2)v × E. (3.70)

This field leads to the Larmor precession of the spin of a moving electron in an
electric field, which is known as the Rashba effect.

3.4 Magnetism of electrons in solids

The free-electron model provides a fair account of the outermost electrons
in a metal or semiconductor. A better understanding of the magnetism of
electrons in solids is achieved by considering first the situation for free atoms,
summarized in the magnetic periodic table, Table A. The electronic moments
are completely paired for some of the elements with even atomic numberZ such
as the alkaline earths or the noble gases, but most elements retain a magnetic
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moment in the atomic state. These are the elements marked in bold type. The
atomic moments are much less than ZµB for every element except hydrogen.
The largest values of 10 µB are found for dysprosium and holmium. Electrons
in filled shells have paired spins and no net orbital moment. Only unpaired
spins in unfilled shells, usually the outermost one, contribute to the atomic
moment.

Assembling the atoms together to form a solid is a traumatic process for the
atomic moments. Magnetism tends to be destroyed by chemical interactions of
the outermost electrons, which can occur in various ways:

� electron transfer to form filled shells in ionic compounds;
� covalent bond formation in semiconductors;
� band formation in metals.

Atomic iron, for example, has an electronic configuration (Ar)3d64s2. Four
of the 3d electrons are unpaired, so the spin moment of the atom is 4 µB . When
the iron atoms are brought together in a solid, as illustrated in Fig. 3.11, the
outer 4s orbitals first overlap to form a broad 4s-band, and then the smaller 3d
orbitals follow suit to form a band that is considerably narrower. This results in
4s → 3d charge transfer, producing an electronic configuration in iron metal
of approximately (Ar)3d7.44s0.6. The narrow 3d band has a tendency to split
spontaneously to form a ferromagnetic state. This occurs below TC = 1044 K in
normal αFe, which has the bcc structure. The electrons occupy states with their
magnetic moments either parallel (↑) or antiparallel (↓) to the ferromagnetic
axis. A spin pair ↑↓ has no net moment. The electrons are perfectly paired in
all the inner shells, and largely paired in the 4s-band. The spin configuration
of the 3d-band is approximately 3d↑4.83d↓2.6 so the number of unpaired spins
is 2.2. In Fig. 3.11, the ↑ and ↓ electrons are shown as occupying different,
spin-split subbands.

It must be emphasized that the nature of the chemical bonding, and there-
fore the character of the magnetism, depends critically on crystal stucture and
composition. The very existence of a moment in the other iron polymorph, fcc
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Table 3.5. Atomic moments of iron in different crystalline environments, in units of µB

γ -Fe2O3 α-Fe YFe2 γ -Fe YFe2Si2 FeS2

Ferrimagnet Ferromagnet Ferromagnet Antiferromagnet Pauli paramagnet Diamagnet
5.0 2.2 1.45 unstable 0 0

γFe, depends on the lattice parameter. Compress it a little, and the moment
disappears. Intermetallic compounds such as YFe2Si2 exist where there is no
spontaneous spin splitting of the d-band. Insulating ionic compounds contain-
ing the Fe3+ ion have large unpaired spin moments of 5 µB per iron ion, but
covalent compounds with low-spin FeII are nonmagnetic. A few examples to
illustrate the range of properties of this most common magnetic element are
given in Table 3.5.

3.4.1 Localized and delocalized electrons

It is a formidable task to make a physical theory that will adequately account for
the behaviour of electrons in narrow bands, but two limits are accessible. One
is the localized limit, where correlations of the electrons on the ion cores due
to their mutual Coulomb interaction are strong, but transfer of electrons from
one site to the next is negligible. The other is the delocalized limit where the
electrons are confined in the solid, but Coulomb correlations among them and
with the nuclear charges are relatively weak, of order 1 eV. Numerical methods
for calculating the electronic structure, outlined in Chapter 5, then come into
their own.

The localized model is best suited for 4f electrons in the rare-earth series,
R = Pr, . . . ,Yb, which occupy orbitals belonging to an inner shell that barely
participates in the bonding. The outer electrons have 5s, 5p, 5d or 6s charac-
ter. There are usually two or three outermost 5d/6s valence electrons which
either form a conduction band, as in the metals, or else are transferred to an
electronegative ligand such as oxygen in the rare-earth oxides R2O3. There the
rare-earth becomes an R3+ ion and the oxygen accepts two electrons to fill the
2p shell to become O2−, with a stable closed-shell configuration7 2p6. Either
way, the 4f shell is sufficiently well buried within the 5s and 5p shells to be
uninvolved with chemical bonding, as shown in Fig. 3.12. It has an atom-like
configuration with an integral number of electrons. There is a series of discrete
energy levels for this strongly correlated electron shell, discussed in the next
chapter. The electron orbitals describe localized states, and the 4f ions obey
Boltzmann statistics. A similar picture applies to the heavy actinide (5f ) ele-
ments, from Am onwards. Unfortunately, these elements become increasingly

7 The closed shell configuration 2p6 is especially stable. Over 80% of the Earth’s crust (Fig. 1.10)
is made up of 2p6 ions.
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Table 3.6. Summary of localized and delocalized magnetism

Localized magnetism Delocalized magnetism

Integral number of 3d or 4f electrons Nonintegral number of unpaired spins on the ion core
Integral number of unpaired spins per atom
Discrete energy levels Spin polarized energy bands with strong correlations
Ni2+ 3d8 m = 2µB Ni 3d9.44s0.6 m = 0.6µB
� ≈ exp(−r/a0) � ≈ exp(−ik · r)
Boltzmann statistics Fermi–Dirac statistics
4f metals and compounds; some 3d compounds 3d metals; some 3d compounds
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Comparison of the radial
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metal, Gd. The arrow
shows the interatomic
spacing in each case.

radioactive the heavier they are, and magnetically interesting elements such as
Bk or Cf are available only in milligram quantities, at best. The d or f electrons
in compounds are usually more localized than they are in pure elements. The
localized model is particularly suitable for insulating ionic compounds of 3d
elements such as Fe2O3.

The delocalized model describes the magnetic electrons by wave-like
extended states which form energy bands. The number of electrons in bands
crossing the Fermi level is not integral, and the electrons obey Fermi–Dirac
statistics. The delocalized model applies to the magnetism of 3d and 4d met-
als and alloys, and to their conducting compounds. It also applies at the very
beginning of the 4f series (R =Ce) and to the light actinides from Th to Pu.

The differences between localized and delocalized magnetism are summa-
rized in Table 3.6. Neither localized nor delocalized moments disappear above
the Curie temperature; they just become disordered in the paramagnetic state,
T > TC .
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EXERCISES

3.1 Consider a hypothetical ferromagnet with an orbital moment of 1 µB per atom.
The atoms are dense-packed with radius 0.1 nm. What is the magnetization?
Relate this to the surface current density.

3.2 The neutron, an uncharged particle with angular momentum 1
2h̄, nevertheless

possesses a magnetic moment of −1.913 nuclear magnetons. (The nuclear mag-
neton eh̄/2mp = 5.051 × 10−27 A m2).Why is this?

3.3 Use the expression (3.14) for the components of angular momentum to prove the
commutation relation [l̂x , l̂y ] = ih̄l̂z then use this relation, and cyclic permuta-

tions, to deduce that [l̂
2
, l̂z] = 0.

3.4 (a) Show that the spin angular momentum operators ŝx and ŝy satisfy the com-
mutation rule [ŝx , ŝy ] = ih̄ŝz and that each of them have eigenvalues ± 1

2h̄.

(b) Use these commutation relations to show that the operators ŝ2 and ŝz com-
mute, and hence that it is possible to measure ŝz and (ŝ2

x + ŝ2
y ) simultaneously.

3.5 If ŝ = (sx, sy, sz) represents an angular momentum vector, use (3.19) to show
that −ŝ = (−sx,−sy,−sz) is not an angular momentum vector.

3.6 Show that the ladder operators ŝ+ and ŝ− satisfy the commutation relations
[ŝ2, ŝ±] = 0, and [ŝz, ŝ±] = ±h̄ŝ±.

3.7 Use the rotation matrix (3.25) to transform the spin matrix ŝz into ŝx.
3.8 (a) Derive (3.43) for the Pauli susceptibility of the free-electron gas.

(b) Express the Pauli susceptibility in terms of the fine structure constant α, the
Bohr radius a0 and the Fermi wave vector kF .

(c) Use data in Tables 3.2 and 3.4 to deduce the Pauli susceptibility of copper.
Compare with the result in (a).

3.9 Deduce the expression for the density of states in a quantum wire, which follows
from the energy expression (3.42).

3.10 By considering the reduction of the mean free path due to cyclotron motion in a
transverse magnetic field, deduce an expression for the B2 magnetoresistance.

3.11 Consider a free electron in a semiconductor with n = 6 × 1022 m−3 moving
ballistically with the Fermi velocity, which is subject to an electric field of
108 V m−1. Initially its spin is parallel to its velocity. How far does it travel
before the spin is reversed?



4 Magnetism of localized electrons
on the atom

More matter, with less art.
Hamlet II ii

The quantum mechanics of a single electron in a central potential leads to classifi-
cation of the one-electron states in terms of four quantum numbers. The individual
electrons’ spin and orbital angular momenta are coupled in an isolated many-
electron ion to give total spin and orbital quantum numbers S and L . Spin-orbit
coupling then operates to split the energy levels into a series of J -multiplets, the
lowest of which is specified by Hund’s rules. Curie-law susceptibility, χ = C /T , is
calculated for a general value of J . When placed in a solid, the ion experiences a
crystal field due to the charge environment which disturbs the spin-orbit coupling,
leaving either S or J as the appropriate quantum number. The crystal field modifies
the structure of the lowest MS or MJ magnetic sublevels which are split by the
Zeeman interaction and it introduces single-ion anisotropy.

Atomic physics is concerned with the energy levels of an atom or ion and the
possible transitions between them, which are usually in the optical or ultraviolet
energy range (1–10 eV). Magnetism is concerned with the energy levels that are
occupied at ambient temperature, which usually means only the ground state,
and its sublevels resulting from interactions with magnetic or electric fields,
which produce a splitting of less than 0.1 eV. At ambient temperature kBT is
about 25 meV.

4.1 The hydrogenic atom and angular momentum

The problem of a single electron in a central potential is treated in numer-
ous texts on quantum mechanics and atomic physics. We summarize the
results here, because we need to understand the symmetry of the one-electron
states − mainly d-states − which are important in magnetism. A hydrogenic
atom is composed of a nucleus of charge Ze at the origin and an electron
with position labelled by r , θ , φ. First, consider a single electron in a central
potential ϕe = Ze/4πε0r . The Hamiltonian is

H = − h̄2

2me
∇2 − Ze2

4πε0r
. (4.1)
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Spherical polar coordinates are appropriate for a problem with this symmetry.
The operator ∇2 is then (Appendix C)

rq

x

y

z

f

Ze

−e

Spherical polar coordinates.

∇2 = 1

r2 sin θ

[
sin θ

∂

∂r

(
r2 ∂

∂r

)
+ ∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin θ

∂2

∂φ2

]
. (4.2)

This is rearranged as

�2 = ∂2

∂r2
+ 2

r

∂

∂r
+ 1

r2

(
∂2

∂θ 2
+ cot θ

∂

∂θ
+ 1

sin2 θ

∂2

∂ϕ2

)
. (4.3)

The term in parentheses which takes account of all the angular variation

may be recognized as −l̂
2
/h̄2 (3.15), where l̂ is the orbital angular momentum

operator.
Schrödinger’s equation for the energy levels of the atom is

Hψi = εiψi,
where εi are the energy eigenvalues and ψi are the corresponding wave func-
tions. The wave functionψ determines the probability of finding the electron in
a small volume dV at r as ψ∗(r)ψ(r)dV , where ψ∗ is the complex conjugate
of ψ1. The Schrödinger equation is therefore:[

− h̄2

2me

(
∂2

∂r2
+ 2

r

∂

∂r
− 1

h̄2r2
l̂

2
)

− Ze2

4πε0r

]
ψi = εiψi. (4.4)

Solutions of partial differential equations like (4.4) are obtained by separation
of variables; they may be written in the form

ψ(r, θ, φ) = R(r)!(θ)�(φ).

Each factor depends on only one of the variables.
The azimuthal (φ-dependent) part of the solution is an eigenfunction of

l̂z = −ih̄∂/∂φ (3.15). The eigenvalues are m�h̄, with m� = 0,±1,±2, . . .
and the corresponding eigenfunctions are �(φ) = exp(im�φ). The polar
(θ -dependent) part of the solution is an associated Legendre polynomial
!(θ ) = Pm�� (θ ), which depends on the angular momentum quantum number �
and also on m�. The quantum number � ≥ |m�|, and � = 0, 1, 2, 3, . . .while
m� = 0,±1,±2, . . . ,±�. There are (2�+ 1) different values of m� for a
given �.

The product of the azimuthal and polar parts is a spherical harmonic, which
depends on two integers � and m�, such that � ≥ 0 and |m�| ≤ �:

Y
m�
� (θ, φ) ∝ Pm�� (θ )eim�φ.

The normalized spherical harmonics are listed in Table 4.1. The square of

the orbital angular momentum l̂
2

has eigenvalues �(�+ 1)h̄2. Thus the orbital
angular momentum has magnitude

√
�(�+ 1)h̄, and its projection along Oz

1 The complex conjugate of a complex number is obtained by replacing i by −i, where i = √−1.
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Table 4.1. The normalized spherical harmonics

s Y 0
0 = √

1/4π
p Y 0

1 = √
3/4π cos θ Y±1

1 = ±√
3/8π sin θ exp(±iφ)

d Y 0
2 = √

5/16π (3 cos2 θ − 1) Y±1
2 = ±√

15/8π sin θ cos θ exp(±iφ)
f Y 0

3 = √
7/16π (5 cos3 θ − 3 cos θ ) Y±1

3 = ±√
21/64π (5 cos2 θ − 1) sin θ exp(±iφ)

s

p

d Y±2
2 = √

15/32π sin2 θ exp(±2iφ)
f Y±2

3 = √
105/32π sin2 θ cos θ exp(±2iφ) Y±3

3 = ±√
35/64π sin3 θ exp(±3iφ)

z

O

Figure 4.1

The total angular
momentum and its z
component. The former
precesses around Oz.

can take any of (2�+ 1) values from −�h̄ to +�h̄ (Fig. 4.1). As explained in
§3.1.4, the quantities �z and �2 can be measured simultaneously because their
operators are diagonal matrices which commute.

The radial part of the wavefunction R(r) depends on � and n. The latter
also takes only integer values, and is known as the principal quantum number;
n > �; hence � = 0, 1, . . . , (n− 1). Thus there are n different l values for a
given n.

R(r) = V �n (Zr/na0) exp[−(Zr/na0)]

where V �n are related to the associated Laguerre polynomials; the first one, V 0
1 ,

equals 1. Here a0 = 4πε0h̄
2/mee

2 is the Bohr radius (3.8), the basic length
scale in atomic physics: a0 = 52.92 pm.

The energy levels of the one-electron atom with a central Coulomb potential
V (r) depend on n, but not on � or m� :

εn = −Z2me4

8ε2
0h

2n2
= −Z2R0

n2
. (4.5)

HereR0 =me4/8ε2
0h

2 is the Rydberg, the basic energy scale in atomic physics;
R0 = 13.61 eV.

The three quantum numbers n, �,m� specify a wave functionψi(r, θ, φ) with
a characteristic spatial distribution of electronic charge known as an orbital.
For historical reasons related to the appearance of lines in atomic spectra, the
notation for orbitals is

nxm�, (4.6)
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Table 4.2. The hydrogenic orbitals. The number of states per orbital
is 2(2	 + 1)

n � m� ms States

1s 1 0 0 ± 1
2 2

2s 2 0 0 ± 1
2 2

2p 2 1 0, ±1 ± 1
2 6

3s 3 0 0 ± 1
2 2

3p 3 1 0, ±1 ± 1
2 6

3d 3 2 0, ±1,±2 ± 1
2 10

4s 4 0 0 ± 1
2 2

4p 4 1 0, ±1 ± 1
2 6

4d 4 2 0, ±1,±2 ± 1
2 10

4f 4 3 0, ±1,±2,±3 ± 1
2 14

ml = 0

l = 0

ml = 1

l = 1

ml = 0 ml = 2

l = 2

ml = 1ml= 0

Figure 4.2

Some hydrogenic orbitals
specified by their 	 and m	

values.

where x = s, p, d, f stands for � = 0, 1, 2, 3. Each orbital can accommodate
up to two electrons with spinms = ± 1

2 . No two electrons can be in a state with
the same four quantum numbers, which is a way of stating the Pauli exclusion

principle. It is forbidden for two electrons to occupy the same quantum state
because they are fermions.

The possible hydrogenic orbitals are enumerated in Table 4.2. The angular
parts of the wave functions are the spherical harmonics illustrated in Fig. 4.2,
and the radial functions are plotted in Fig. 4.3. Note that the radial functions have
between 0 andn− 1 nodes, depending on the value of �. The number of different
orbitals for an �-shell is 2�+ 1; the s, p, d, f shells having � = 0, 1, 2, 3
contain 1, 3, 5, 7 orbitals respectively.

4.2 The many-electron atom

When more than one electron is present, mutual Coulomb repulsion terms
between the electrons e2/4πε0rij must be added into (4.1). The Hamiltonian
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becomes

H0 =
∑
i

[−(h̄2/2me)∇2 − Ze2/4πε0ri] +
∑
i<j

e2/4πε0rij. (4.7)

The sum over many pairs of interacting particles makes this an intractable
analytical problem.2 An appropriate way of dealing with the extra Coulomb
interactions is to suppose that each electron experiences the central potential of
some different, spherically symmetric charge distribution. The potential with
many electrons is no longer a simple Coulomb well and the degeneracy of
the energy of electrons with different �-values but the same principal quantum
number n is lifted. The 4s shell, for example, then turns out to be lower in
energy than the 3d shell, the energy change depends on filling. The sense
in which the shells are filled defines the shape of the periodic table. The
potentials can be determined self-consistently. This is known as the Hartree–Foch

approximation.

n 1 2 3 4 5 6

1s 2s 3s 4s 5s 6s

2p 3p 4p 6p

3d 4d 6d

4f 5f 6f

5g 6g

5d

5p

Sequence of shell filling for
a many electron atom.

When several electrons are present on the same atom, at most two of them,
with opposite spin, can occupy the same orbital. The ions of interest in mag-
netism generally follow the L–S coupling scheme, where individual spin and
orbital angular momenta add3 to give resultant quantum numbers (here S and
L ≥ 0):

S =
∑
si, MS =

∑
msi, L =

∑
�i, ML =

∑
m�i.

2 There is a very complicated analytical solution to the three-body problem, but there are usually
many more than three particles involved in atoms.

3 When spin-orbit coupling is very strong, as it is in the actinides, it is appropriate to first couple
li and si for each electron, to form ji , and then to couple these total angular momenta. This is
the j−j coupling scheme.
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Table 4.3. Example of the six-electron carbon atom; 1s22s22p2

1s ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓
2s ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓
2p−1 ↑↓ ↑ ↑ ↓ ↓ ↑ ↑ ↓ ↓
2p0 ↑ ↓ ↑ ↓ ↑↓ ↓ ↑ ↓ ↑
2p1 ↑ ↓ ↑ ↓ ↓ ↓ ↑ ↑ ↑↓
ML 2 1 1 1 1 0 0 0 0 0 −1 −1 −1 −1 −2
MS 0 −1 0 0 +1 −1 0 0 0 +1 +1 0 0 −1 0

Table 4.4. Terms for the carbon atom.

Term L S (ML,MS )

1S 0 0 (0,0)
3P 1 1 (1, 1)(1, 0)(1, −1)(0, 1)(0, 0)(0, −1)(−1, 1)(−1, 0)(−1, −1)
1D 2 0 (2, 0)(1, 0)(0, 0)(−1, 0)(−2, 0)

Consider, for example, the carbon atom with its six electrons. The electronic
configuration is 1s22s22p2. Each s-shell has no alternative but to accommo-
date the pair of electrons with opposite spin. However, there are 15 ways of
accommodating two electrons in the 2p-orbitals. The possibilities are listed in
Table 4.3, a subscript denotes the ml value.

The 15 states are grouped into three terms. This is done by considering the
number of states with a particular combination ofML andMS, and decomposing
them into blocks, as follows:

MS\ML −2 −1 0 1 2 L = 1, S = 1 L = 2, S = 0 L = S = 0

−1 − 1 1 1 − 1 1 1
0 1 2 3 2 1 = 1 1 1 + 1 1 1 1 1 + 1
1 − 1 1 1 − 1 1 1

and identifying each block as a term. Terms for carbon are listed in Table 4.4.
The convention is to denote L = 0, 1, 2, 3, 4, 5 by S, P,D, F,G,H , and then
indicate the spin multiplicity 2S + 1 by a left superscript 2S+1X. The energy
splitting of the terms is of order 1 eV, so the allowed  L = ±1 transitions
to excited states require optical excitation. The final step is to introduce spin-
orbit interaction which couples L and S together to form J . Each term gives
rise to several J -states, with |L− S| � J � L+ S. There are either (2S + 1)
or (2L+ 1) of them, depending on whether L or S is smaller. The different
J -states of a term are known as multiplets. The general notation for multiplets
shows the J -value as a subscript on the term, thus

2S+1XJ .

The ground state is normally the only one of the (2J + 1)MJ -states occupied
at room temperature; it determines the magnetic properties of the atom.

J
S

L

Addition of spin and orbital
angular momentum in the
vector model: J = L + S.
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Hund provided an empirical prescription for determining the lowest-energy
state of a multielectron atom or ion ; Hund’s rules are:

(1) First maximize S for the configuration.
(2) Then maximize L consistent with S.
(3) Finally couple L and S to form J : J = L− S if the shell is less than half

full, and J = L+ S if the shell is more than half full. When the shell is
exactly half full, L = 0 and J = S.

The justification for the first rule is that electrons minimize their Coulomb
interaction by avoiding each other, which is best achieved if they can occupy
different orbitals. To this end, intra-atomic exchange tends to align the spins of
different orbitals parallel. The second rule means that the electrons orbit in the
same sense whenever possible. The third and weakest rule is a consequence of
the sign of the spin-orbit coupling. Hund’s rules only predict the ground state;
they tell us nothing about the position and order of the excited states.

In our example of carbon, Hund’s rules give S = 1, L = 1 and J = 0, so
MJ = 0, and the ground state of the carbon atom is actually nonmagnetic,
thanks to spin-orbit coupling. Free atoms of other elements in the same column
of the magnetic periodic table are likewise nonmagnetic, as well as s2 atoms,
p6 atoms and a few others (Table A).

More examples of the use of Hund’s rules to determine the ground-state
multiplet of some common magnetic ions are:

Fe3+ 3d5 ↑↑↑↑↑ |ooooo
S = 5/2 L = 0 J = 5/2 6S5/2

Ni2+ 3d8 ↑↑↑↑↑ | ↓↓↓oo
S = 1 L = 3 J = 4 3F4

Nd3+ 4f 3 ↑↑↑oooo|ooooooo
S = 3/2 L = 6 J = 9/2 4I9/2

Dy3+ 4f 9 ↑↑↑↑↑↑↑ | ↓↓ooooo
S = 5/2 L = 5 J = 15/2 6H15/2

The symbols ↑,↓ and o show whether a 3d- or 4f -orbital is occupied by
a ↑ or a ↓ electron, or is unoccupied. Values of L, S and J for the whole series
of 3dn and 4f n ions are plotted in Fig. 4.4. We saw already in Table A that
most free atoms possess a magnetic moment.

4.2.1 Spin-orbit coupling

We return to the relatively weak relativistic interaction responsible for Hund’s
third rule. The spin-orbit interaction is the origin of many of the most
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interesting phenomena in magnetism, including magnetocrystalline anisotropy,
magnetostriction, anisotropic magnetoresistance and the anomalous planar and
spin Hall effect.

In the multielectron atom, the single-electron spin-orbit coupling we encoun-
tered in §3.1.3 becomes

Hso = (�/h̄2)L̂ · Ŝ.

As Hund’s third rule testifies, � is positive for the first half of the 3d or 4f
series and negative for the second half. The coupling becomes large in heavy
elements where the energy of the orbiting electrons is a significant fraction
of their rest-mass energy mec2. The constant � is related to the one-electron
coupling constant λ of (3.13) by� = ±λ/2S for the first and second halves of
the series (Table 4.5). Since J = L + S, the identity J2 = L2 + S2 + 2L · S
can be used to evaluate Hso, as the eigenvalues of J2, L2 and S2 are all known.
Turning on the spin-orbit coupling, the atomic states in the L−S coupling
scheme are labelled by (L, S, J,MJ ),whereMJ is the total magnetic quantum
number.

4.2.2 The Zeeman interaction

By analogy with (3.20), the magnetic moment of an atom is represented by the
operator

m̂ = −(µB/h̄)(L̂ + 2Ŝ). (4.8)

The Zeeman Hamiltonian for the magnetic moment in a field B is

HZ = (µB/h̄)(L̂ + 2Ŝ) · B . (4.9)

When B is applied along Oz, the Hamiltonian becomes (µB/h̄)(L̂z + 2Ŝz)B.
Next we define the Landé g-factor for the multielectron atom or ion as the ratio

of the component of magnetic moment along J in units of µB to the magnitude
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Table 4.5. Spin-orbit coupling constants for ions
in the 3d and 4 f series, in kelvin. �ε is the energy

of the first excited multiplet

Ion λ �  ε

3d1 Sc2+ 124 124 310
3d2 Ti2+ 176 88 264
3d3 V2+ 246 82 205
3d4 Cr2+ 340 85 85
3d6 Fe2+ 656 −164 656
3d7 Co2+ 818 −272 1224
3d8 Ni2+ 987 −494 3948

4f 1 Ce3+ 920 920 3220
4f 2 Pr3+ 1080 540 2700
4f 3 Nd3+ 1290 430 2365
4f 4 Pm3+ 1540 380 1900
4f 5 Sm3+ 1730 350 1225
4f 6 Eu3+ 1950 330 330
4f 8 Tb3+ 2450 −410 2460
4f 9 Dy3+ 2730 −550 4125
4f 10 Ho3+ 3110 −780 6240
4f 11 Er3+ 3510 −1170 8775
4f 12 Tm3+ 3800 −1900 11400
4f 13 Yb3+ 4140 −4140 14490

of the angular momentum, in units of h̄. The g-factor is a dimensionless version
of the gyromagnetic ratio γ (3.5).

Thus, in vector notation

g = −(m · J/µB)/(|J |2/h̄) = −m · J/J (J + 1)µBh̄,

but

m · J = −(µB/h̄)[(L + 2S) · (L + S)]

= −(µB/h̄)[(L2 + 3L · S + 2S2)] since L and S commute

= −(µB/h̄)[L2 + 2S2 + (3/2)( J2 − L2 − S2)]

= −(µBh̄)[(3/2)J (J + 1) − (1/2)L(L+ 1) + (1/2)S(S + 1)].

The expression for the g-factor is therefore

g = 3
2 + {S(S + 1) − L(L+ 1)}/2J (J + 1). (4.10)

The Landé g-factor is also the ratio of the z components of magnetic moment
(in units of µB) and angular momentum (in units of h̄). From the vector model,
Fig. 4.5, where the magnetic moment precesses rapidly about J , the ratio



106 Magnetism of localized electrons on the atom

s

s

L

m

z

J

O

Figure 4.5

The vector model of the
atom, showing both the
magnetic moment and the
angular momentum.
m precesses rapidly around
J, and the time-averaged
moment then precesses
around Oz.

mz/Jz = m · J/J 2 = −gµB/h̄, so we can write the projected/average m in
terms of the g-factor as

m = −(gµB/h̄) J .

The level withMJ = −J is lowest.
The Zeeman energy in a magnetic field B applied alongOz is εZ = −mzB.

This is −(mz/Jz)JzB = (gµB/h̄)JzB. Hence the Zeeman energy is

εZ = gµBMJB.

Note the magnitude of the energies involved here. The splitting of two
adjacent Zeeman energy levels is gµBB, which is of order 1 K for a field of
1 T. Hundreds of tesla would be needed to establish a significant population
surplus in the MJ = −J ground state at room temperature. No such steady
field has ever been produced in the laboratory. Matters are easier in the liquid
helium temperature range, where normal laboratory fields of a few tesla will
suffice to establish a preponderant population of the ground state, and saturate
the magnetization of the ion. The entropy S of the ion is kB ln�, where � is
the number of configurations. When the 2J + 1MJ configurations are equally
populated, S = kB ln(2J + 1), but if only oneMJ sublevel is occupied, S = 0.

An example to summarize the discussion up to this point is given in
Fig. 4.6, where the energy levels of a free ion, Co2+3d7, are shown. According
to Hund’s rules, the J = 9

2 multiplet is the ground state.

4.3 Paramagnetism

We now examine in more detail the response of a localized magnetic moment m
to an applied magnetic field H = B/µ0 in free space. The ′ is dropped because
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The energy levels for a free
ion with electronic
configuration 3d7: Co2+

S = 3
2 , L = 3, J = 9

2 ; g = 5
3 .

there is no distinction between applied field and internal field for a single atom
or particle. It is instructive to look first at the general quantum case where the
moment m = −gµB J/h̄ can make any of 2J + 1 polar angles with the applied
field, and then at the theory for classical magnetic moments which can adopt
any orientation whatsoever with respect to the applied field. We have already
presented the theory for a spin- 1

2 quantum system in §3.2.4, where the moment
m = −gµBS/h̄ can have only one of two projections along the applied field.
The classical and extreme quantum limits correspond to J −→ ∞ and J = 1

2 ,
respectively.

4.3.1 Brillouin theory

The general expression for the thermodynamic average value of any quantity q
is 〈q〉 = Tr[qi exp(−εi/kBT )]/Z,where Z = Tr exp(−εi/kBT ) is the partition

function. The trace (Tr) is the sum over the i energy states, and qi is the value of
q in the ith one. This amounts to taking an average over the i states, weighted
by their Boltzmann populations. Z is the normalization factor. Evaluating the
thermodynamic average 〈m〉,

〈m〉 =
∑
i mi exp(−εi/kBT )∑
i exp(−εi/kBT )

. (4.11)

The extreme quantum limit is the case J = 1/2. Usually this arises when
S = 1/2, L = 0. There are only two energy levels and two orientations of the
moment relative to the applied field (which, as usual, is alongOz), correspond-
ing to the |↑〉 and |↓〉 states. Then (4.11) for the z component of m reduces
to

〈mz〉 = gµBJ tanh x, (4.12)
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where x is the dimensionless ratio of the Zeeman energy to the thermal energy.

x = µ0gµBMjH/kBT . (4.13)

When J = S = 1
2 , g = 2, this becomes 〈mz〉 = mztanhx, with mz = µB and

x = µ0µBH/kBT , as seen in §3.2.4. In small fields, tanh x ≈ x, and if there
are n atoms per unit volume, the susceptibility n〈mz〉/H is

χ = µ0ng
2µ2
BJ

2/kBT . (4.14)

Equation (4.14) reduces to (3.34) for J = 1/2, g = 2. Many two-level systems
in physics are treated using this theory, by assigning them a pseudospin S = 1

2 ;
the two levels correspond toMs = ± 1

2 , and their separation is 2µ0µBH.

The general quantum case was treated by Léon Brillouin; m is
−gµB J/h̄, and x is µ0gµBMJH/kBT . There are now 2J + 1 energy lev-
els εi = +µ0gµBMJH, with moments mzi = −gµBMJ , where MJ = J,
J − 1, J − 2, . . . ,−J. The sums in (4.11) each have 2J + 1 terms. The exam-
ple of J = 5

2 is illustrated in Fig. 4.7.
To calculate the susceptibility, we take the limit x � 1. Susceptibility is

the initial slope of the magnetization curve. The exponentials in (4.11) are
expanded as exp(x) ≈ 1 + x + · · · . Hence, keeping only the leading terms,

〈mz〉 =
∑J

−J −gµBMJ (1 − µ0gµBMJH/kBT )∑J
−J (1 − µ0gµBMJH/kBT )

.

Using the identities

J∑
−J

1 = 2J + 1,
J∑

−J
MJ = 0,

J∑
−J
M2
J = J (J + 1)(2J + 1)/3,

we find 〈mz〉 = µ0g
2µ2
BJ (J + 1)H/3kBT . The susceptibility is n〈m〉/H, thus

the general form of Curie’s law is χ = C/T , where

C = µ0ng
2µ2
BJ (J + 1)

3kB
. (4.15)
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To make a connection with (3.34), the susceptibility is written in terms of
an effective moment meff = gµB

√
J (J + 1) (or an effective Bohr magneton

number peff = g√J (J + 1)) as

χ = µ0nm
2
eff

3kBT
.

The susceptibility depends on the square of the magnitude or ‘length’ of m,and
not on its projection mz. The Curie constant is

C = µ0nm
2
eff/3kB. (4.16)

A typical value of C obtained for n = 6 × 1028 m−3, g = 2 and J = 1 is 1.3
K. The molar Curie constant Cmol , obtained by setting n = NA, is a useful
quantity. Its numerical value is

Cmol = 1.571 × 10−6p2
eff.

In order to calculate the complete magnetization curve, we set y =
µ0gµBH/kBT and then use (4.11) and the result d(ln z)/dy = (1/z)dz/dy
to write the thermodynamic average 〈mz〉 = 〈−gµBMJ 〉 as

〈mz〉 = gµB
∂

∂y

[
ln

J∑
−J

exp(−MJy)

]
.

The sum over the energy levels must be evaluated; it can be written as
exp(Jy)[1 + r + r2 + · · · + r2J ], where r = exp(−y). The sum of the geomet-
ric progression is (r2J+1 − 1)/(r − 1). Therefore, multiplying top and bottom
by exp(y/2),

J∑
−J

exp(MJy) = {exp[−(2J + 1)y] − 1} exp(Jy)/[exp(−y) − 1]

= sinh[(2J + 1)y/2]/ sinh(y/2).

Hence

〈mz〉 = gµB∂ ln[sinh((2J + 1)y/2)]/[sinh(y/2)]/∂y

= (gµB/2)[(2J + 1) coth((2J + 1)y/2) − coth(y/2)].

Setting x = Jy we obtain finally

〈mz〉 = m0

{
2J + 1

2J
coth

2J + 1

2J
x − 1

2J
coth

x

2J

}
, (4.17)

where m0 = gµBJ is the maximum magnitude of the moment and the quantity
in braces is the Brillouin function BJ (x):

〈mz〉 = m0BJ (x). (4.18)

It reduces to the Langevin function in the limit J −→ ∞ and to tanh x when
J = 1/2 and g = 2 (4.12), Fig. 4.8.
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In the small-x limit,

BJ (x) ≈ (J + 1)

3J
x − [(J + 1)2 + J 2](J + 1)

90J 2
x3 + · · ·. (4.19)

The leading term gives the Curie law susceptibility χ = g2µ0nJ (J +
1)µ2

B/3kBT = C/T .
The theory of localized magnetism gives an excellent account of magnetically

dilute 3d and 4f salts, where the magnetic moments do not interact with each
other, for example in alums such as KCr(SO4)2 · 12H2O, where Cr3+ ions
are well separated by sulphate ions and water of crystallization. Except in
large fields or at very low temperatures, the M(H ) response is linear. The
excellence of the theory is illustrated by the fact that all the data for quite
different temperatures superimpose on a single Brillouin curve when plotted as
a function of x ∼ H/T, as shown in Fig. 4.9.

z

2πsinqdq

0

m

m0H

q

A classical moment in an
applied field.

4.3.2 Langevin theory

The classical theory of paramagnetism, which is the limit of quantum theory
when J −→ ∞, was worked out in 1905 by Paul Langevin. Colloidal ferro-
magnetic nanoparticles suspended in a liquid or small grains of ferromagnetic
minerals, usually magnetite, dispersed in a rock are examples of systems where
the classical theory is expected to apply. Each atom or particle has a macro-
scopic moment m which can take any orientation relative to the field applied in
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the z-direction H = B/µ0. The Zeeman energy (2.73) ε = −m · B gives

ε(θ ) = −µ0mH cos θ.

The probability P (θ ) that the moment makes an angle θ withOz is the prod-
uct of a Boltzmann factor exp[−ε(θ )/kBT ] and a geometric factor 2π sin θ.
HenceP (θ ) = κ2π sin θ exp(µ0mH cos θ/kBT ), where the constant κ is deter-
mined by the normalization condition

∫ π
0 P (θ )dθ = N. Here N is the number

of atoms or particles in the system. Then

〈mz〉 =
∫ π

0 m cos θP (θ )dθ∫ π
0 P (θ )dθ

. (4.20)

To evaluate the integrals, let a = cos θ , da = − sin θdθ and define the dimen-
sionless ratio of magnetic to thermal energy x = µ0mH/kBT . The result is
〈mz〉 = mL(x), where

L(x) = (coth x − 1/x). (4.21)

The quantity L(x), known as the Langevin function, is plotted in Fig. 4.8. The
leading terms in the expansion when x is small are L(x) = x/3 − x3/45 +
2x5/945 − · · · .At low fields or high temperatures, L(x) ≈ x/3, which is just 1

3
of the value in extreme quantum case J = 1

2 . The susceptibility of an ensemble
of n moments per cubic metre is χ = n〈mz〉/H , hence

χ = µ0nm
2/3kBT . (4.22)

This is the classical form of the famous Curie law χ = C/T , where C =
µ0nm

2/3kB is the Curie constant.
At high fields, x � 1, the moments are aligned and the magnetization satu-

rates. The high-field limit of the Langevin function is L(x) ≈ 1 − 1/x.
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4.3.3 Van Vleck susceptibility

When an ion has low-lying excited states, they can contribute to the suscep-
tibility in two ways. They may be Zeeman split and thermally populated as usual.
Otherwise, the applied field may mix some of the excited-state character into
the ground state. This produces a term known as van Vleck paramagnetism or
temperature-independent paramagnetism (TIP). It is especially important for
Eu3+, which has a nonmagnetic J = 0 ground state, but a low-lying J = 1
excited state at 330 K (Table 4.5) which contributes a paramagnetic suscepti-
bility. The other rare-earth ion for which it may be necessary to consider the
excited J -multiplets is Sm3+, which has a J = 5

2 ground state and a low-lying
J = 7

2 excited state at 1225 K. Among the actinides, Bk5+ and Cm4+ have a
localized 5f 6 configuration, with a J = 0 ground state.

According to perturbation theory, the correction to the energy of the ion is
given by the Hamiltonian (4.9)

ε1 =
[µB
h̄

]2 |〈g|(L̂ + 2Ŝ) · B|e〉|2
 ε

, (4.23)

where g and e represent the ground and excited states, respectively, and  ε
is their energy separation. From the expression for the Gibbs free energy of
a paramagnet in an applied field, − 1

2BM with M = χB/µ0, it follows that
χ = 2nµ0ε1/B

2, where n is the number of ions per unit volume. Hence the
susceptibility depends on the off-diagonal matrix elements of the magnetic
moment:

χ = 2nµ0

[µB
h̄

]2 |〈g|L̂z + 2Ŝz|e〉|2
 ε

. (4.24)

4.3.4 Adiabatic demagnetization

A remarkable application of the Curie-law paramagnetism of dilute salts is the
achievement of temperatures in the millikelvin range by adiabatic diamagneti-
zation.

In zero applied field, the energy levels of each ion are (2J + 1)-fold degen-
erate. The number of possible configurations for N ions in the sample is
� = (2J + 1)N. The corresponding entropy is S = kB ln� or

S = R ln(2J + 1), (4.25)

per mole, where R = NAkB is the gas constant, 8.315 J mol−1. The entropy is
reduced by applying a magnetic field, which leads to preferential occupation
of the energy levels with more negative MJ values, according to the Boltz-
mann probability exp(−gµBMJµ0H/kBT ). At zero temperature, all the ions
are in the MJ = −J state. There is only one configuration for each one, so
� = 1N and S = 0. Increasing temperature leads to absorption of heat by the
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system and population of the higher Zeeman levels, which increases the entropy.
Increasing field favours preferential population of the lower Zeeman levels,
which decreases the entropy. Since the population of the energy levels depends
solely on the Boltzmann factor, entropy is a monotonically decreasing func-
tion of H/T . The entropy can be calculated from the Helmholtz free energy
F = −NkBT lnZ , where Z is the partition function, using the thermodynamic
relation S = −(∂F/∂T )H .

An adiabatic process is one where there is no exchange of heat between a
system and its surroundings. Since δQ = T δS, entropy is conserved in such a
process. Adiabatic demagnetization is usually carried out in a cryostat, where,
for example, a pill of cerium magnesium nitrate is initially in thermal contact
via helium exchange gas with a bath of pumped liquid helium at 1.2 K or liquid
3He at 0.3 K. The first step (Fig. 4.10) is isothermal magnetization in a field of
several teslas, generated by a superconducting magnet. The second step is to cut
the thermal contact with the bath by evacuating the exchange gas, and reduce
the field to zero. During the adiabatic demagnetization, there is no change of
entropy S(H/T ) so it follows that

Hi

Ti
= Hf

Tf
, (4.26)

where i and f denote the initial and final states. If Hf were really zero, the
procedure would attain the absolute zero of temperature! Unfortunately, there
is always some residual field due to the dipole–dipole interaction of the ionic
moments. These stray fields are of order a millitesla in dilute salts, so the best
temperatures that can be reached are in the millikelvin range.

Microkelvin temperatures are attainable by adding a second stage where
adiabatic demagnetization is applied to the nuclei. Nuclear magnetic moments
are three orders of magnitude smaller than electronic ones, so the stray fields
are proportionately less, but the angular momentum Ih̄ and the entropy in the
disordered state, R ln(2I + 1) per mole, are similar. Copper, which has two
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Table 4.6. The 4 f ions. The paramagnetic moment meff and the
saturation moment m0 are in units of µB

4f n S L J g m0 = gJ meff = g
√
J (J + 1) m

exp
eff

1 Ce3+ 1
2 3 5

2
6
7 2.14 2.54 2.5

2 Pr3+ 1 5 4 4
5 3.20 3.58 3.5

3 Nd3+ 3
2 6 9

2
8

11 3.27 3.52 3.4

4 Pm3+ 2 6 4 3
5 2.40 2.68

5 Sm3+ 5
2 5 5

2
2
7 0.71 0.85 1.7

6 Eu3+ 3 3 0 0 0 0 3.4

7 Gd3+ 7
2 0 7

2 2 7.0 7.94 8.9

8 Tb3+ 3 3 6 3
2 9.0 9.72 9.8

9 Dy3+ 5
2 5 15

2
4
3 10.0 10.65 10.6

10 Ho3+ 2 6 8 5
4 10.0 10.61 10.4

11 Er3+ 3
2 6 15

2
6
5 9.0 9.58 9.5

12 Tm3+ 1 5 6 7
6 7.0 7.56 7.6

13 Yb3+ 1
2 3 7

2
8
7 4.0 4.53 4.5

isotopes each with I = 3/2, is often used. It is first cooled to the millikelvin
range where the nuclei are polarized in an applied field of a few tesla, and then
demagnetized adiabatically.

4.4 Ions in solids; crystal-field interactions

In practice, it should be possible to deduce m0, the maximum value of mz, by
saturating the magnetization at low temperature, thereby obtaining the value of
gJµB . The magnitude of the moment can be deduced from the paramagnetic
susceptibility, which yields m2

eff = g2µ2
BJ (J + 1). In practice, these measure-

ments are made on magnetically dilute salts, not free ions. Results of these
measurements are summarized in the last columns of Tables 4.6 and 4.7, where
meff, listed in units of Bohr magnetons, is just the effective Bohr magneton
number peff.

From data on the 4f ions in Table 4.6 it is seen that the experimentally
measured meff corresponds to gµB

√
J (J + 1), except for radioactive Pm, for

which it has never been measured, and Sm3+ and Eu3+, where there is an
additional van Vleck contribution to the susceptibility from excited multiplets.
J is the good quantum number for the rare-earth series. However, Table 4.7 tells
a different story for the 3d ions. There is a large discrepancy between gJµB
and m0 for all except the 3d5 ions, for which Hund’s second rule gives L = 0
and J = S. In fact, m0 ≈ gSµB and meff ≈ gµB

√
S(S + 1). It appears that the

magnetism of the 3d series is due to the spin moment, with little or no orbital
contribution. S is the good quantum number for the 3d series. An exception
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Table 4.7. The 3d ions. meff is in units of µB

meff = meff =
3dn S L J g g

√
J (J + 1) g

√
S(S + 1) m

exp
eff

1 Ti3+,V4+ 1
2 2 3

2
4
5 1.55 1.73 1.7

2 Ti2+, V3+ 1 3 2 2
3 1.63 2.83 2.8

3 V2+, Cr3+ 3
2 3 3

2
2
5 0.78 3.87 3.8

4 Cr2+, Mn3+ 2 2 0 4.90 4.9

5 Mn2+, Fe3+ 5
2 0 5

2 2 5.92 5.92 5.9

6 Fe2+, Co3+ 2 2 4 3
2 6.71 4.90 5.4

7 Co2+, Ni3+ 3
2 3 9

2
4
3 6.63 3.87 4.8

8 Ni3+ 1 3 4 5
4 5.59 2.83 3.2

9 Cu2+ 1
2 2 5

2
6
5 3.55 1.73 1.9

seems to be Co2+, where an orbital contribution raises meff significantly above
the spin only value.

Summarizing, for free ions:

• Filled electronic shells are not magnetic. A ↑ electron is paired with a ↓
electron in each orbital.

• Only partly filled shells may possess a magnetic moment.
• The magnetic moment is related to the angular momentum by m =

−g(µB/h̄) J , where the quantum number J denotes the total angular momen-
tum. For a given configuration, the values of J and g follow from Hund’s
rules and (4.10).

The third point in the summary has to be modified for ions in solids.

• Orbital angular momentum for 3d ions is quenched. The magnitude of the
spin-only moment is m ≈ gµBS, with g = 2.

• Certain crystallographic directions become easy axes of magnetization.

These two effects result from electrostatic fields present in the crystal.

4.4.1 Crystal fields

When an ion or atom is embedded in a solid, the Coulomb interaction of its
electronic charge distribution ρ0(r) with the surrounding charges in the crystal
must be considered. This is the crystal-field interaction. Both the quenching of
orbital angular momentum and the development of single-ion anisotropy are
due to the crystal electric field.

The potential ϕcf (r) produced by the distribution of charge ρ(r ′) outside the
ion is

ϕcf (r) =
∫

ρ(r′)
4πε0|r − r ′|d3r ′. (4.27)
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Table 4.8. Typical magnitudes of energy terms (in K)
for 3d and 4 f ions in solids

H0 Hso Hcf HZ

3d 1−5 × 104 102−103 104−105 1
4f 1−6 × 105 1−5 × 103 ≈3 × 102 1

HZ is for 1 T

Here 1/|r − r ′| can be expanded in spherical harmonics using spherical polar
coordinates r = (r, θ, φ) and r ′ = (r ′, θ ′, φ′):

1

|r − r ′| = 1

r ′
∞∑
n=0

4π

(2n+ 1)

( r
r ′
)n n∑

m=−n
(−1)mY−m

n (θ ′, φ′)Ymn (θ, φ).

Hence

ϕcf (r, θ, φ) =
∞∑
n=0

n∑
m=−n

rnγ nmY
m
n (θ, φ), (4.28)

where

γ nm = 4π

(2n+ 1)

∫
ρ(r ′)(−1)mY−m

n (θ ′, φ′)
r ′n+1

d3r ′.

The complete Hamiltonian of an ion in a solid has four terms:

H = H0 + Hso + Hcf + HZ.

H0 takes account of the Coulomb interactions among the electrons and between
the electrons and the nucleus, giving rise to the total spin and orbital angular
momenta L and S. The terms Hso,Hcf and HZ are the spin-orbit, crystal-field
and Zeeman terms, respectively. The crystal-field Hamiltonian is

Hcf = ∫ ρ0(r)ϕcf (r)d3r. (4.29)

Relative magnitudes of these interactions are given in Table 4.8.
Hcf is relatively weak in the rare-earths because the 4f shell is buried deep

inside the atom (Fig. 3.12) and the crystal-field potential ϕcf is shielded by
the outer electrons. Hso must be considered before Hcf in any perturbation
scheme for evaluating the energies of 4f ions. J is a good quantum number,
and the |J,MJ 〉-states form a basis. The crystal field is treated as a perturbation.
The converse is true for 3d ions, where the 3d shell is outermost. The crystal
field acts on the states |L,ML, S,MS〉 resulting from the Hamiltonian H0 for
the 3d transition metal series. The orbital ground states for the 3d ions can only
have L = 0, 2 or 3, that is an S,D or F state (Fig. 4.4(a)).

4.4.2 One-electron states

Generally, 4f electrons are localized in solids of any description, and 3d elec-
trons are delocalized in metals, but usually localized in oxides and other ionic



117 4.4 Ions in solids; crystal-field interactions

compounds, where their most common coordination is six-fold (octahedral) or
four-fold (tetrahedral). If undistorted, both of these sites have cubic symme-
try. The essential feature of cubic symmetry is four three-fold symmetry axes
oriented along the cube’s diagonals.

q

Tetrahedral and octahedral
coordination. The central
on site has cubic symmetry
in each case.

We begin by considering the effect of the crystal field on one-electron p-
and d-states, and generalize to multielectron 3d ions in the next section. To
demonstrate quenching of orbital angular momentum, we take the example of
the p-states with � = 1 and m� = 0,±1. These orbital states, obtained from
(4.1), and illustrated in Fig. 4.2, are

ψ0 = |0〉 = R(r) cos θ,
ψ±1 = | ± 1〉 = (1

√
2)R(r) sin θ exp(±iφ).

Next we suppose that a p1 ion is surrounded by six other ions that form an
octahedron. These could be oxygen O2− anions. In the point-charge approx-
imation the anions may be represented by point charges q at the corners of
the octahedron. The crystal-field Hamiltonian Hcf depends on the Coulomb
potential

Vcf = Dc(x4 + y4 + z4 − 3y2z2 − 3z2x2 − 3x2y2), (4.30)

where Dc = 7q/8πε0a
5 and the six charges are placed at ±a along each of

the x, y and z axes. However, the orbital states | ± 1〉 are not eigenstates of
Hcf . In other words, the matrix elements 〈i| Hcf |j 〉 � eVcf δij (δij is the
Kronecker delta-function; δij = 0 for i �= j and δii = 1); the 3 × 3 matrix
which represents the crystal-field term in the Hamiltonian is not diagonal.
This can be easily seen by inspecting the integrals over the wave functions,
which are the matrix elements 〈i|eVcf |j 〉 = ∫ ψ∗

i eVcf ψjd
3r . The integral for

i = 1, j = −1 , for instance, involves sin2θ which is even in θ and will not
integrate to zero. We need to find linear combinations of the hydrogenic orbital
states that are eigenfunctions of Hcf , namely

ψ0 = R(r) cos θ = zR(r)/r = pz,
(1/

√
2)(ψ1 + ψ−1) = R(r) sin θ cosφ = xR(r)/r = px,

(i/
√

2)(ψ1 − ψ−1) = R(r) sin θ sinφ = yR(r)/r = py.

These new wave functions are the px, py and pz orbitals shown in Fig. 4.11.
The expectation value of the z-component of angular momentum; �z =
−ih̄∂/∂φ is zero for all three wave functions. The orbital angular momen-
tum is said to be quenched by the crystal field. Unlike the rings of charge
density which allow for clockwise or anticlockwise circulation of electrons in
the xy-plane inψ1 andψ−1 orbits of the free ion, no such circulation is possible
in the px or py orbitals in the solid.
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Figure 4.11

The s-, p- and d-orbitals,
represented by boundary
surfaces showing the
angular distribution
probability for electrons in
each orbital. The sign of
each wave function is
indicated.

Similar arguments apply for the 3d-orbitals; the eigenfunctions there are
three t2g , and two eg , orbitals4

t2g orbitals:
dxy = −(i/

√
2)(ψ2 − ψ−2) = R′(r) sin2 θ sin 2φ ≈ xyR(r)/r2

dyz = (i/
√

2)(ψ1 + ψ−1) = R′(r) sin θ cos θ sinφ ≈ yzR(r)/r2

dzx = −(1/
√

2)(ψ1 − ψ−1) = R′(r) sin θ cos θ cosφ ≈ zxR(r)/r2

eg orbitals:
dx2−y2 = (1/

√
2)(ψ2 + ψ−2) = R′(r) sin2 θ cos 2φ ≈ (x2 − y2)R(r)/r2

d3z2−r2 = ψ0 = R(r)(3 cos2 θ − 1) ≈ (3z2 − r2)R(r)/r2

Crystal fields and ligand fields The splitting of the 3d-orbitals in octahedral
oxygen coordination, for example, is regarded in crystal-field theory as an
electrostatic effect of the neighbouring oxygen anions, which are treated as
point charges. This is an oversimplification. The 3d- and oxygen 2p-orbitals
overlap, and they form a partially covalent bond. The oxygens bonding to the

4 Notation: Conventionally, a and b denote nondegenerate electron orbitals, e a two-fold degener-
ate orbital and t a threefold degenerate orbital. Lower-case letters refer to single-electron states,
capital letters refer to multielectron states. a,A are nondegenerate and symmetric with respect
to the principal axis of symmetry (the sign of the wave function is unchanged); b, B are antisym-
metric with respect to the principal axis (the sign of the wave function changes). Subscripts g and
u indicate whether the wave function is symmetric or antisymmetric under inversion. Subscript
1 refers to mirror planes parallel to a symmetry axis, 2 refers to diagonal mirror planes.
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dx  - y  ,dz
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Figure 4.12

Splitting of one-electron 3d
energy levels in different
cubic crystal fields; 2p
levels are unsplit.

3d metal are the ligands. On account of their orientation, the overlap is greater
for eg- than t2g , orbitals. The overlap leads to mixed wave functions, producing
bonding and antibonding orbitals, whose splitting increases with overlap. The
hybridized orbitals are

φ = αψ2p + βψ3d ,

where α2 + β2 = 1, for normalization. The splitting between the mainly t2g π*
and the mainly egσ*-orbitals for 3d ions in octahedral coordination5 is usually
1–2 eV . The ionic and covalent contributions to the splitting are actually of
comparable magnitude.

The sequence of ligands in order of increasing effectiveness at producing
crystal/ligand field splitting  is known as the spectrochemical series. The
ligands that concern us here, in a sequence which reflects both ionic charge and
the tendency to bond covalently are

Br− < Cl− < F− < OH− < CO2−
3 < O2− < H2O < NH3 < SO2−

3

< NO−
2 < S2− < CN−.

The bond is mostly ionic at the beginning of the series, and mostly covalent at
the end.

Covalency is stronger in tetrahedral coordination, on account of the shorter
metal-oxygen distances, but the crystal-field splitting tet is 4

9 oct .The relative
splittings of the 3d crystal-field levels in different sites with cubic symmetry
are illustrated in Fig. 4.12 for the one-electron states. The symmetry of the
one-electron states is preserved even in metals, where the coordination number
is 8 or 12, and the neighbours appear negatively charged.

As the site symmetry is reduced, the degeneracy of the one-electron energy
levels is raised. For example, a tetragonal extension of the octahedron along the

5 σ -bonds have charge density mainly around the line joining the atoms, whereas π -bonds have
charge density above or below this line. The ∗ denotes an antibonding orbital. The 3d- states
usually lie higher in energy than the 2p- states in oxides, so the hybridized orbitals with mainly
2p character are bonding and those with mainly 3d character are antibonding.
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Table 4.9. The splitting of the one-electron levels
in different symmetry

� Cubic Tetragonal Trigonal Rhombohedral

s 0 1 1 1 1
p 1 3 1, 2 1, 2 1, 1, 1
d 2 2, 3 1, 1, 1, 2 1, 2, 2 1, 1, 1, 1, 1
f 3 1, 3, 3 1, 1, 1, 2, 2 1, 1, 1, 2, 2 1, 1, 1, 1, 1, 1, 1
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dz2

dyz,dzx

dxy
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z

Figure 4.13

The effect of a tetragonal
distortion of octahedral
symmetry on the
one-electron energy levels.

dx  - y  2 2

dz2

dxy

dzxdyzy
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z

y

Figure 4.14

Jahn–Teller distortion of an
octahedral site containing a
d1 ion.

z axis will lower pz and raise px and py . The effect on the d-states is shown in
Fig. 4.13. The degeneracy of the d-orbitals in different symmetries is shown in
Table 4.9.

A system with a single electron (or hole) in a degenerate level will tend to
distort spontaneously as shown in Fig. 4.14. This is the Jahn–Teller effect. The
effect is particularly strong for d4 and d9 ions in octahedral symmetry (Mn3+,
Cu2+), which can lower their energy by distorting the crystal environment.
If the local strain is ε, the energy change δε = −Aε + Bε2, where the first
term is the crystal-field stabilization energy and the second term is the increased
elastic energy. Here A and B are constants. The minimum is at ε = A/2B.
The crystal field plays an important part in stabilizing ionic structures. The
stabilization energy for a d1 ion is 0.4 oct in an octahedral site, and it can be
further increased by a uniaxial distortion that splits the t2g levels. The splittings
conserve the centre of gravity of the levels, so the eg levels are raised by
0.6 oct while the t2g levels are lowered by −0.4 oct in an octahedral crystal
field. The d5 ions Fe2+ or Mn2+, which have all orbits singly occupied, exhibit
no crystal-field stabilization energy.



121 4.4 Ions in solids; crystal-field interactions

T
1g

T1g

T2g

A
2g

P

F

A2g

T1g

T
2g

T
1g

E
ne

rg
y

∆0

 d 3, d 8

(d 2, d 7)
 d 2, d 7 

(d 3, d 8)

T
2g

E
g

E
g

T
2g

D

 d4, d 9 
(d1, d 6)

 d1, d 6 
(d4, d 9)

∆0

E
ne

rg
y

Octahedral
(tetrahedral)

Figure 4.15

Orgel diagrams for D and
F terms. The corresponding
dn ion configuration is
shown.

4.4.3 Many-electron states

The one-electron picture is modified by the strong Coulomb interactions among
the electrons. There are only three distinct types of energy-level diagrams for
3d ions, corresponding to theD,F or S ground-state terms. TheD-states map
directly onto the one-electron levels because there is just one electron or hole
in an otherwise empty, half-filled or filled d-shell. These are the d1, d4, d6 and
d9 configurations, with L = 2 according to Hund’s second rule. The F term
is found for the d2, d3 , d7 and d8 configurations, with L = 3. The S term
is for d5, where L = 0. Orgel diagrams (Fig. 4.15) show the splitting of the
ground-state D or F level in a cubic crystal field. The S term does not split,
on account of the spherical symmetry of the half-filled shell.

The hierarchy of interactions H0 > Hcf > Hso is not always maintained
for 3d ions. Some ligands create such intense electrostatic fields that they
manage to overturn not only Hund’s second rule, but also his first rule as well.
The crystal field can drive the ion into a low-spin state. The on-site Coulomb
interaction has the effect of raising the energy of doubly occupied orbitals by
U, compared with singly occupied orbitals. This is the electrostatic penalty
for double occupancy. When U exceeds the crystal-field splitting of the one-
electron levels, Hund’s first rule applies as advertised, but when U <  the t2g-
orbitals for an octahedral site, for example, will tend to be doubly occupied.
Figure 4.16 illustrates the high-spin and low-spin states for Fe2+.

In some materials, where the low-spin state lies only slightly lower in energy
than the high-spin state, a spin crossover may occur as a function of temperature
at a phase transition, driven by magnetic entropy R ln(2S + 1).

Tanabe–Sugano diagrams show the splitting of both ground-state and higher
terms in the crystal field. They are drawn with the ground-state energy set
to zero. Some diagrams for 3d ions in octahedral coordination are shown in
Fig. 4.17. The stabilization of low-spin states in strong crystal fields is evident
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Comparison of the
one-electron energy levels
for Fe2+ (3d6) in FeCl2,
where there is a high-spin
state with S = 2, and FeS2

where the crystal field
stabilizes a low-spin state
with S = 0.
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Tanabe–Sugano diagrams
for: (a) a 3d6 ion and
(b) a 3d7 ion. The
high-spin–low-spin
crossover is indicated by
the vertical line.

from these diagrams. The crystal-field parameters, and especially the cubic
crystal-field parameter  (also known as 10Dq) can be deduced from the
wavelengths of optical transitions from the ground state to different excited
states.

4.4.4 Single-ion anisotropy

Single-ion anisotropy is due to the electrostatic interaction (4.31) of charge in
orbitals containing the magnetic electron distribution ρ0(r) with the potential
ϕcf (r) created at the atomic site by the rest of the crystal. As we have seen in
Figs. 4.14–4.17, the crystal-field interaction tends to stabilize particular orbitals.
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Ce Pr Nd Sm Gd

Tb Dy Ho Er Tm Yb Lu

Figure 4.18

Charge density
distributions for the
trivalent rare-earth ions at
zero temperature. The
deviations from spherical
symmetry are exaggerated.

Spin-orbit interaction �L · S, then leads to magnetic moment alignment in
specific directions in the crystal.

Crystal-field anisotropy is easiest to treat in the case of the rare-earths. With
these ions it is possible to cleanly divide the charge density eρ(r ′) producing
the crystal field, from the charge eρ4f (r) in the 4f shell on which it acts. If
the electrostatic potential due to the surroundings is ϕcf (r) and the 4f electron
density is ρ4f , the interaction energy is

εa =
∫
eρ4f (r)ϕcf (r)d3r. (4.31)

It is appropriate to expand the 4f charge density in spherical harmonics and
express the electrostatic interaction in terms of the 2n-pole moments of the
charge distribution, where n is even. The n=2 term is the quadrupole moment:

Q2 =
∫
ρ4f (r)(3cos2θ − 1)r2d3r.

The sign of Q2 reflects the shape of the 4f electron cloud whether prolate
(elongated,Q2 > 0) or oblate (flattened,Q2 < 0), as shown in Fig. 4.18. Units
are m2.

The n = 4 and n = 6, hexadecapole and 64-pole moments are defined as

Q4 =
∫
ρ4f (r)(35 cos4 θ − 30 cos2 θ + 3)r4d3r,

Q6 =
∫
ρ4f (r)(231 cos6 θ − 315 cos4 θ + 105 cos2 θ − 5)r6d3r.

These higher-order moments decide, for instance, whether a prolate charge
distribution resembles a bone (Q4 < 0) or a snake which has just eaten a rabbit
(Q4 > 0). Units are m4 and m6, respectively.

In a few cases it is possible to represent the multipole momentsQm in terms
of closed expressions. For example, in the J = Jz ground state of the heavy
rare-earths where Ô0

2 = 2J 2 − J, quadrupole moments are given by

Q2 = −(1/45)(14 − n)(7 − n)(21 − 2n)〈r2
4f 〉,

where n is the number of 4f electrons. The leading term in (4.31) is

εa = (1/2)Q2A
0
2(3 cos2 θ − 1), (4.32)
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whereA0
2 is the second-order uniaxial crystal-field parameter that describes the

electric field gradient created by the charge distribution of the crystal at the
rare-earth atomic site, which interacts with the electric quadrupole momentQ2.
HenceA0

2 = −(e/16πε0)
∫

[(3r ′2z − r ′2)/r ′5]ρ(r ′)d3r ′. Stevens showed that the
crystal-field interaction can be expressed in terms of the angular momentum
operators (an example of the Wigner-Eckart theorem). He wrote the crystal-
field Hamiltonian as

Hcf =
∑

n=0,2,4,6

∑
m=−n,...,n

Bmn Ôm
n , (4.33)

where Bmn = θn〈rn4f 〉Amn , and θn is a constant, different for each rare-earth,
which is proportional to the 2n-pole moment: Q2 = 2θ2〈r2

4f 〉 , and Q4 =
8θ4〈r4

4f 〉, Q6 = 16θ6〈r6
4f 〉, and Ôm

n are the Stevens operators, tabulated in
Appendix H and by Hutchings (1965). For example,

Ô0
2 = [3 Ĵ

2
z − J (J + 1)].

Here we have dropped the h̄ in the angular momentum operators. The tem-
perature dependence of the multipole moments Qn can be evaluated from the
thermodynamic averages 〈Ô0

n〉.
In rare-earths, a limited number of terms in the expansion (4.33) are needed,

depending on the symmetry of the site. The crystal-field coefficients Bmn or
Amn are then parameters to be determined experimentally. At low temperatures,
second-, fourth- and sixth-order terms may all be important, but at room tem-
perature it is often enough to consider only the leading, second-order terms

Hcf = θ2
〈
r2

4f

〉 [
A0

2Ô0
2 + A2

2Ô2
2

]
, (4.34)

which, in the case of axial symmetry when there is no off-diagonal term, is
further simplified to

Hcf = DJ 2
z , (4.35)

where D is the uniaxial crystal field parameter.
Another commonly encountered expression, for cubic anisotropy, is

Hcf = θ4
〈
r4

4f

〉 [
A0

4Ô0
4 + 5A4

4Ô4
4

]+ θ6
〈
r6

4f

〉 [
A0

6Ô0
6 − 21A4

6Ô4
6

]
. (4.36)

Only the fourth-order term exists for 3d ions, with r3d taking the place of r4f .
A general expression for εa is given in Appendix H.
Kramer’s theorem, which is a consequence of time reversal symmetry, states

that energy levels for systems with an odd number of electrons, and therefore
half-integral quantum numbers, are always at least two-fold degenerate in the
absence of a magnetic field. When J is half-integral, the second-order crystal
field produces a series of Kramer’s doublets | ±MJ 〉; but when J is integral
there is a singlet |0〉 and a seriesof doublets. If D is negative, the | ± J 〉 state is
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Table 4.10. Data on the rare-earth ions. The operators Ô
0
n are evaluated at T = 0 K , where J z = J

θ2 θ2〈r2〉O0
2 θ4 θ 4〈r4〉O0

4 θ 6 θ 6〈r6〉O0
6 G γ s Cmol

J (10−2) (a2
0 ) (10−4) (a4

0) (10−6) (a6
0)

Ce3+ 5/2 −5.714 −0.748 63.5 1.51 0.18 −1/3 8.0
Pr3+ 4 −2.101 −0.713 −7.346 −2.12 60.99 5.89 0.80 −1/2 16.0
Nd3+ 9/2 −0.643 −0.258 −2.911 −1.28 −37.99 −8.63 1.84 −1/4 16.4
Sm3+ 5/2 4.127 0.398 25.012 0.34 4.46 −5 0.9
Gd3+ 7/2 − 15.75 1 78.8
Tb3+ 6 −1.010 −0.548 1.224 1.20 −1.12 −1.28 10.50 2/3 118.2
Dy3+ 15/2 −0.635 −0.521 −0.592 −1.46 1.04 5.64 7.08 1/2 141.7
Ho3+ 8 −0.222 −0.199 −0.333 −1.00 −1.29 −10.03 4.50 2/5 140.7
Er3+ 15/2 0.254 0.190 0.444 0.92 2.07 8.98 2.55 1/3 114.8
Tm3+ 6 1.010 0.454 1.633 1.14 −5.61 −4.05 1.17 2/7 71.5
Yb3+ 7/2 3.175 0.435 −17.316 −0.79 1.48 0.73 0.29 1/4 25.7

lowest, and the susceptibility in a magnetic field applied along the crystal-field
axis is given by (4.14). If D is positive, theMJ = 0 singlet is the ground state.
The crystal field appears to have destroyed the moment. The initial suscepti-
bility is zero, although the induced moment increases quadratically with field.
However, when the magnetic field is applied perpendicular to the crystal-field
axis, there is a large susceptibility. What this means is that there is an easy axis
of magnetization in the first case, but an easy plane in the second.

A2
0 < 0

A2
0 > 0

Examples of atomic
configurations that produce
positive and negative
electric field gradients at
the central site.

Single-ion anisotropy is the major source of anisotropy in hard ferromagnetic
materials. The tendency for the magnetic moment to lie along specific crystal
axes generally makes the susceptibility a tensor rather than a scalar quantity.
There are three principal axes, for which the induced moment lies parallel to
the applied magnetic field.

In general, the details of the response of the system to an applied field
are obtained by diagonalizing the Hamiltonian Hcf + Hz, and evaluating 〈m〉
from (4.11). In a series of isostructural rare-earth metals or compounds, Amn is
roughly constant. The leading term in the anisotropy just depends on the product
ofA0

2 and θ2〈r2
4f 〉J 2

z for the rare-earth in question. Both θ2, and the quadrupole
moment change sign at each quarter-shell filling (Fig. 4.18, Table 4.10). When
A0

2 is positive, ions such as Nd3+, which have a negative quadrupole moment
and an oblate charge distribution, will exhibit easy axis anisotropy, whereas
ions such as Sm3+, which have a positive quadrupole moment and a prolate
charge distribution, will exhibit hard axis anisotropy.

Consider a rare-earth, for which the spin-orbit interaction stabilizes a
(2J + 1)-fold degenerate multiplet |J,MJ 〉. The crystal field defines the z
axis and splits out theMJ states, subject to Kramers theorem.

In the figure, Sm3+ has a |±5/2〉 ground state, so the moment has its max-
imum positive or negative projection along Oz, which precesses as indicated
by the vector model. The average moment lies along the z-direction, and
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application of a field in this direction splits out the ± 5
2 states, leading to a

susceptibility χ = C/T given by (4.14) with J = 5
2 . When the magnetic field

is applied in the x-direction, the susceptibility is much smaller.
The situation is different for Pr3+. The crystal field in this case makes |0〉

the ground state, with no projection of the moment along Oz. The ground
state is nonmagnetic in the vector model, the moment in the MJ = 0 state
lies in an indeterminate direction in the xy-plane. The susceptibility is zero
at low temperature in a small magnetic field applied along Oz. However, in
large fields, the Zeeman splitting of the excited states |±1〉, |±2〉, |±3〉 and
|±4〉 produces a series of level crossings and the magnetization in high fields
is ultimately that of the |±4〉 state. However, if the field is applied along
Ox, the situation is quite different. There is immediately a high susceptibility
associated with the |±4〉 state. The Pr3+ in this example has hard axis–easy

plane anisotropy.

J = 

J(b)

(a)

 = 4

Crystal field splitting for
ions in an axial field with
A0

2 < 0: (a) Sm3+; (b) Pr3+.

Data on the rare-earth ions are collected in Table 4.10. The fourth, sixth
and eighth columns respectively indicate the relative strengths of the second-,
fourth- and sixth-order crystal-field interactions;G is the de Gennes factor, γ s
is the ratio of spin to total moment and Cmol is the molar Curie constant. The
crystal-field parameters Amn or Bmn are determined by experiment.

4.4.5 The spin Hamiltonian

The orbital states of a multielectron 3d ion are represented by the states |L,ML〉
and the spin states by |S,MS〉. Since the orbital moments are quenched by
the crystal field, the effects of the crystal field and spin-orbit coupling on the
magnetic energy levels of an ion are conveniently represented by an effective
spin Hamiltonian based on the 2S + 1 |MS〉 sublevels of the ground state. The
magnetic properties of the ion depend on the splitting of these levels in a
magnetic field.

Following (4.35), the simplest spin Hamiltonian, used for sites with uniaxial
symmetry, is

Hspin = DS2
z . (4.37)

An orthorhombic distortion adds a term E(S2
x − S2

y ). The next term in tetrag-
onal symmetry is FS4

z . Cubic symmetry gives a term Dc(S4
x + S4

y + S4
z ). The

splitting of the levels usually depends on the orientation of the applied field,
which is reproduced by an anisotropic ĝ-tensor, so the Zeeman term is written
as µB/h̄(B · ĝ · S) = (µB/h̄)

∑
i,j gijBiSj . The spin Hamiltonian approach

is widely used in electron paramagnetic resonance, discussed in Chapter 9,
where the spectra are parameterized in terms of D, E, . . . , g‖, g⊥. The ability to
diagonalize large Hamiltonian matrices which include crystal-field, spin-orbit
and Zeeman terms by computer has reduced the need for these approximation
methods.
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FURTHER READING

S. McMurry, Quantum Mechanics, Wokingham: Addison Wesley (1994). An excellent
final-year undergraduate text.

J. J. Sakurai, Modern Quantum Mechanics, New York: Addison Wesley (1985). A clearly
written graduate text.

R. G. Burns, Mineralogical Applications of Crystal Field Theory (second edition),
Cambridge: Cambridge University Press (1993). A detailed account of crystal-field
interactions and spectroscopy of transition-metal oxides.

C. Ballhausen, Introduction to Ligand Field Theory, New York: McGraw Hill (1962).
An introduction to crystal-field theory for 3d, 4d and 5d ions in molecules and solids,
with many examples.

M. T. Hutchings, Point-Charge Calculations of Energy Levels of Magnetic Ions in Crys-
talline Electric Fields, Solid State Physics,Vol. 16, p. 227–273, New York: Academic
Press (1964). The standard account of crystal field theory for both 3d and 4f ions,
with comprehensive tables of the Stevens operators.

EXERCISES

4.1 Calculate the multiplet splitting in terms of the spin-orbit coupling constant� for
an ion with L = 3, S = 1

2 .

4.2 Deduce the expression for the Langevin function from (4.20).
4.3 Calculate the Van Vleck susceptibility for a mole of Eu3+ ions.
4.4 Plot the crystal field stabilization energy for high-spin 3dn ions for 1 ≤ n ≤ 9

in (a) octahedral and (b) tetrahedral sites. Use the one-electron levels shown in
Fig. 4.12 and take  tet = −(4/9) oct .

4.5 Make a table of the spin moments of 3d ions in six-fold, octahedral coordination in
high- and low-spin states. Repeat for eight-fold cubic coordination and four-fold
tetrahedral coordination.

4.6 At zero temperature in a compound containing octahedrally coordinated Fe2+, the
low-spin energy level lies just 50 meV below the high-spin energy level. At what
temperature would you expect spin crossover to occur? What is the order of the
transition?

4.7 Show that the low-temperature specific heat is linear in temperature for a sample
containing Kramers ions which are subject to a uniform magnetic field when the
local crystal field axes are oriented at random with respect to the field direction.

4.8 An ion is in a site where the spin Hamiltonian is DS2
z . If D = 6 K, S = 1 and g =2.

Sketch the magnetization as a function of field when the field is applied (a) along
Oz and (b) alongOx at 0K and 4K . Make use of the angular momentum operators
for l = 1, given in §3.1.4.

4.9 Show that for an ion in an S = 1 state, described by the spin Hamiltonian
H = g||µBBzSz + g⊥µB(BxSx + BySy) + DS2

z , the energy eigenstate ε can be
deduced from ε = (ε − D)2 − ε(g||µBBcos θ )2 − (ε − D)(g⊥µB sin θ )2. Find the
solutions for θ = 0 and θ = π/2. Make use of the angular momentum operators
for L = 1.
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Order, order, order!

Ferromagnetism and the Curie temperature were explained by Weiss in terms of
a huge internal ‘molecular field’ proportional to the magnetization. The theory
is applicable both to localized and delocalized electrons. No such magnetic field
really exists, but it is a useful way of approximating the effect of the interatomic
Coulomb interaction in quantum mechanics, which Heisenberg described by the
HamiltonianH = −2J S1 · S2, where S1 and S2 are operators describing the localized
spins on two adjacent atoms. When J > 0, ferromagnetic exchange leads to fer-
romagnetic order in three dimensions. Spin waves are the low-energy excitations
of the exchange-coupled magnetic lattice. In the delocalized electron picture, a
ferromagnet has spontaneously spin-split energy bands. The density of ↑ and
↓ states is calculated using spin-dependent density functional theory. Important
physical phenomena associated with ferromagnetism are discussed in this chapter,
including magnetic anisotropy and, magnetoelastic, magneto-optic and magneto-
transport effects.

The characteristic feature of a ferromagnet is its spontaneous magnetization
Ms , which is due to alignment of the magnetic moments located on an atomic
lattice. The magnetization tends to lie along easy directions determined by
crystal structure, atomic-scale texture or sample shape. Heating above a critical
temperature known as the Curie point, which ranges from less than 1 K for
magnetically dilute salts to almost 1400 K for cobalt, leads to a reversible
collapse of the spontaneous magnetization. Although there is no reason in
principle why uniform ferromagnetic liquids should not exist, it seems that there
are none. Ferrofluids, while ferromagnetic and liquid, are actually colloidal
suspensions of solid ferromagnetic particles.

Important modifications of the electronic, thermal, elastic and optical prop-
erties are associated with magnetic order, whether ferromagnetic, or one of
the more complex multisublattice or noncollinear ordered magnetic structures
presented in the next chapter.
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5.1 Mean field theory

5.1.1 Molecular field theory

The first modern theory of ferromagnetism, and one that remains useful today,
was proposed by Pierre Weiss in 1906. Weiss’s original theory was based on
the classical paramagnetism of Langevin, but it was soon extended to the more
general Brillouin theory of localized magnetic moments. His idea was that
there is an internal ‘molecular field’ which is proportional to the magnetization
of the ferromagnet. If nW is the constant of proportionality, this adds to the
internal contribution of any externally applied field:

H i = nW M + H . (5.1)

H i has to be enormous to induce a spontaneous magnetization at room tem-
perature; the Weiss coefficient nW is approximately 100. The magnetization is
given by the Brillouin function (4.17) with M0 = nm0 = ngµBJ , where n is
the number of magnetic atoms per unit volume,

M = M0BJ (x), (5.2)

but now

x = µ0m0(nWM +H )/kBT . (5.3)

In zero external field, M is the spontaneous magnetization Ms so we have

Ms/M0 = BJ (x0), (5.4)

where x0 = µ0m0nWMs/kBT . Combining x0 with M0 = nm0, we find
Ms/M0 = (nkBT /µ0M

2
0nW )x0, which is conveniently written in terms of the

Curie constant C (4.16) as

Ms/M0 = [T (J + 1)/3JCnW ]x0. (5.5)

The simultaneous solution of (5.4) and (5.5) is found graphically as indicated in
Fig. 5.1. Otherwise the equations can be solved numerically. Results forMs/M0

versus T/TC are plotted in Fig. 5.2 for some values of J , including the clas-
sical limit J −→ ∞ where (5.4) is replaced by the Langevin function (4.21).
In the Brillouin theory, the magnetization approaches zero temperature with
horizontal slope, as required by thermodynamics (§2.5.4). Numerical values
of the reduced spontaneous magnetizationMs/M0 versus reduced temperature
T/TC are listed in Appendix G for different values of J . When S is the good
quantum number, J in these formulae is replaced by S. Theory and experiment
for nickel are compared in Fig. 5.3.

Weiss’s molecular field theory was the first mean field theory of a phase
transition. The moments are completely disordered at and above TC , where the
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Graphical solution of (5.4)
and (5.5) for J = 1

2 to find
the spontaneous
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T < TC . Equation (5.5) is
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Spontaneous
magnetization as a
function of temperature
calculated from molecular
field theory, based on the
Brillouin function for
different values of J . The
classical limit J = ∞ is
based on the Langevin
function.

2J + 1 energetically degenerateMJ levels are equally populated. The magnetic
entropy (4.25) then is R ln(2J + 1) per mole, where R = NAkB is the gas
constant, 8.315 J mol−1. Below TC , and especially just below, there is a specific
heat of magnetic origin, as energy is absorbed to disorder the moments when
the system is heated. A discontinuity in specific heat appears at TC .

On a plot of Ms/M0 versus x, the slope of (5.5) precisely at the Curie
temperature is equal to the slope at the origin of the Brillouin function. For
small x (4.19) BJ (x) ≈ [(J + 1)/3J ]x, hence there is a direct relation between
Curie constant and Curie temperature:

TC = nWC. (5.6)
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The spontaneous
magnetization for nickel,
together with the
theoretical curve for J = 1

2
from the molecular field
theory. Note that the
theoretical curve is scaled
to give correct values at
each end.

In practice, TC is used to determine nW . Taking gadolinium as an example:
TC = 292 K, J = S = 7/2; g = 2; n = 3.0 × 1028 m−3. Hence

C = µ0ng
2µ2
BJ (J + 1)/3kB (4.16)

is 4.9 K, and the Weiss coefficient works out as nW = 59.
The paramagnetic susceptibility above TC is obtained from (4.19), (5.3) and

(5.4) in the small-x limit. The result is the Curie–Weiss law

χ = C/(T − θp), (5.7)

where

 M

GL

Ms-M
s

T < T
C

T > TC

The Landau free energy for
a ferromagnet at
temperatures close to the
Curie temperature. There
are two energy minima at
±Ms for T < T C , but a
single minimum at M = 0
for T > T C .

θp = TC = µ0nWng
2µ2
BJ (J + 1)/3kB. (5.8)

The Curie constant C is often written in terms of the effective moment meff as
C = µ0nm

2
eff /3kB , where meff = g

√
J (J + 1)µB. In this theory, the param-

agnetic Curie temperature θp is equal to the Curie temperature TC , which is the
point where the susceptibility diverges.

5.1.2 Landau theory

An approach that is equivalent to molecular field theory close to TC , whereM
is small and aligned with any field externalH ′, is to expand the free energy GL
in even powers of M . Only even powers are permitted in the series, because
time reversal symmetry requires that the energy is unchanged on reversing the
magnetization, GL(M) = GL(−M) in the absence of the external field:

GL = AM2 + BM4 + · · · − µ0H
′M. (5.9)

The coefficients A and B depend on temperature. There is a difference between
the Landau free energy GL = f (M,T ) − µ0H

′M and the Gibbs free energy
G(H ′, T ) = F (M,T ) − µ0H

′M (§2.5.4), whereM is expressed as a function
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magnetization is σ = M d,
where d is the density,
rather than M . (Data
courtesy of M. Venkatesan.)

of the variables H ′, T via the equation of state M = M(H ′, T ); GL is the
energy of the state whenM is forced to adopt a particular value, as if it were an
external constraint.GL is minimized in a local energy minimum with that value
ofM , which makes the approach useful for treating problems of hysteresis.

Lev Landau 1908–1968.

For T < TC , energy minima at M = ±Ms imply A < 0 and B > 0. For
T > TC an energy minimum atM = 0 implies A > 0 and B > 0. It follows that
A must change sign at TC . It has the form a(T − TC), where a is a constant
independent of temperature, a > 0. The equilibrium magnetization minimizes
GL with respect toM; ∂GL/∂M = 0 implies

2AM + 4BM3 = µ0H
′. (5.10)

Close to TC , in zero field,M2
s = −A/2B, hence

Ms ≈
√
a/2B(TC − T )

1
2 , (5.11)

as shown in Fig. 5.2. Ignoring the demagnetizing field, the Curie–Weiss sus-
ceptibilityM/H ′ is given by (5.10) as µ0/2A;

χ ≈ (µ0/2a)(T − TC)−1. (5.12)

When the system is at a temperature exactly equal to TC , A = 0 and (5.10) gives
the critical isotherm

M = (µ0/4B)1/3H ′1/3, (5.13)

whereas in the vicinity of TC (5.10) gives

M2 = (µ0/4B)H ′/M − (a/2B)(T − TC). (5.14)

This last equation is the basis of Arrott–Belov plots used for precise determination
of the Curie temperature. TheM(H ) curves at different temperatures are plotted
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Table 5.1. The critical exponents of a mean
field ferromagnet

Specific heat Cm ∼ |TC − T |α α = 0
Magnetization Ms ∼ (TC − T )β β = 1

2

Susceptibility χ ∼ (T − TC)−γ γ = 1
Critical isotherm Ms ∼ H 1/δ δ = 3

asM2 versusH ′/M , and the isotherm that extrapolates to zero is the one at TC
(Fig. 5.4).

The magnetic specific heat Cm can also be calculated from Landau theory
using Cm = −T (∂2GL/∂T

2). Results from (5.9) and (5.14) are Cm = T a2/2B
when T = T −

C and Cm = 0 when T = T +
C . There is a stepwise discontinuity

at TC , with no magnetic specific heat above the transition whereM = 0.
The Landau theory can be adapted to any continuous or discontinuous phase

transition. M is the order parameter for the ferromagnet, H ′ is the conjugate

field and the relation between them is the generalized susceptibility χ . Whatever
the interpretation of these parameters in different physical systems, the power
laws describing their variations with T near TC are exactly the same. The
same powers are obtained from Landau theory and from Weiss’s molecular
field theory. This can be verified by expanding the Brillouin function to order
x3 (4.19), which gives an expression equivalent to (5.9). Both are mean field
theories of ferromagnetism. Other terms may be added to the free energy to
include additional fields such as pressure or stress. It is remarkable how many
relations can be established between different measurable physical quantities
from an expansion of the free energy in powers of the order parameter.

The power law variations of the physical properties in the vicinity of TC are
summarized in Table 5.1. The values of the static critical exponents α, β, γ , δ

are common to all mean field theories.

Theory
Experimental data
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Experimentally, the properties of ferromagnets do show power law behaviour
in (T − TC) provided measurements are made sufficiently close to the Curie
point, but the critical exponents are somewhat different from those predicted by
mean field theory. For example, ferromagnets usually show a λ-type anomaly
in their specific heat at TC , rather than a stepwise discontinuity. The divergence
is described by a critical exponent α ≈ 0.1, rather than zero. The residual
magnetic specific heat above TC is witness to the persistence of short-range
order, which is not predicted by the theory. Above TC , the susceptibility follows
a power law χ ∼ (T − TC)−γ , where γ is about 1.3, whereas in mean field
theory γ is 1 (the Curie–Weiss law). The critcal exponents α, β, γ , δ for nickel,
for example, are 0.10, 0.42, 1.32 and 4.5, respectively. We return to this topic
at the end of Chapter 6.

The other place where significant deviations from the mean field theory are
found is at low temperatures, where the spin-wave excitations discussed later
in the chapter are important.
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Table 5.2. Dimensionless susceptibility of some
metals at 298 K (units: 10−6)

Li 14 Sc 263 Cu −10 Ce 1778
K 6 Y 121 Zn −16 Nd 3433
Be −24 Ti 182 Au −34 Eu 15570
Ca 22 Nb 237 Al 21 Gd 476300
Ba 7 Mo 123 Sn −29 Dy 68400

Pd 805 Bi −164 Tm 17710
Pt 279

5.1.3 Stoner criterion

The starting point for a discussion of ferromagnetism in metals is the band
paramagnetism introduced in §3.2.6. The Pauli susceptibility is a small, positive
quantity, practically independent of temperature because delocalized electrons
obey Fermi–Dirac statistics; only the small fraction of them with energy close
to εF are able to respond to a change in temperature or magnetic field.

In the three-dimensional free-electron model, the density of states D(ε)
(states m−3 J−1) varies as

√
ε (3.39), and the ↑ and ↓ bands shift by ∓ µ0HµB

in the field as shown in Fig. 3.7. The resulting susceptibility (3.43) can be
written

χP = µ0µ
2
BD(εF ), (5.15)

where D(εF ) is the density of states at the Fermi level for both spins, which is
double the density of states for one spin D↑,↓(εF ). The Pauli susceptibility is
approximately 10−5 for many metals, but it approaches 10−3 for the 4d metal
Pd (Table 5.2). Narrower bands tend to have higher susceptibility, because the
density of states at εF scales as the inverse of the bandwidth. When the density
of states is high enough, it becomes energetically favourable for the bands to
split, and the metal becomes spontaneously ferromagnetic.

Stoner applied Weiss’s molecular field idea to the free-electron gas.
Assuming the linear variation of internal field with magnetization has a
coefficient nS :

H i = nSM + H, (5.16)

the Pauli susceptibility in the internal field is χP = M/(nSM +H ). Hence,
the response to the field H

χ = M/H = χP /(1 − nSχP ) (5.17)

is a susceptibility that is enhanced when nSχP < 1 and diverges when
nSχP = 1. Stoner expressed this condition in terms of the local density of
states at the Fermi level, D(εF ). Writing the exchange energy (in J m−3) −
1
2µ0H

iM = − 1
2µ0nSM

2 as −(I/4)(n↑ − n↓)2/n, where M = (n↑ − n↓)µB
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and n is the number of atoms per unit volume, it follows from (5.15) that
nSχP = ID(εF )/2n. The metal becomes spontaneously ferromagnetic when
the susceptibility diverges spontaneously; in other words when

IN ↑,↓(εF ) > 1, (5.18)

where N↑,↓(ε) = D(ε)/2n is the density of states per atom for each spin state.
This is the famous Stoner criterion. The Stoner exchange parameter I is roughly
1 eV for the 3d ferromagnets, and nS � 103 for spontaneous band splitting.
The exchange parameter has to be comparable to the width of the band for
spontaneous splitting to be observed. Ferromagnetic metals have narrow bands
and a peak in the density of states N (ε) at or near εF . The data in Fig. 5.5 show
that only Fe, Co and Ni meet the Stoner criterion. Pd comes close.

5.2 Exchange interactions

The origin of the effective field H i is the exchange interaction, which reflects
the Coulomb repulsion of two nearby electrons, usually on neighbouring atoms,
acting in conjunction with the Pauli principle, which forbids the two electrons
to enter the same quantum state. Electrons cannot be in the same place if
they have the same spin. There is an energy difference between the ↑i↑j
and ↑i↓j configurations of the spins of neighbouring atoms i, j . Interatomic
exchange in insulators is usually one or two orders of magnitude weaker than
the ferromagnetic intra-atomic exchange between electrons on the same atom,
which leads to Hund’s first rule.

As stated in §4.1, the Pauli principle forbids more than one electron to enter
a quantum state, denoted by a particular set of quantum numbers. Electrons are
indistinguishable, so exchange of two electrons must give the same electron
density |�(1, 2)|2 = |�(2, 1)|2. Since electrons are fermions, the only solution
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is for the total wave function of the two electrons to be antisymmetric

�(1, 2) = −�(2, 1). (5.19)

The total wave function � is the product of functions of space and spin coor-
dinates φ(r1, r2) and χ (s1, s2).

S = 0

↑ ↓

↑ ↑
S = 1

The spatially symmetric
and antisymmetric wave
functions for the H2

molecule.

The simple example of the hydrogen molecule H2 with two atoms each having
an electron in a hydrogenic 1s-orbital ψi(r i) gives an idea of the physics of
exchange. Schrödinger’s equation is H(r1, r2)�(r1, r2) = ε�(r1, r2) where,
neglecting the interactions between the electrons,

[
− �

2

2m

(
∂2

∂r2
1

+ ∂2

∂r2
2

)
− e2

4πε0

(
1

r1
+ 1

r2

)]
�(r1, r2) = ε�(r1, r2).

(5.20)

There are two molecular orbits, a spatially symmetric bonding orbital φs , with
electronic charge piled up between the atoms, and a spatially antisymmetric
antibonding orbital φa having a nodal plane with no charge midway between
them. Chemical bonds which involve hybridized wave functions of electrons
of neighbouring atoms are generally classified in this way:

φs = (1/
√

2)(ψ1 + ψ2) φa = (1/
√

2)(ψ1 − ψ2). (5.21)

ψ1 and ψ2 are the spatial components of the individual wave functions of
electrons 1 and 2 respectively. The wave functions ψ1(r1) and ψ2(r2) are the
solutions of Schrödinger’s equation for each individual atom.

The symmetric and antisymmetric spin functions are the spin triplet and spin

singlet states:
S = 1; MS = 1, 0,−1
χs = |↑1,↑2〉; (1/

√
2)[|↑1,↓2〉 + |↓1,↑2〉]; |↓1,↓2〉

S = 0; MS = 0
χa = (1/

√
2)[↑1,↓2〉 − |↓1,↑2〉]

According to (5.19), the symmetric space function must multiply the anti-
symmetric spin function, and vice versa. Hence the total antisymmetric wave
functions are

�I = φs(1, 2)χa(1, 2),

�II = φa(1, 2)χs(1, 2).

When the two electrons are in a spin triplet state, there can be no chance of
finding them at the same point of space. Electrons with parallel spins avoid
each other. But if the electrons are in the spin singlet state, with antiparallel
spins, there is some probability of finding them in the same place, because the
spatial part of the wave function is symmetric under exchange of the electrons.
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The energies of the two states can be evaluated from the Hamiltonian
H(r1, r2) in (5.20):

εI,II =
∫
φ∗
s,a(r1, r2)H(r1, r2)φs,a(r1, r2)dr3

1 dr3
2 .

For the hydrogen molecule, εI is lower than εII . In other words, the bonding
orbital/spin singlet state lies below the antibonding orbital/spin triplet state
because of the spatial constraint on the triplet. Setting the exchange integral
J = (εI − εII )/2, we can write the energy in the form

EII

EI

2

Singlet 

Triplet

Splitting of the spin singlet
and spin triplet states for
the H2 molecule. The
exchange integral J is
negative, so the singlet is
lower.

ε = −2(J /�2)s1 · s2, (5.22)

where the product s1 · s2 is 1
2 [(s1 + s2)2 − s2

1 − s2
2]. According to whether the

spin quantum number S = s1 + s2 is 0 or 1, the eigenvalues are − 3
4 �

2 or + 1
4�

2.
The energy splitting between the singlet state �I and the triplet state �II is
2J . Here J is the exchange integral

J =
∫
ψ∗

1(r ′)ψ∗
2(r)H(r, r ′)ψ1(r)ψ2(r ′)dr3d3r ′.

In the H2 molecule, the spin singlet state is lower, so the integral is negative. In
an atom, however, the orbitals are orthogonal and J is positive.

Heisenberg generalized (5.22) to many-electron atomic spins S1 and S2,
writing his famous Hamiltonian

H = −2J Ŝ1 · Ŝ2, (5.23)

where Ŝ1 and Ŝ2 are dimensionless spin operators, like the Pauli spin matrices in
(3.17). The �

2 has been absorbed into the exchange constant J , which has units
of energy. From now on we will adopt this convention, in order to avoid writing
� everywhere. We also drop the hat on the spin operators, Ŝi . The exchange
integral J then has dimensions of energy, and it is often expressed in kelvins
by dividing it by kB , Boltzmann’s constant. J > 0 indicates a ferromagnetic

interaction, which tends to align the two spins parallel; J < 0 indicates an
antiferromagnetic interaction, which tends to align the two spins antiparallel.

When there is a lattice, the Hamiltonian1 is generalized to a sum over all
pairs of atoms on lattice sites i, j :

H = −2
∑
i>j

Jij Si · Sj . (5.24)

This is simplified to a sum with a single exchange constant J if only nearest-
neighbour interactions count. The interatomic exchange coupling described by
the Heisenberg Hamiltonian can only be ferromagnetic or antiferromagnetic.

The Heisenberg exchange constant J can be related to the Weiss constant
nW of the molecular field theory. Suppose that a moment gµBSi interacts with
an effective field Hi = nWM = nWngµBS, and that in the Heisenberg model

1 Other conventions exist, omitting the 2 and/or counting each pair in the sum twice.
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only the nearest neighours of Si interact appreciably with it. Then the site
Hamiltonian is

Hi = −2


∑

j

J Sj


 · Si ≈ −µ0H

igµBSi. (5.25)

The molecular field approximation amounts to averaging out the local correla-
tions between Si and Sj . If Z is the number of nearest neighbours in the sum,
then J =µ0nWng

2µ2
B/2Z. Hence, from (5.8)

Junjiro Kanamori, 1930–.

TC = 2ZJ S(S + 1)

3kB
. (5.26)

Taking the example of gadolinium again, whereTC = 292 K, S = 7/2, Z = 12,
we find J /kB = 2.3 K.

The Heisenberg Hamiltonian (5.23) indicates that exchange interactions
couple the atomic spins. It can be applied directly to the 3d elements, where the
crystal field ensures that spin is a good quantum number, and to the rare-earth
ions Eu2+ and Gd3+, which have no orbital moment. However, J is the good
quantum number for the other rare-earths, so S must be projected onto J , as
explained below. Ions with a J = 0 ground-state multiplet, Sm2+ and Eu3+,
cannot order magnetically despite their large spin quantum number, S = 3.

Generally, the energy of any electronic system is lowered as the wave func-
tions spread out. This follows from the uncertainty principle p x ≈ �. When
many more-or-less delocalized electrons are present in different orbitals, the
calculation of exchange is a delicate matter. Orbital degeneracy, absent in the
H2 molecule, opens the possibility that triplet states may be lower in energy than
singlets. The energies involved are only ≈1 meV, compared with bandwidths
of order 1–10 eV. Competing exchange interactions may coexist with different
signs of coupling. It is therefore best to describe exchange phenomenologically,
and determine the exchange interactions experimentally.

U

(a)

(b)

The antiferromagnetic
superexchange interaction.
Two neighbouring sites
with singly occupied
orbitals are shown with (a)
parallel or (b) antiparallel
spin alignment. Hopping is
forbidden by the Pauli
principle in the parallel
case. There is an energy
gain due to virtual hopping
in the antiparallel case.

5.2.1 Exchange in insulators

Superexchange The electrons in insulators are localized. Oxides are a good
example. There is little direct 3d–3d overlap in transition-metal oxides, but
the 3d-orbitals are hybridized with the oxygen 2p-orbitals; φ3d = αψ3d +
βψ2p with |α|2 + |β|2 = 1. The oxygen bridges transmit a ‘superexchange’
interaction, which can be described by the Heisenberg Hamiltonian.

Figure 5.6 shows a typical superexchange bond. In the case of a singly
occupied 3d-orbital or a half-filled d shell (Fe3+, Mn2+), configuration (b) is
lower in energy than configuration (a) because both electrons in an oxygen
2p-orbital can then spread out into unoccupied 3d-orbitals. The superexchange
interaction J involves simultaneous virtual transfer of two electrons with the
instantaneous formation of a 3dn+12p5 excited state; the interaction is of order
−2t2/U , where t is the p–d transfer integral and U is the on-site 3d Coulomb
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3d(Mn)3d(Mn) 2p(O)

(a)

(b)

Figure 5.6

A typical superexchange
bond. Configuration (b) is
lower in energy than
configuration (a).

interaction. The transfer integral is of order 0.1 eV and the on-site Coulomb
interaction is in the range 3–5 eV. J depends sensitively on the interatomic
separation, but also on the M–O–M bond angle, varying as cos2 θ12.

John B. Goodenough, 1922–.
The occupancy and orbital degeneracy of the 3d states is the critical factor in

determining the strength and sign of superexchange. There are many possible
cases to consider and the results were summarized in the Goodenough–Kanamori

rules. The rules were reformulated by Anderson, in a simpler way that makes it
unnecessary to consider the oxygen.

(i) When two cations have lobes of singly occupied 3d-orbitals which
point towards each other giving large overlap and hopping integrals, the
exchange is strong and antiferromagnetic (J < 0). This is the usual case,
for 120–180◦ M–O–M bonds.

Overlapping d-orbitals
characterized by (a)
nonzero and (b) zero
overlap integrals. Dark and
light shading denotes
positive and negative sign
of the wave function.

(ii) When two cations have an overlap integral between singly occupied 3d-
orbitals which is zero by symmetry, the exchange is ferromagnetic and
relatively weak. This is the case for ∼90◦ M–O–M bonds.

(iii) When two cations have an overlap between singly occupied 3d orbitals
and empty or doubly occupied orbitals of the same type, the exchange is
also ferromagnetic, and relatively weak.

Superexchange is more commonly antiferromagnetic than ferromagnetic,
because the overlap integrals are more likely to be large than zero.

S1 S2

Canted antiferromagnetism
due to the
Dzyaloshinski–Moriya
interaction.

Antisymmetric exchange A few materials with low symmetry exhibit a
weak antisymmetric coupling, the Dzyaloshinski–Moriya interaction. This is rep-
resented by the Hamiltonian

H = −D · (Si × Sj ), (5.27)

where D is a vector which lies along a high-symmetry axis, so the tendency
is to couple the two spins perpendicularly. This is a higher-order effect, ocur-
ring between ions already coupled by superexchange; |D/J | ≈ 10−2. In an
antiferromagnet, the spins may be canted away from the antiferromagnetic
axis by about 1◦. Antisymmetric exchange is the reason why antiferromag-
nets with a uniaxial crystal structure such as MnF2, MnCO3 and αFe2O3 may
exhibit a weak ferromagnetic moment. In the older literature the term parasitic
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ferromagnetism is encountered for this kind of intrinsic weak ferromagnetism,
because it was thought to be due to ferromagnetic impurities. A moment only
appears when the antiferromagnetic axis is perpendicular to the crystallographic
axis of symmetry, along which D is constrained to lie. It disappears when the
axes are parallel.

Biquadratic exchange This is another weak, higher-order effect which is
sometimes detectable for the rare-earths. It is represented by the Hamiltonian

H = −B(Si · Sj )
2. (5.28)

5.2.2 Exchange in metals

The principal exchange mechanism in ferromagnetic and antiferromagnetic
metals involves overlap of the partly localized atomic orbitals of adjacent
atoms. Other exchange mechanisms involve the interaction of purely delocal-
ized electrons or of localized and delocalized electrons in the metal.

 g(r )

r

1

0

The exchange hole: the
normalized probability of
finding two electrons with
the same spin a distance r
apart.

Direct exchange In 3d metals, the electrons are described by extended wave
functions and a spin-polarized local density of states. It is usually more appro-
priate to describe them by the one-electron d wave functions of §4.4.2, rather
than the free-electron waves of §3.2.5. In the tight-binding model the overlap
of the one-electron wave functions is small and the electrons remain mostly
localized on the atoms. The model Hamiltonian is

H =
∑
ij

tij c
†
i cj ,

where the sum represents the conduction band in terms of the electron creation
and annihilation operators2 c† and c. Usually only nearest-neighbour interac-
tions are important and the interatomic transfer integral tij = t. The bandwidth
in the tight-binding model isW = 2Zt, whereZ is the number of nearest neigh-
bours. In 3d metals t ≈ 0.1 eV and Z = 8 − 12, so the d bands are a few eV
wide. Exchange in a roughly half-filled band is antiferromagnetic, because the
energy gain associated with letting the wave functions expand onto neighbour-
ing sites is only achieved when the neighbours are antiparallel, leaving empty
↑ orbitals on the neighbouring sites to transfer into. Nearly filled or nearly
empty bands tend to be ferromagnetic (Fig. 5.7) because electrons can then hop
into empty states with the same spin. This helps to explain why chromium and
manganese are antiferromagnetic, but iron, cobalt and nickel are ferromagnetic.

Bandwidth is the enemy of exchange. As t becomes large, the electrons are
delocalized regardless of their spin. The alkali metals, for example, are Pauli

2 cj is an operator that destroys an electron on site j , while c†i is an operator that creates an

electron on site i. The product c†i cj therefore transfers an electron from site j to site i.
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Figure 5.7

Electron delocalization in d
bands which are half-full,
almost empty or almost
full.

paramagnets described by a free-electron model with one electron per atom.
The early 3d metals scandium, titanium and vanadium are not ferromagnetic
because t is too big. Scandium comes close. If it were possible to dilate the
lattice to reduce t a little, scandium would become ferromagnetic.

The sign of the direct exchange depends principally on band occupancy,
and then on the interatomic spacing, with ferromagnetic exchange favoured at
larger spacing. The exchange is greatest just after the critical condition for the
appearance of magnetism,U/W > (U/W )crit, whereU is the on-site Coulomb
interaction, andW is the bandwidth.

s–d model Coupling of the spins s of the conduction electrons with core
spins S in a metal is generally represented by a Hamiltonian including the term

−Jsd� |ψ |2 S · s, (5.29)

where� is the volume of the core d shell and |ψ |2 is the s-electron probability
density. The s–d coupling is an on-site interaction, so the coupling constant is
large, Jsd ≈ 1 eV. This interaction may lead to long-range ferromagnetic cou-
pling between the core spins, regardless of whether Jsd is positive or negative.
The host conduction band is supposed to be uniformly spin-polarized parallel
or antiparallel to the core spins.

RKKY interaction The ‘s–d’ model applies as well to rare-earths, where the
core spins are not 3d, but 4f . The localized moments in the 4f shell interact
via electrons in the 5d/6s conduction band. The on-site interaction between a
core spin S and a conduction electron spin s is −Jsf S · s, where Jsf ≈ 0.2 eV.
Ruderman, Kittel, Kasuya and Yosida showed that a single magnetic impurity
actually creates a nonuniform, oscillating spin polarization in the conduction
band which falls off as r−3. This spin polarization is related to the Friedel
oscillations of charge density around the impurity which have wavelength
π/kF . It leads to long-range oscillatory coupling between core spins. For free
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The RKKY function F (ξ).
Note that F (ξ) becomes
very large when ξ < 4.

electrons, the polarization is proportional to the RKKY function

F (ξ ) = (sin ξ − ξ cos ξ )/ξ4,

where ξ = 2kF r , kF being the Fermi wavevector (Fig. 5.8). This oscillating spin
polarization results from the different potential seen by the ↑ and ↓ conduction
electrons at the local moment site. The first zero of F (ξ ) is at ξ = 4.5. The
effective coupling between two localized spins is

Jeff ≈ 9πJ 2
sf ν

2F (ξ )

64EF
, (5.30)

where ν is the number of conduction electrons per atom and EF is the
Fermi energy. Since the Fermi wavevector is about 0.1 nm−1 (Table 3.3),
the sign of Jeff fluctuates on a scale of nanometres. When only ferromag-
netic nearest-neighbour coupling is important, the Curie temperature can be
deduced from (5.26). The RKKY interaction in the low-electron-density limit
is equivalent to the s–d model with ferromagnetic coupling. Analogous oscilla-
tory exchange is found in ferromagnetic multilayers with nonmagnetic spacer
layers.

Among the rare-earth metals, only gadolinium has S as a good quantum
number. The others have J as their quantum number, yet the exchange inter-
action couples spins. We therefore need to project S onto J when calculating
the exchange coupling, whether direct or indirect. Since L + 2S = g J and
J = L + S, S = (g − 1) J . This introduces a factor (g − 1)2J (J + 1) into the
exchange coupling. The factor is squared, because the spin enters the exchange
interaction between two rare-earths twice. The effective coupling is

JRKKY = GJeff .

where G = (g − 1)2J (J + 1) is the de Gennes factor. Magnetic ordering tem-
peratures for any series of rare-earth metals or compounds with the same
conduction-band structure and similar lattice spacings should scale with G,
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(a) Curie temperatures of
ferromagnetic RNi2
compounds; (b) a plot of
TC versus the de Gennes
factor G .

and show a maximum for gadolinium. The de Gennes factor was included in
Table 4.10. Figure 5.9 displays data for the Curie temperature of a series of fer-
romagnetic RNi2 compounds. When plotted versusG, the data follow a straight
line. The nickel in this series of intermetallic compounds is nonmagnetic.

Double exchange This interaction arises between 3d ions which have both
localized and delocalized d electrons. Unlike ferromagnetic superexchange,
mixed valence configurations are required for double exchange, as they are in
any metal, but unlike a normal metal, the number of configurations is restricted
to just two. In copper, for example, with its one electron in a broad 4s band,
the instantaneous atomic configurations are s0, s1 and s2. Electronic correla-
tions are weak in broad bands, so the three configurations will appear with
probabilities of 1

4 , 1
2 and 1

4 . By contrast, a double-exchange material, such as
the manganite (La0.7Ca0.3)MnO3, has both Mn4+and Mn3+ ions (d3 and d4)
present on octahedral sites. The two Mn valence states are imposed by the
charge states of the other ions in the compound, La3+, Ca2+ and O2−. The d3

core electrons for both octahedrally coordinated ions are localized in a narrow
t
↑
2g band, but the fourth d electron inhabits a broader e↑g band, hybridized with

oxygen, where it can hop from one d3 core to another, Fig. 5.10. The config-
urations d3

i d
4
j and d4

i d
3
j on adjacent sites i and j are practically degenerate.

On each site, there is strong on-site Hund’s rule exchange coupling JH ≈ 2
eV between t2g and eg electrons. Electrons can hop freely if the core spins are
parallel, but when they are antiparallel there is a large energy barrier due to the
Hund’s rule interaction. If the quantization axes of adjacent sites are misaligned

by an angle θ , the eigenvector of a ↑ electron in the rotated frame is

∣∣∣∣cos θ/2
sin θ/2

∣∣∣∣
(3.24). The transfer integral t therefore varies as cos(θ/2). Double exchange is
ferromagnetic because the transfer is zero when the ions on adjacent sites are
antiparallel, θ = π.
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The double-exchange
interaction. The electron
hops with spin memory
from one localized ion core
to the next.
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The Anderson impurity
model. Local density of
states for a magnetic
impurity in a metal. On the
left is shown the case
where there is no mixing of
the wave functions of the
impurity level with the
conduction electrons, on
the right is the result of
such hybridization.

Another common double-exchange pair is Fe3+ and Fe2+, which are d5 and
d6 ions respectively. The d5 configuration is a half-filled ↑ shell, and the sixth
d electron occupies the bottom of a t↓2g band when the ion is octahedrally
coordinated by oxygen where it can hop directly from one d5 core to another.

5.3 Band magnetism

5.3.1 Magnetic impurities in nonmagnetic metals

The above discussion of exchange between localized moments and conduction
electrons in a metal begs the question of whether a magnetic impurity can really
retain its moment when diluted in a nonmagnetic matrix. Does a single atom
of cobalt, for example, still have a moment when it is diluted in copper? The
magnetic impurity problem engrossed the magnetism community in the 1960s
and 1970s. The 3d electrons of cobalt will hybridize with the 4s electrons of
copper, broadening the local atomic level into a Lorentzian-like feature in the
density of states. Figure 5.11 shows the energy level of a singly occupied d
orbital before hybridization, with the doubly occupied orbital higher in energy
by the on-site Coulomb repulsion energy U . Hybridization with the conduction
band states broadens the impurity level, giving it a width i.Anderson showed
that a moment, albeit one reduced by hybridization, is stable provided U >
 i. Further broadening of the local density of states destroys the moment
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completely. The broadening is more effective for p-metals than for s-metals,
because more electrons are available to hybridize with the impurity d-orbitals.
Cobalt keeps its moment in copper, but loses it in aluminium.

The number of unpaired impurity electrons N = N↑ −N↓ is

N = ν(ε+F ) − ν(ε−F ), (5.31)

where ε±F = εF ± 1
2NU and ν(ε), is the integral of the impurity density of

states,
∫ ε
o
Ni(ε′)dε′. Expanding this expression as a power series for small

N , we find N = NUNi(εF ) + 1
24 (NU )3N ′′(εF ), where the second deriva-

tive N ′′
i (ε) = d2Ni(ε)/dε2 is negative. Hence N2 = [24(1 − UNi(εF ))/N ′′

i

(εF )U 3]. A moment will form spontaneously at the impurity provided

UNi(εF ) > 1. (5.32)

Since Ni(εF ) is approximately 1/ i , we find the Anderson criterionU �  i
for magnetism of the impurity. It may be compared with the Stoner criterion for
ferromagnetism (5.18). Strong correlations favour magnetism, strong mixing
destroys it. If Ni(εF ) varies smoothly with some parameter x such as pressure
or concentration, then the magnetic moment on the impurity just below the
critical value xc where it disappears will vary as (x − xc) 1

2 .

P. W. Anderson 1923–.

P P0
c

Destruction of an impurity
magnetic moment at a
critical pressure Pc in the
Anderson model.

The existence of a moment on an atomic site in an alloy may depend sensi-
tively on the local environment. For example, Fe carries a moment when dilute
in Mo, but not in Nb. The Fe–Nb hybridization is more effective than Fe–Mo
hybridization at broadening the local iron density of states. Iron impurities in
Nb1−xMox alloys are nonmagnetic when surrounded by less than seven Mo
atoms and magnetic when there are seven or more Mo nearest neighbours.
In alloys with x � 0.6, magnetic and nonmagnetic iron impurities coexist on
different sites with different atomic environments. The model where magnetic
moments in alloys are governed by the local chemical environment is known
as the Jaccarino–Walker model.

(a)

(b)

r

r

Co Pd

Mn

Cu

(a) A giant moment and
(b) a Kondo singlet
showing local spin
polarization of the host
conduction band.

Granted a local moment, the s–d Hamiltonian, also known as the Kondo
Hamiltonian when Jsd is negative, is written as

H =
∑
i,j

tij c
†
i cj −

∑
k,l

Jsd Sk · sl . (5.33)

Possible consequences of the interaction between the magnetic impurity
and the conduction electrons are the formation of a giant moment when the
s–d exchange is ferromagnetic, Jsd > 0, or the Kondo effect when the s–d
exchange is antiferromagnetic, Jsd < 0. The giant moment is due to a cloud
of positively polarized electron density surrounding the impurity site. When
the paramagnetic susceptibility of the host (5.17) is enhanced beyond the Pauli
susceptibility expected from the bare density of states yet not quite sufficiently
to meet the Stoner criterion, the dressed local moment can be very large.
Cobalt impurities in a palladium host have associated moments of several tens
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Table 5.3. Kondo temperatures (in kelvin). The host
metal is indicated in bold type.

Cr Mn Fe Co Ni

Cu 1.0 0.01 25 2000 5000
Ag .02 .04 3
Au 0.01 0.01 0.3 200
Zn 3 1.0 90
Al 1200 530 5000

From D. L. Wohlleben and B. R. Coles in Magnetism 5, (H. Suhl,
editor), New York: Academic Press, 1973.
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Experimental signs of the
Kondo effect: (a) inverse
susceptibility of a Kondo
alloy and (b) the
temperature dependence
of the resistivity.

of Bohr magnetons. There is a threshold beyond which the entire matrix turns
ferromagnetic; for Co in Pd, the threshold is only 1.5 at% (see Fig. 10.13(c)).

Ue
F

Singly occupied level

Doubly occupied level

Kondo scattering. A singlet
state is formed between
the impurity spin and the
conduction electrons.

When the exchange coupling between the impurity moment and the conduc-
tion electrons Jsd is negative, there is a possibility of forming a nonmagnetic
spin singlet state from the impurity and the surrounding cloud of negatively
polarized conduction electrons. A good example is iron in copper. The suscep-
tibility is ambiguous; it shows Curie–Weiss temperature dependence (5.7) with
negative θp above a certain temperature TK , known as the Kondo temperature,
but it becomes temperature-independent below TK , when the impurity forms a
nonmagnetic singlet state with the conduction electrons of the host, Fig. 5.12.
According to the system, the Kondo temperature can lie anywhere in the range
1–1000 K. Some values are given in Table 5.3. Another symptom of the Kondo
effect is a shallow minimum in the resistivity near TK , because the Kondo
singlets provide an additional channel for scattering conduction electrons. The
Kondo temperature is

TK ≈ ( i/kB) exp[ i/2Jsd]

and the excess resistivity due to the Kondo scattering varies loga-
rithmically with temperature; it is proportional to (J 2

sd/ i)S(S + 1)[1 +
(2Jsd/ i) ln( i/kBT )].

Jun Kondo 1930–.
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Densities of states for some
metallic elements in the
paramagnetic state.
Calculations by courtesy of
Chaitania Das.

5.3.2 Ferromagnetic metals

The calculated densities of states for some paramagnetic metals are illustrated
in Fig. 5.13. A highly structured 3d-band is superposed on a much broader band
of 4s character. The structure of the d-bands reflects the crystal-field splitting
of the t2g- and eg-bands in 8-fold or 12-fold coordination (Fig. 4.12) in the
body-centred cubic (bcc) or face-centred cubic (fcc) structures, as well as the
bonding/antibonding splitting between the states near the bottom or the top of
the bands, and singularities that appear when the bands cross the boundary of
the Brillouin zone.
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F

e
F

Schematic densities of
states for a strong and a
weak ferromagnet. The
3d↑-band is full for the
strong ferromagnet.

The band diagrams show the dispersion relations ε(k) of the five d-bands
along different directions in k-space in the first Brillouin zone. The Brillouin
zone is a primitive unit cell of reciprocal space defined by the Wigner–Seitz
procedure, which involves forming the perpendicular bisector planes of the
vectors from the origin to neighbouring reciprocal lattice points. The example
of iron metal is illustrated in Fig. 5.14. The spin-up and spin-down bands
are shown on separate panels. The broad parabolic free-electron-like s-bands,
starting at −4 V are barely spin polarized; they hybridize with the d states
between −3 and 2 eV for spin-down. The flatter, spin-up d-bands are filled.
Two spin-down d bands lie mainly above Fermi level.

In the Stoner picture of metallic ferromagnetism, the bands split sponta-
neously provided the criterion (5.18) is satisfied. If the splitting is sufficient
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Spin-polarized energy
bands of ferromagnetic
α-iron for ↑ and ↓
electrons. The majority spin
bands are plotted on the
left, and the minority spin
bands on the right. The
points in the Brillouin zone
are marked on the insert.
The calculated spin
moment is 2.2 µB .

(Calculations courtesy of
Chaitania Das.)

to push the ↑ d-subband completely below εF we have a strong ferromagnet,
otherwise we have a weak ferromagnet. Among the ferromagnetic elements, Fe
is a weak ferromagnet, but Co and Ni are strong (despite their atomic moments
being less than that of iron). In each case there are approximately 0.6 electrons
at the bottom of an unsplit sp-band. The 3d levels lie above the bottom of the
4s-band thanks to the term in the Schrödinger equation for the multielectron
atom (4.7) which is identified with orbital kinetic energy. The spin moments of
Ni and Co are 0.6 µB and 1.6 µB , respectively. Co has a residual unquenched
orbital moment of 0.14 µB . But that of the other ferromagnets is smaller. Iron
would have a spin moment of 2.6 µB if it were a strong ferromagnet. In fact,
its moment is 2.2 µB . The calculated spin-split densities of states for Fe, Co
and Ni are shown in Fig. 5.15.

Edmund Stoner,
1899–1968.

The different filling of ↑ and ↓ bands leads to different Fermi surfaces for ↑
and ↓ electrons. They are illustrated for Fe, Co and Ni in Fig. 5.16. The majority
spin surfaces for Co and Ni are quite small and roughly spherical because they
contain only electrons with predominantly 4s character, whereas Fe has a larger
↑ Fermi surface. All three have large ↓ Fermi surfaces.

Table 5.4 summarizes the most important properties of the ferromagnetic 3d
metals.

Stoner calculated the magnetization as a function of temperature in the free-
electron model. His calculation gave an unrealistically high Curie point, kBTC ≈

εF because the only effect of temperature he considered was the smearing of
the Fermi–Dirac occupancy function (3.45) which decreases the density of
states near εF when kBTC ≈ εF . There should be no band splitting and no
moment above TC. The temperature dependence of the susceptibility above
TC is that given by (3.46). However, in most metallic ferromagnets, TC is at
least an order of magnitude less than predicted by the Stoner theory, and there
is a substantial Curie–Weiss-like variation of the susceptibility above TC . On-
site electronic correlations sustain an atomic-scale moment which does not
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Densities of states for some
elements in the
ferromagnetic state. Fe is a
weak ferromagnet, Co and
Ni are strong. Results for
γ Fe with different lattice
parameters illustrate the
sensitivity of the Fe
moment to lattice
parameter in a
dense-packed structure.
(Calculations courtesy of
Ivan Rungger.)
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Figure 5.16

The Fermi surfaces of Fe, Co
and Ni for ↑ and ↓
electrons.
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Table 5.4. Intrinsic properties of the ferromagnetic 3d elements at room temperature

TC d σ s Ms Js m (spin/orbit) N↑,↓(εF ) I K1 λs Dsw
(K) (kg m−3) (A m2 kg−1) (kA m−1) (T) (µB ) (eV−1) (eV) (J m−3) (10−6) g (10−40 J m2)

Fe 1044 7874 217 1710 2.15 2.17 (2.09/0.08) 1.54 0.93 48 −7 2.08 4.5
Co 1360(ε) 8920 162(ε) 1440 1.81 1.71 (1.57/0.14) 1.72 0.99 410 −60 2.17 8.0
Ni 628 8902 54.8 488 0.61 0.58 (0.53/0.05) 2.02 1.01 −5 −35 2.18 6.3

Table 5.5. Moments in metallic ferromagnets

meff m0 T
C

Ni Strong ferromagnet 1.0 0.6 628
ZrZn2 Weak itinerant ferromagnet 1.8 0.2 25
CrO2 Half-metal 2.4 2.0 396

disappear at TC , but becomes disordered in much the same way as it does for
the local-moment paramagnet (§4.3) or ferromagnet (§5.1.1). The moment is
progressively destroyed by thermal fluctuations when T � TC .

Whenever a local moment is disordered but stable in temperature, the effec-
tive moment meff deduced from the susceptibility aboveTC using (5.7) should be
consistent with the zero-temperature ferromagnetic moment m0 in the sense of
Table 5.5. For metals with nonintegral numbers of unpaired electrons per atom,
we can define an effective spin S∗ by 2µBS

∗ = m0, and a corresponding effec-
tive moment meff as 2

√
S∗(S∗ + 1)µB . The Stoner model applies best to some

very weak itinerant ferromagnets with S∗ � 1
2 , such as ZrZn2, an intermetallic

compound of two nonmagnetic elements which exhibits a small ferromagnetic
moment and a low Fermi energy. For a weak itinerant ferromagnet, meff is even
larger than expected from this formula. The effect of temperature is not just
to destroy the long-range intersite atomic correlations, but also to eliminate
progressively the on-site Hund’s rule correlations that sustain a local moment.
The susceptibility therefore falls more rapidly with increasing temperature than
predicted by the Curie–Weiss law.

The rigid-band model envisages a fixed, spin-split density of states for the
ferromagnetic 3d elements and their alloys, which is filled up with the necessary
number of electrons as if they were water being poured into a jug. The jugs for
bcc and fcc metals are differently shaped. Ignoring the small contribution of
the 4s-band, the average moment per atom is 〈m〉 ≈ (N↑

3d −N↓
3d )µB. The total

number of 3d electrons is N3d = N↑
3d +N↓

3d , where N↑
3d = 5 for the strong

ferromagnets. Hence

〈m〉 ≈ (10 −N3d )µB. (5.34)

This relation applies to any strong ferromagnet regardless of the details of the
density of states.

The rigid-band picture is oversimplified. Nevertheless, the model has merit.
In CuxNi1−x alloys, for example, each Cu atom brings an extra electron. The
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The Slater–Pauling curve.
The average atomic
moment is plotted against
the number of valence
(3d + 4s) electrons.

d-band of Ni has 0.6 holes and the ferromagnetism of CuxNi1−x disappears
when the d-band is full up at x =0.6, as predicted.

Bonding states with delocalized singlet-like wave functions are found near
the bottom of a metallic band and antibonding states with more localized triplet-
like states are near the top. Since the total wave function must be antisymmetric,
this helps to explain why 3d elements near the end of the series tend to be ferro-
magnetic, while those at the beginning of the series are not. The binding energy
of 3d electrons increases by about 5 eV across the series, which is comparable
to the 3d bandwidth. The band narrowing resulting from the increased nuclear
charge is sufficient to offset the broadening resulting from reduced metal–metal
distances as we move across the 3d series.

The famous Slater–Pauling curve, Fig. 5.17, is a plot of the magnetic moment
per atom for binary alloys of 3d elements plotted against Z, the total number
of 3d and 4s electrons per atom. There is inevitably some mixture of 4p
character in the 4s-band. The alloys on the right-hand side of Fig. 5.17 are
strong ferromagnets. The slope of the branch on the right is −1. The multiple
branches with slope ≈1, as expected for rigid bands, are for alloys of late 3d
elements with early 3d elements for which the 3d-states lie well above the
Fermi level of the ferromagnetic host. The assumption of a common band in
the rigid-band model really applies only when the charge difference of the
constituent atoms is small, Z � 2. Otherwise a split band with a joint density
of states reflects the densities of states of the constituents. The partial densities
of states of FeV and FeNi3, for example, are compared in Fig. 5.18.

The magnetic valence model is a more general formulation of these ideas
which allows us to estimate the average atomic moment per atom of any alloy
of a 3d element, provided it is a strong ferromagnet. The valence of an atom is
given by Z = N↑ +N↓, whereN↑ andN↓ are the numbers of ↑ and ↓ valence
electrons per atom. The magnetic moment is given by m = (N↑ −N↓)µB =
(2N↑ − Z)µB. Now the value of N↑

d is exactly 5 for strong ferromagnetic
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Partial densities of states of
(a) FeV and (b) FeNi3.

elements, and 0 for main group elements which have no d electrons. The
magnetic valence of an element Zm, defined as

Zm = 2N↑
d − Z, (5.35)

is an integer. Its moment is m = (Zm + 2N↑
s )µB , where 2N↑

s ≈ 0.6 − 0.7 is
the number of electrons in the unpolarized 4sp-band. The average moment per
atom in an alloy is obtained by replacing Zm by its weighted average value over
all atoms present in the alloy:

〈m〉 = (〈Zm〉 + 2N↑
s )µB. (5.36)

In this way it is possible to estimate the magnetization of any strong ferro-
magnetic alloy based on iron, cobalt or nickel. Some magnetic valences are
Zm = −3 for B, Y, La and all rare-earths, −4 for C, Si, Ti, −5 for V, P, −6 for
Cr, but 2 for Fe, 1 for Co and 0 for Ni. Taking YFe2 as an example, the average
moment is [ 1

3 (−3 + 0.6) + 2
3 (2 + 0.6)] = 0.93 µB/atom or 2.8 µB/(formula

unit, fu). We can consider that the yttrium has reduced the iron moment from
2.2 µB to 1.4 µB . Adding more yttrium to the alloy will eventually destroy the
magnetism entirely (Exercise 5.7(c)). Moments per atom for rare-earth–iron
alloys are shown in Fig. 5.19.

↑ ↑

E
n

e
rg

y 
e
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A nonmagnetic virtual
bound state.

5.3.3 Impurities in ferromagnets

The converse of the problem considered in §5.3.1, the behaviour of a single
impurity atom in a ferromagnetic host, is also interesting. If the impurity is a
much lighter 3d element than the host, like V in Ni (Fig. 5.20) its d levels lie
above the Fermi level in the 4s conduction band. If Vkd is the hopping integral
from the d level to the conduction band, the level acquires a width

 i = πN4s (εF )V 2
kd, (5.37)
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Variation of the magnetic
moment per atom as a
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Figure 5.20

The local density of states
for V in Ni, Fe in Ni and Ni
in V. (Calculations by
courtesy of Nadjib Baadji).

which may be of order 1 eV. The impurity level is then known as a virtual

bound state. The width is inversely related to the time an electron dwells on the
impurity site.

When the virtual bound state lies entirely above εF , the 3d impurity electrons
are emptied into the 3d-band of the host. If the host 3d↑-band is full, there will
be a moment reduction of Ni3d Bohr magnetons, where Ni3d is the number of
impurity 3d electrons. In addition, the moment of one host atom is suppressed at
the site of the substitution. For example, when a V impurity (Z = 5, Ni3d ≈ 4)
is substituted in a Ni host, the moment reduction is drastic, 4 +0.6 =4.6 µB/V.

There will inevitably be some hybridization of the impurity and host 3d-
states, which will be more effective for the host 3d↓ electrons, because they
lie closer to the Fermi level. A light 3d element will therefore acquire a small
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negative moment in a heavy 3d host. These trends are illustrated for impurities
in iron in Fig. 5.21.
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Coupling of spins and
alignment of moments in
R–T alloys, T = Fe, Co, Ni (a)
R = light rare-earth, (b) R
= heavy rare-earth.

This is an example of the more general rule that exchange coupling between
atoms with d shells that are more than half full with atoms whose d shell is less
than half full is antiferromagnetic. The rare-earths in this context should be con-
sidered as light d elements because their atomic configuration is 4f n5d16s2.

There is therefore antiparallel coupling of the spin moments of the ferromag-
netic 3d elements T = Fe, Co and Ni, and the spin moment of a rare-earth. When
the 4f shell is half-filled, or more, this leads to antiparallel coupling of the
atomic moments in R–T alloys with R =Gd–Yb. However, in light rare-earth
metals where the moment is mainly orbital in character, and directed opposite
to the spin moment according to Hund’s third rule, the R and T moments are
parallel, even though the spins are antiparallel. Many examples of R–T alloys
are presented in Chapter 11.

5.3.4 Half-metals

These oddly named materials are ferromagnets with electrons of only one spin
polarization at the Fermi level. Cobalt and nickel are not half-metals because of
the presence of the 4s electrons at εF which are not fully spin-polarized. Indeed,
no ferromagnetic element is a half-metal. It is necessary to form a compound
where the 4s electrons can be removed from the vicinity of the Fermi energy
by charge transfer or hybridization. Examples include the oxide CrO2 and the
ordered intermetallic compound MnNiSb, which are both discussed in Chapter
11. The characteristic feature of a half-metal is a spin gap in the ↑ or ↓ density of
states at εF . Furthermore, the spin moment per formula unit in a stoichiometric
half-metallic compound is an integral number of Bohr magnetons. This is
because there are an integral number N↑ +N↓ of electrons per formula unit,
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and the band with the spin gap must contain an integral number of N↑ (or N↓)
electrons, hence N↑ −N↓ is also an integer.

Spin-orbit interaction tends to destroy half-metallicity by mixing ↑ and ↓
states, as explained in §5.6.4.

5.3.5 The two-electron model

Further insight into the physical interactions of importance in metals is pro-
vided by a diatomic two-electron model. Although highly simplified, the model
contains most of the ingredients of the physics of the many-electron problem,
except orbital degeneracy. Important quantities are the on-site Coulomb repul-
sion U , the transfer or ‘hopping’ integral t which gives rise to the bandwidth
W and the direct exchange Jd .

The HamiltonianH(r1, r2) is that in the Schrödinger equation of (5.20), with
an additional term e2/4ε0 |r1 − r2| to take account of the Coulomb interaction
of the two electrons with each other. The spatially symmetric and antisymmetric
wave functions

φs = (1/
√

2)(ψ1 + ψ2), φa = (1/
√

2)(ψ1 − ψ2), (5.21)

may be regarded as embryonic Bloch functions (electron waves) for the metal
with k = 0 and k = π/d, where d is the interatomic spacing. We can replace
φs and φa by embryonic Wannier functions which are mostly localized on the
left and right atoms:

φl = (1/N )(ψ1 + aψ2), φr = (1/N )(aψ1 + ψ2), (5.38)

with

a = −1 + √
1 − S2

S ,

where S is the overlap integral
∫
ψ∗

1(r)ψ2(r)d3r and N is a normalization
factor. These Wannier functions, Fig. 5.22, differ from ψ1 and ψ2, the eigen-
functions of the one-electron problem, in that they are supposed to be orthogonal∫
φ∗
l (r)φr(r)d

3r = 0.
There are now four possible two-electron wave functions �i(r, r ′):

�1 = φl(r)φl(r ′); �2 = φl(r)φr (r ′);
�3 = φr (r)φl(r ′); �4 = φr(r)φr (r ′).

The functions �1 and �4 represent doubly occupied states. The interaction
matrix is 


U t t Jd
t 0 Jd t

t Jd 0 t

Jd t t U


 . (5.39)
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Wannier functions and
atomic wave functions for
the diatomic molecule.

The Coulomb interaction U is the energy penalty when two electrons are put
into the same orbital. It is several electron volts:

U =
∫
φ∗
l (r)φ∗

l (r ′)H(r, r ′)φl(r)φl(r ′)d3rd3r ′.

The transfer or hopping integral t is also positive, and is �1 eV. It represents the
bandwidth. More generally, in the tight-binding approximation, the bandwidth
is 2Znt , where Zn is the number of nearest neighbours.

t ≈
∫
φ∗
R(r)φ∗

l (r ′)H(r, r ′)φl(r)φr (r ′)d3rd3r ′

The direct exchange between doubly occupied sites is smaller, and of order
0.1 eV:

Jd =
∫
φ∗
l (r)φ∗

l (r ′)H(r, r ′)φr (r)φr (r ′)d3rd3r ′.

The interaction matrix (5.39) can be diagonalized directly. Two doubly occu-
pied states have eigenvalues of order U , and are therefore neglected. The other
states, which are much lower in energy, are: (i) a delocalized ferromagnetic
state (the spatial part of the wave function is antisymmetric) with eigenvalue
εFM = −Jd

�FM = (1/
√

2)[φl(r)φr (r ′) − φr(r)φl(r ′)];

and (ii) an antiferromagnetic state (the spatial part of the wave function is
symmetric)

�AF = (sinχ/
√

2)[φl(r)φl(r ′) + φr (r)φr (r ′)]

+ (cosχ/
√

2)[φl(r)φr (r ′) + φr(r)φl(r ′)],

where tanχ = 4t/U. The associated energy is εAF = U/2 + Jd −√
4t2 + U2/4.
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The effective exchange is Jeff = 1
2 (εAF − εFM ),

Jeff = Jd + U/4 −
√

(t2 + U 2/16). (5.40)

Jeff > 0 indicates a ‘ferromagnetic’ ground state and Jeff < 0 indicates an
‘antiferromagnetic’ ground state. Direct exchange favours ferromagnetism,
but strong interatomic hopping t favours antiferromagnetism. When U � t,
and Jd = 0, the exchange is antiferromagnetic, as illustrated in §5.2.2:

Jeff = −2t2/U. (5.41)

Ferromagnetic Antiferromagnetic

eV + t

−eV  + t

  √ t 2 + (eV) 2
eV − t

−eV − t − √ t 2 + (eV) 2

Energy levels of the
ferromagnetic and
antiferromagnetic states
for the two-atom/
four-state problem.

Our rudimentary model can also illustrate how exchange depends on band
filling. We consider the ferromagnetic and the antiferromagnetic states, for
which the one-electron Hamiltonians are,

HF =
[±eV t

t ±eV
]
,

HAF =
[±eV t

t ∓eV
]
,

where V is the local exchange potential experienced by an electron on site 1 or
2 and t is the interatomic hopping integral. When t =0, there is one-electron
exchange splitting of the states. Diagonalizing the matrices to find the eigen-
values involves solving the determinant |H − λI| = 0. For the ferromagnetic
state, the energy levels are ±eV + t and ±eV − t , whereas for the antiferro-
magnetic state, they are doubly degenerate ±

√
t2 + (eV )2. It can be seen that

a single electron or three electrons (quarter-filled or three-quarters-filled band)
go into a ferromagnetic state, but two electrons (half-filled band) prefer the
antiferromagnetic state.

5.3.6 The Hubbard model

A famous model Hamiltonian which represents electron correlation in the
tight-binding model for an array of one-electron atoms is

H = −
∑
i,j

tc
†
i cj + U

∑
i

N
↑
i N

↓
i ,

where N↑,↓
i are the numbers of spin-up and spin-down electrons, respectively,

on the ith atom. The first term is the transfer term that creates the band of width
W = 2Zt ; the second is the Coulomb energy penalty involved in placing two
electrons on the same atom.

Electrons are localized when U/W > 1 because there are then no states
available to accommodate the double-occupancy charge fluctuations that are
indispensable for electronic conduction. Compounds with an integral number
of electrons per atom which satisfy this condition are known as Mott–Hubbard

insulators.
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The second term can be rewritten using

UN
↑
i N

↓
i = U [(N↑ +N↓)2/4 − (N↑ −N↓)2/4].

The Stoner interaction −(I/4)(N↑ −N↓)2 is thereby identified as the spin-
dependent part of the on-site Coulomb interaction; hence I ≈ U. In the Hub-
bard model, the on-site correlations create a magnetic moment, and hopping
between adjacent nondegenerate singly occupied orbitals provides an antifer-
romagnetic interaction.

A variant of the Hubbard model is the t–J model, where the second term is
replaced by −2J

∑
i>j Si · Sj with J = −2t2/U.

o o

o
o

o

o o
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o o
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The Born–Oppenheimer
approximation: the
electrons (marked with
arrows) move in a
background of frozen
nuclei (open circles).

5.3.7 Electronic structure calculations

A solid is a system ofN electrons at positions {r i} andN ′ nuclei, usually centred
on a periodic lattice {RI }. Inner electrons occupy tightly bound, localized core
orbitals around the nuclei. Outer orbitals with binding energies of a few electron
volts or less are the home of the valence and conduction electrons, which
determine the electronic character of the solid, be it metal, semiconductor,
insulator, ferromagnet, antiferromagnet, superconductor, . . . The instantaneous
velocity of these outer electrons is of order the Fermi velocity, vF ≈ 106 m s−1.

Ion cores vibrate at phonon frequencies that are of order 1014 Hz, with an
amplitude of about 10 pm, which means that their velocity is of order 103 m
s−1. We are therefore justified in thinking that the electron sees the potential
of a set of nuclei instantaneously frozen in position – the Born–Oppenheimer

approximation. Furthermore, we will ignore the atomic displacements, which
lead to electron scattering, and assume that the ion cores are localized at the
lattice sites. The electrons experience Coulomb interactions with the nuclei, and
with each other. The Hamiltonian, with factors of 1

2 to avoid double counting,
takes the form

H = −
∑
i

�
2∇2

i

2me
−
∑
i,I

Ze2

4πε0RIi
+ 1

2

∑
i,j

e2

4πε0rij
. (5.42)

The problem is to solve Schrödinger’s equationH� = ε�, where�({RI }, {ri})
is a wave function for the huge number of electrons and nuclei in the system.

An abbreviated notation for H is

H = T + V + U, (5.43)

where T and V are the terms corresponding to the one-electron kinetic and
potential energy and U represents the two-electron interactions that capture the
complexity of the physics.

Many first-principles methods for solving the many-electron Schrödinger
equation use wave functions based on Slater determinants. The idea is to build
in the antisymmetry of the wave function under exchange of any two electrons
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with given space and spin coordinates x, y, z, σ denoted as xi and xj . In the case
of just two electrons, for example, � = ψ1(x1)ψ2(x2) is not antisymmetric,
but (1/

√
2)[ψ1(x1)ψ2(x2) − ψ1(x2)ψ2(x1)] is a suitable wave function. It can

be written in the form of a determinant:

�(x1, x2) = 1√
2

∣∣∣∣ψ1(x1) ψ2(x1)
ψ1(x2) ψ2(x2)

∣∣∣∣ . (5.44)

Placing two electrons in the same orbit ψ1 = ψ2 gives �(x1, x2) = 0, as
required by the Pauli principle. Slater generalized this idea to N electrons,
writing the wave function as

�(x1, x2, . . . , xN ) = 1√
N

∣∣∣∣∣∣∣∣∣

ψ1(x1) ψ2(x1) · · · ψN (x1)
ψ1(x2) ψ2(x2) · · · ψN (x2)

...
...

. . .
...

ψ1(xN ) ψ2(xN ) · · · ψN (xN )

∣∣∣∣∣∣∣∣∣
. (5.45)

A compact way to denote a Slater determinant is as a ket, |1, 2, . . . , N〉.

John Hubbard, 1931–1980

The Hartree–Fock method assumes that the exactN -electron wave function of
the system can be approximated as a single Slater determinant. A variational
solution is then based on a linear combination of these one-electron wave func-
tions with coefficients chosen to minimize the energy. The method completely
neglects electron correlations, but takes perfect account of the exchange. Each
electron is surrounded by an exchange hole, from which any other electron with
the same spin is excluded.

An alternative approach to Hartree–Fock calculations is density functional

theory (DFT), which provides an approximate solution for both exchange and
correlation energies. It succeeds in mapping a many-electron problem with U
onto a one-electron problem without U . The theory is based on two theorems,
proved by Hohenberg and Kohn in the mid 1960s. The first is that the density
n(r) of a system of N electrons determines all the ground-state electronic
properties. The ground-state wave function�0 is a unique functional of electron
density�0[n(r)]. (A functional is just a function which has another function as
its argument.) Other physical properties can be derived from the wave function.
In particular, the ground-state energy is

ε0[n(r)] = 〈�0|T + V + U |�0〉. (5.46)

The second is that the energy functional ε0[n(r)] is lower in energy for
the ground-state density n0(r) than any other state. The term in the energy
which needs to be minimized in (5.46) is the one that depends on {RI },
V[n(r)] = −e ∫ V (r)n(r)d3r . The significance of these theorems is that it is
immensely easier to base a calculation on the density, which depends on only
three variables, x, y, z, or four when we include the spin σ , than it is on the wave
functions of anN -electron system which depend on 4N variables. The problem
is that the correct density functional is unknown, and it must be arrived at by
inspired approximation. Furthermore, the method applies to the ground state,
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and it does not give the structure of excited states, although a time-dependent
variant of the theory may remedy this defect.

Density functional theory is usually implemented using the Kohn–Sham

method, where the problem of strongly interacting electrons moving in the
potential of the nuclei is reduced to the more tractable problem of noninteract-
ing electrons in an effective potential which somehow takes care of the inter-
electronic Coulomb interaction, as well as exchange and correlation effects.
The energy of (5.46) is rewritten as

o

o

o

o

o

o

o

The Kohn–Sham formalism.
Each electron moves
independently in an
effective potential created
by the others.

ε0[n(r)] = Ts[n(r)] + εV [n(r)], (5.47)

where Ts is the noninteracting kinetic energy and εV is the total potential
energy. The Kohn–Sham equations for this noninteracting system are just a set
of effective, single-particle Schrödinger equations

[
−�

2∇2
i

2me
+ Vs(r)

]
φi(r) = εiφi(r) (5.48)

which yield a set of orbitals φi which are approximate wave functions for the
real system of electrons that reproduce the density of the original many-electron
system n(r) =∑i

∣∣φ2
i

∣∣. The effective single-particle potential is usually written
as

Vs = V + 1

2

∫
e2n(r ′)

4πε0 |r − r ′|d3r ′ + Vxc[n(r)]. (5.49)

The first term is the Coulomb interaction of the electron with the nuclei, the
second term is the Hartree term VH describing the electron–electron Coulomb
repulsion, and the key term is the third one, the exchange-correlation potential,
which includes all the many-electron correlations. The Kohn–Sham equations
are solved by following an iterative procedure. Taking an initial guess for
[n(r)],Vs is calculated and the equations are solved for φi(r), from which a new
density is calculated, and the process is repeated. The local density approximation

(LDA) assumes that the exchange-correlation functional Vxc[n{r}] depends
only on the density at the point where the function is evaluated Vxc[n(r)]. A
variant is the general gradient approximation, where Vxc depends also on the
density gradient Vxc[n(r),∇n(r)]. In systems of more ionic character, a U
term can be added to reduce double orbital occupancy.

All this can be generalized to the spin-dependent case. In the local spin

density approximation (LSDA) two densities must be taken into account, the
scalar electron density n(r) and the vector magnetization density m(r) =
µB[n↑(r) − n↓(r)]ez. They are both incorporated in a 2 × 2 density matrix

n̂(r) = 1
2 [n(r)Î + σ̂ · s(r)], where Î is the identity matrix

[
1 0
0 1

]
, σ̂ are the

Pauli spin matrices (3.17) and s(r) is the local spin density m(r)/µB . For a
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collinear spin configuration, the density matrix is diagonal:

n̂(r) =
[
n↑(r) 0

0 n↓(r)

]
, (5.50)

so that n(r) = n↑(r) + n↓(r) and m(r) = µB[n↑(r) − n↓(r)]. The potential
matix is given by V̂ = V Î + µBm(r) · B, where B is the magnetic field. The
spin-polarized version of the Kohn–Sham equations is[(

−�
2∇2

i

2me
+ VH

)
Î +V + Vxc

][
φ

↑
i (r)
φ

↓
i (r)

]
= εi

[
φ

↑
i (r)
φ

↓
i (r)

]
. (5.51)

The exchange-correlation matrix depends on both n(r)and m(r),

Vxc = Vxc[n(r),m(r)], (5.52)

for which a suitable approximation must be found. Equations (5.51) yield the
wave functions φ↑,↓

i (r) from which the density matrix n̂(r) is deduced. A self-
consistent solution is obtained, as in the the nonmagnetic case. A number of
computer codes are available to do the job. If the density matrix is diago-
nal, the magnetic structure is collinear, but the general formalism allows for
noncollinear structures. DFT is an accurate method for calculating magnetic
moments and spin-polarized band structures, especially in metallic systems.

The three forces in
magnetism: theory,
experiment, and
simulation. (Courtesy
Wiebke Drenckhan).

Exponential growth of computer power, and especially multiprocessor com-
puter clusters, has enabled computer simulation to establish itself as a third
force, alongside experiment and theory, for investigations in magnetism. Not
only in electronic structure calculations, where it is becoming possible to inves-
tigate the crystal structure and magnetic order of a new compound without ever
actually having to make it in the laboratory, but also in the areas of electronic
transport properties and micromagnetism, are computational methods making
their mark. Large numbers of atoms, of order 1000 or more, can be handled
using current DFT codes, which makes it possible to investigate spin-dependent
transport in a molecule, or to study the appearance of a magnetic moment on
different types of lattice defects in a solid. It is immensely more convenient to
create a specific complex lattice defect on a computer than it is in the laboratory.

5.4 Collective excitations

The comparison of magnetization data on nickel with the predictions of
molecular field theory for J = 1

2 in Fig. 5.3 shows discrepancies both at low
temperature, and in the vicinity of TC.Actually the discrepancies are worse than
they appear because TC is used to determine nW , so the model is constrained
to return the right Curie temperature, and the correct value of m0.

Experimental methods discussed in Chapter 10, exist to determine the
exchange constants directly, so it is possible to make a more telling comparison
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Figure 5.24

Illustration of a spin wave.

between theory and experiment, as indicated in Fig. 5.23. Here it is evident that
ferromagnetism is considerably less stable at elevated temperature than molec-
ular field theory would have us believe; it overestimates TC by as much as a
factor of 2, depending on the dimensions and the lattice type. The spontaneous
magnetization is diminished at low temperatures by spin-wave excitations. Near
TC the critical fluctuations destroy it.

5.4.1 Spin waves

The total exchange energy in the ferromagnetic ground state is −2ZJ S2 per
site, where Z is the number of magnetic nearest neighbours and J is the
nearest-neighbour exchange interaction. The elementary excitations from the
ferromagnetic ground state are not, as might be imagined, flips of individual
spins that reduce an atomic moment from a state with Ms = S to one with
Ms = (S − 1).A single localized spin reversal in an S = 1

2 chain ↑↑↑↑↓↑↑↑↑
costs 8J S2 or 2J when S = 1

2 , which is twice as large as kBTC for the chain
treated in the molecular field approximation (5.26); Z = 2 for a chain, so
kBTC = 2JZS(S + 1)/3 = J . Such expensive excitations cannot occur at low
temperature. Instead, all the atoms share out the spin reversal, with periodic
oscillation of their transverse spin orientation. The spin deviations spread over
the whole lattice in a propagating spin wave with wave vector q and energy
εq = �ωq , as illustrated in Fig. 5.24. Spin waves exist as classical excitations,
but the extended, quantized spin deviations in solids are known as magnons

by analogy with phonons, the quantized lattice waves. Think of spin waves
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as oscillations in the relative orientations of spins on a lattice, whereas lattice
waves are oscillations of the relative positions of atoms on a lattice.

The relation between the wavevector q = 2π/λ and frequency ωq of the spin
wave can be calculated classically, or from quantum mechanics. The classical
approach considers the spin angular momentum of the atom at site j , �Sj and
equates the torque exerted by the molecular field to the rate of change of angular
momentum, thus

�
dSj
dt

= µ0gµBSj × Hj . (5.53)

In a chain, the molecular fieldHj at site j is due to the neighbours at sites j ± 1.
From (5.25), Hj = 2J (Sj−1 + Sj+1)/µ0gµB , hence �dSj /dt = 2J Sj ×
(Sj−1 + Sj+1). This can be written in Cartesian coordinates:

�
dSxj
dt

= 2J
[
S
y

j (Szj−1 + Szj+1) − Szj (Syj−1 + Syj+1)
]

plus cyclic permutations. For small deviations, we can approximate Szj =
Sj = S and neglect terms like Sxi S

y

j . Hence

�
dSxj
dt

= 2J S
[
2Syj − Syj−1 − Syj+1

]
,

−�
dSyj
dt

= 2J S
[
2Sxj − Sxj−1 − Sxj+1

]
,

�
dSzj
dt

= 0. (5.54)

Solutions are of the form Sxj = uS exp[i(jqa − ωqt)], Syj = vS exp[i(jqa −
ωqt)], where q is the wavevector and a is the interatomic spacing. Substitut-
ing back into (5.54) gives −i�ωqu = 4J S(1 − cos qa)v, i�ωqv = 4J S(1 −
cos qa)u. Multiplying these results for a one-dimensional chain of isotropic
spins, gives

�ωq = 4J S(1 − cos qa). (5.55)

In the limit of small wavevectors, the spin-wave dispersion relation becomes

Wavevector, q

E
ne

rg
y,

 e
 

The spin-wave dispersion
relation for a chain of
atoms.

εq ≈ Dswq2, (5.56)

where εq = �ωq and the spin-wave stiffness parameter is Dsw = 2J Sa2. It
takes a vanishingly small energy to create a long-wavelength magnetic exci-
tation. The generalization to a three-dimensional cubic lattice with nearest-
neighbour interactions is

�ωq = 2J S
[
Z −

∑
δ

cos q · δ

]
,

where the sum is over the Z vectors δ connecting the central atom to its nearest
neighbours. The same dispersion relation withDsw = 2J Sa2

0 is found in any of
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The magnon dispersion
relations for iron measured
in different directions in
the unit cell. The dashed
line corresponds to
D sw = 4.5 × 10−40 J m2.
(G. Shirane et al., Journal of
Applied Physics, 39, 383
(1968))

the three basic cubic lattices, where a0 is now the lattice parameter. Dispersion
of magnons differs from that of phonons, εq ≈ c0q where c0 is the velocity of
sound, which is linear in the small-q limit. The value of Dsw for cobalt, for
example, is 8.0 ×10−40 J m2 (500 meV Å2). It is smaller for other ferromagnets
(Table 5.4). The dispersion relation for iron is shown in Fig. 5.25.

Equation (5.55) can be derived quantum mechanically from the Heisenberg
Hamiltonian (5.24) where the sum is over nearest-neighbour pairs i, j . The
Hamiltonian

Si · Sj = Sxi Sxj + Syi Syj + Szi Szj (5.57)

is written in terms of the raising and lowering operators.

Si · Sj = Szi Szj + 1
2 (S+

i S
−
j + S−

i S
+
j ). (5.58)

The ground state of the system |�〉 has all the spins aligned in the z-direction, so
that H|�〉 = −2J (N − 1)S2|�〉. Flipping a spin 1

2 at site i using S−
i reduces

Mi
S from S to S − 1; |i〉 = S−

i |�〉 lowers the total spin of the system by 1.
However, |i〉 is not an eigenstate of the Hamiltonian of the chain of spins with
nearest-neighbour interactions

H = −2J
N−1∑
i=1

[
Szi S

z
i+1 + 1

2 (S+
i S

−
i+1 + S−

i S
+
i+1)
]

because H|i〉 = 2J [−(N − 1)S2 + 2S|i〉 − S|i + 1〉 − S|i − 1〉]. It is neces-
sary to form linear combinations like

|q〉 = 1√
N

∑
i

eiq·ri |i〉 (5.59)
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Magnon dispersion relation
for terbium (J. Jonsen and
A. R. Mackintosh, Rare
Earth Magnetism, Oxford
University Press 1991).

This state is a magnon, a spin flip delocalized on the chain, with wavevector q.
Then

H|q〉 = 2J√
N

N−1∑
i=1

eiq·ri [−(N − 1)S2 + 2S|i〉 − S|i + 1〉 − S|i − 1〉]

= [−2J (N − 1)S2 + 4J S(1 − cos qa)]|q〉. (5.60)

Dropping the first term, which is constant, we have ε(q) = 4J S(1 − cos qa),
as before.

Dispersion relations are best measured by inelastic neutron scattering, which
is discussed in Chapter 10. There are multiple magnon branches when the unit
cell is noncubic, or if it contains more than one magnetic atom. The energy in a
mode of frequency ωq containing Nq magnons is (Nq + 1

2 )�ωq . Excitation of
magnons is responsible for the fall of magnetization with increasing T . They
also contribute to resistivity and magnetic specific heat. By analysing spin-
wave dispersion relations measured across the Brillouin zone, it is possible to
deduce the exchange interactions J (r ij ) for different atom pairs. Alternatively,
the wavevector-dependent exchange J (q) can be fitted to the data. When the
minimum of J (q) does not fall at q = 0, a spatially modulated magnetic
structure is stable (§6.3).

Figure 5.26 shows the spin-wave dispersion relation for terbium. There is an
energy gap at q = 0 due to the single-ion anisotropy of this rare-earth metal
(§4.4.4). Excitation of spin waves can be suppressed at very low temperatures
by the anisotropy. The energy gap at q = 0 is K1/n, where n is the number of
atoms per unit volume. In hexagonal close packed (hcp) cobalt, for example,
n = 9 × 1028 m−3, K1 = 500 kJ m−3, the spin-wave gap is 0.4 K.

Magnons behave like bosons; each magnon corresponds to the reversal of
one spin 1

2 over the whole sample, or a change MS = 1 for the whole system.
Hence the average number of quantized spin waves in a mode q is given by the
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Table 5.6. Comparison of excitations in solids

Excitation Dispersion Specific heat

Electrons Fermions εk ≈ (�/2m)k2 γ T

Phonons Bosons εq ≈ c0q T 3

Magnons (ferromagnetic) Bosons εq ≈ Dswq2 T 3/2

Magnons (antiferromagnetic) Bosons εq ≈ Daf q T 3

Bose distribution

〈Nq〉 = 1/[exp(�ωq/kBT ) − 1].

However, the magnon density of states N (ωq ) ∝ ω
1
2
q , just like that of electrons

which have a similar dispersion relation εk = �
2k2/2m. Dispersion relations

and the corresponding low-temperature specific heats are summarized in
Table 5.6. It can be shown that the reduction in magnetization at low tem-
peratures due to the excitation of magnons is

 M/M0 = (0.0587/ν)(kBT /2SJ )3/2. (5.61)

This is the Bloch T 3/2 power law. The integer ν equals 1, 2 or 4 for a simple cubic,
bcc or fcc lattice. Specific heat follows the same power law at low temperature.
A consequence of spin-wave excitation is that Curie temperatures are much
lower than expected from molecular field theory, given the exchange constant
J (Fig. 5.23).

For electrons in ferromagnetic metals, there is an additional scattering pro-
cess, in addition to scattering from defects, phonons and other electrons. The
electron can be inelastically spin-flip scattered, with the creation or annihilation
of a magnon (ωq, q). This leads to a term in resistivity varying as T 2.

Our discussion of spin waves has been based on localized spins and Heisen-
berg exchange coupling, but the idea is more general; any ferromagnetic con-
tinuum with exchange stiffness will exhibit spin-wave excitations.

5.4.2 Stoner excitations

Besides spin waves, another type of excitation in a metal can reduce its mag-
netization. Electrons at the Fermi level can be excited from filled states in
the majority-spin band to empty states in the minority-spin band. If the initial
state has wavevector k and the final state has wavevector k − q, an exci-
tation of wavevector q is produced. The energy of the excitation is given
by

�ωq = εk − εk−q + ex.
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At q = 0, these excitations require the full exchange splitting  ex , but at
finite q there is a broad continuum of Stoner excitations.

q

e 

π/a

Spin waves

Stoner excitations
∆ex

Spin waves and Stoner
excitations (shaded) in a
ferromagnet.

5.4.3 Mermin–Wagner theorem

The derivation of the spin-wave dispersion has been based on the existence of
a ferromagnetic state in an isotropic chain, or a three-dimensional lattice. The
assumptions warrant scrutiny. The number of magnons excited at a temperature
T is given by

nm =
∞∫

0

N (ωq)dωq
e�ωq/kT − 1

,

where the density of states for magnons N (ωq ) in one, two and three dimen-
sions varies as ω−1/2

q , ωoq = constant and ω1/2
q , respectively. The argument is

similar to that for the electron gas, given in §3.2.5, which has similar disper-
sion relations. Setting x = �ωq/kBT , the integral in three dimensions varies
as (kBT /�)3/2

∫∞
0 x1/2d3x/(ex − 1), whence comes the Bloch T 3/2 law (5.61).

However, the integrals diverge at finite temperature in one and two dimensions.
The ferromagnetically ordered state should be unstable in dimensions lower
than 3. This is the Mermin–Wagner theorem. Magnetic order is possible in the
Heisenberg model in three dimensions, but not in one or two. The linear chain,
our example of spin-wave dispersion, cannot order except at T = 0 K.

The consequences of this theorem are not as catastrophic as they seem at first
sight. The divergence is avoided if there is some anisotropy in the system, which
creates a gap in the spin-wave spectrum at q = 0; the lower limit of integration is
then greater than zero and the divergence is avoided. Some anisotropy is always
caused by crystal field or dipolar interactions. Two-dimensional ferromagnetic
layers do exist in reality, thanks to anisotropy (§8.1).

5.4.4 Critical behaviour

Not only at low temperatures does the mean-field theory fail to account properly
for the temperature dependence of the magnetization of a ferromagnet. There
is a discrepancy in the critical region, close to TC where the variation of M
with temperature is as (T − TC)β with β ≈ 0.34, rather than 1

2 (5.14). If the
magnetization is calculated from molecular field theory using the measured
exchange parameters J (rij ) derived from spin-wave dispersion relations, the
discrepancy in the predicted and measured values of TC may be as great as 60%.
This is partly due to spin waves, but the exchange parameters are renormalized
to lower values on increasing temperature because of critical fluctuations. These
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remarkable fluctuations, which are self-similar over a wide range of length
scales, are discussed in Chapter 6.

5.5 Anisotropy

Magnetic anisotropy means that the ferromagnetic or antiferromagnetic axis
of a sample lies along some fixed direction(s). Strong easy-axis anisotropy is
a prerequisite for hard magnetism. Near-zero anisotropy is required for soft
magnets. Generally, the tendency for magnetization to lie along an easy axis is
represented by the energy density term introduced in Chapter 1:

Ea = K1 sin2 θ, (5.62)

where θ is the angle between M and the anisotropy axis. K1 has units J m−3.
Values may range from less than 1 kJ m−3 to more than 20 MJ m−3. The
anisotropy depends on temperature, and must tend to zero at TC if there is no
applied field. Three main sources of anisotropy are related to sample shape,
crystal structure and atomic or micro-scale texture.

Shape anisotropy derives from the demagnetizing field discussed in §2.2.4.
The energy of a sample in its demagnetizing field Hd gives a contribution to
the self-energy (§2.5.1), which depends on the direction of magnetization in
the sample. Obviously, this cannot be an intrinsic property of the material, as it
depends on the sample shape.

Magnetocrystalline anisotropy is an intrinsic property. The magnetization pro-
cess is different when the field is applied along different crystallographic direc-
tions, and the anisotropy reflects the crystal symmetry. Its origin is in the
crystal-field interaction and spin-orbit coupling, or else the interatomic dipole–
dipole interaction.

Induced anisotropy arises when an easy direction of magnetization is created
by applied stress, or by depositing or annealing a disordered alloy in a magnetic
field to create some atomic-scale texture. The texture is often subtle, and difficult
to discern by conventional X-ray or electron scattering methods. Coarser-scale
texture may be associated with mesoscopic fluctuations of the compositions,
such as spinodal decomposition.

We first consider the phenomenological expressions for Ea, and then look
deeper into its microscopic origins.

5.5.1 Shape anisotropy

The magnetostatic energy of a ferromagnetic ellipsoid with magnetization
Ms is

εm = 1
2µ0VNM2

s . (2.81)
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Magnetization of single
crystals of iron, cobalt and
nickel.

Other simple shapes can be approximated to ellipsoids. The anisotropy energy
is related to the difference in energy  ε when the ellipsoid is magnetized
along its hard and easy directions. N is the demagnetizing factor for the easy
direction; N ′ = 1

2 (1 − N ) is the demagnetizing factor for the perpendicular,
hard, directions (Table 2.1). Hence  εm = 1

2µ0VM
2
s [ 1

2 (1 − N ) − N ], which
gives for a prolate ellipsoid

Ksh = 1
4µ0M

2
s (1 − 3N ). (5.63)

This is zero for a sphere (N = 1
3 ), as expected. Shape anisotropy is only

fully effective in samples which are so small that they do not break up into
domains. Non-ellipsoidal shapes are approximately described by an effective
demagnetizing factor. In a multidomain state, each domain creates its own
demagnetizing field, and is subject to the stray field of the other domains. The
order of magnitude of shape anisotropy for a ferromagnet with µ0Ms ≈ 1 T is
200 kJ m−3 when N = 0.

a

c

Magnetization of a prolate
ellipsoid of revolution with
c > a and no
magnetocrystalline
anisotropy. The c axis is the
easy direction of
magnetization.

5.5.2 Magnetocrystalline anisotropy

The magnetization curves of single crystals of the three 3d ferromagnetic
elements, corrected for the demagnetizing field, show a different approach to
saturation when magnetized in different directions (Fig. 5.27). For iron, the
cube edges 〈100〉 are easy directions and the cube diagonals3 〈111〉 are hard
directions. For nickel it is the other way around. Cobalt, and many intermetallic
compounds such as YCo5 have the hexagonal axis [001] as the unique easy
direction. It is much more difficult to saturate YCo5, for example, than Co in a
hard direction, perpendicular to [001]. Uniaxial anisotropy is a prerequisite for
permanent magnetism.

The three-dimensional anisotropy surfaces for the three ferromagnetic ele-
ments are shown in Fig. 5.28.
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Magnetization of a crystal
of the intermetallic
compound YCo5. K 1 is
deduced from hard axis
saturation.

3 [] denotes a single direction and 〈〉 denotes a set of equivalent directions. Similarly () denotes a
plane and {} a set of equivalent planes.
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Figure 5.28

Magnetocrystalline
anisotropy energy surfaces
for iron, cobalt and nickel.
In iron there are three easy
axes 〈100〉, in cobalt one
[001] and in nickel four
〈111〉.

Conventional expressions for the anisotropy energy in different symmetries
are:

Hexagonal: Ea = K1 sin2 θ +K2 sin4 θ +K3 sin6 θ +K ′
3 sin6 θ sin 6φ,

Tetragonal: Ea = K1 sin2 θ +K2 sin4 θ +K ′
2 sin4 θ cos 4φ +K3 sin6 θ

+ K ′
3 sin6 θ sin 4φ,

Cubic: Ea = K1c
(
α2

1α
2
2 + a2

2α
2
3 + α2

3α
2
1

)+K2c
(
α2

1α
2
2α

2
3

)
,

where αi are the direction cosines of the magnetization.
TheK1c term is equivalent toK1c(sin4 θ cos2 φ sin2 φ + cos2 θ sin2 θ ).When

θ ≈ 0, φ = 0 this reduces to K1c sin2 θ , so the leading term in every case is of
the form (5.62).

An alternative way of writing the anisotropy expressions is in terms of a set
of orthonormal spherical harmonics with anisotropy coefficients κml , and the
crystal-field coefficients Aml introduced in §4.4:

Ea =
∑
l=2,4,6

κml A
m
l Y

m
l (θ, φ). (5.64)

For example,

Hexagonal: Ehexa = κ0 + κ0
2

(
α2 − 1

3

)+ κ0
4

(
α4 − 6

7α
2 + 3

35

)+ · · ·
with α = cos θ.

Cubic: Ecubica = κ0 + κ4
4

(
α2

1α
2
2 + α2

2α
2
3 + α2

3α
2
1 − 1

5

)
+ κ4

6

(
α2

1α
2
2α

2
3 − 1

11

(
α2

1α
2
2 +α2

2α
2
3 +α2

3α
2
1 − 1

5

)− 1
105

)
This shows clearly thatK1c actually relates to fourth-order anisotropy terms,

whereas K1 in uniaxial structures relates to second-order anisotropy.
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Figure 5.29

Magnetic phase diagram
for uniaxial magnets. In the
metastable regions, there
are two energy minima, at
θ = 0 and θ = π/2.

An interesting magnetic phase diagram (Fig. 5.29) arises for a uniaxial
magnet when bothK1 andK2 are taken into account; minimizing the anisotropy
energy Ea = K1 sin2 θ +K2 sin4 θ , an easy cone phase appears when K1 < 0
and K2 > −K1/2. The cone angle is sin−1 √

(|K1|/2K2). In practice, when
K1 > 0, the two anisotropy constantsK1 andK2 can be deduced from a plot of
the hard axis magnetization curve as H/M versusM2. This is the Sucksmith–
Thomson plot.

The anisotropy field Ha is defined as the field needed to saturate the magne-
tization of a uniaxial crystal in a hard direction:

E = Ku sin2 θ − µ0MsH cos(π/2 − θ ).

Minimizing E, ∂E/∂θ = 0 and setting θ = π/2,

Ha = 2Ku/µ0Ms. (5.65)

Since µ0Ms ≈ 1 T for a typical ferromagnet, Ha can range from <2 kA m−1

to >20 MA m−1, with typical values for shape anisotropy for N = 1 of
200 kA m−1. An equivalent definition of Ha is the applied field along the easy
axis which would reproduce the change in energy due to a small deviation of the
magnetization from this axis. This gives Ku sin2 δθ = µ0HaMs(1 − cos δθ ),
which returns the same result as (5.65).

Beware of taking the idea of anisotropy field too literally. Except at small
angles, the energy variation in a field is not the same as the leading term in the
anisotropy. A magnetic field defines an easy direction, not an easy axis.

5.5.3 Origin of magnetocrystalline anisotropy

There are two distinct sources of magnetocrystalline anisotropy:

� single-ion contributions;
� two-ion contributions.
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Single-ion anisotropy The single-ion contribution is essentially due to the
electrostatic interaction of the orbitals containing the magnetic electrons with
the potential created at the atomic site by the rest of the crystal. This crystal-field
interaction tends to stabilize a particular orbital, and by spin-orbit interaction
the magnetic moment is aligned in a particular crystallographic direction. The
single-ion contribution was discussed in §4.4, where its effect on the paramag-
netic susceptibility was described. In a ferromagnetic crystal, the contributions
of all the ions are summed to produce a set of macroscopic energy terms with
appropriate symmetry. The sum is straightforward when the local anisotropy
axes of all the sites in the unit cell coincide. For example, a uniaxial crystal
having n = 2 × 1028 ions m−3, described by a spin Hamiltonian DS2

z with
D/kB = 1 K and S = 2 will have anisotropy constant K1 = nDS2 = 1.1 ×
106 J m−3.

Broadside and head-to-tail
configurations for a pair of
ferromagnetically coupled
magnetic moments. The
latter is lower in energy.

Two-ion anisotropy The two-ion contribution often reflects the anisotropy
of the dipole–dipole interaction. Comparing the broadside and head-to-tail con-
figurations of two dipoles, each with moment m, it can be seen from (2.10) and
(2.73) that the head-to-tail configuration is lower in energy by 3µ0m

2/4πr3.
Magnets tend to align head-to-tail. This anisotropy is of order 1 K per atom, or
100 kJ m−3. However, the dipole sum has to be extended over the entire lattice,
and it vanishes for certain lattices (including all the cubic lattices). In
noncubic lattices, the dipole interaction is an appreciable source of ferromag-
netic anisotropy.

Another source of two-ion anisotropy is anisotropic exchange. The Heisen-
berg Hamiltonian is perfectly isotropic, but there are higher-order corrections
involving spin-orbit coupling that lead to preferred orientations of the exchange-
coupled pairs.

5.5.4 Induced anisotropy

One way of inducing uniaxial anisotropy is to anneal certain alloys in a magnetic
field, Fig. 5.30. A good example is permalloy, Ni80Fe20, which is an fcc alloy
with the property that K1 ≈ 0. When annealed at ∼800 K, atomic diffusion
proceeds in the sense of favouring head-to-tail pairs of iron atoms, which have a
larger moment than nickel. The iron pairs tend to align with the field, Fig. 5.31.
This built-in texture produces a weak anisotropy. Amorphous ferromagnets may
likewise acquire a uniaxial anisotropy due to pairwise texture when annealed in
a magnetic field. Similar texture can be achieved by atomic deposition of thin
films in a magnetic field.

Another way to induce uniaxial anisotropy in a ferromagnetic solid is to
apply uniaxial stress σ . The magnitude of the stress-induced anisotropy is
Kuσ = 3

2σλs , where λs is the saturation magnetostriction discussed in the next
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Figure 5.30

Magnetization of a thin film
with induced anisotropy
created by annealing in a
magnetic field. The
‘sheared’ loop on the left is
found when the measuring
field H ′ is applied
perpendicular to the
annealing field direction.
The open loop on the right
is obtained when the two
directions are parallel.

Figure 5.31

Pairwise texture induced
by magnetic annealing.
Pairs of atoms represented
by the larger dots tend to
be aligned vertically (G. S.
Cargill and T. Mizoguchi, J.
Appl. Phys. 49 1753
(1978)).

section. Both the single-ion and two-ion anisotropy contribute to the stress-
induced effect.

The largest values of uniaxial anisotropy are found in hexagonal and other
uniaxial crystals. Smallest values are found in certain cubic alloys and amor-
phous ferromagnets. The magnitudes of different anisotropy contributions are
summarized in Fig. 5.32.

5.5.5 Temperature dependence

Any anisotropy originating from the magnetic dipole interaction will vary with
temperature as M2 because the dipole field Hd ∝ Ms and the energy density
Ea = − 1

2µ0 Ms · Hd ∝ M2
s .

Single-ion anisotropy due to the crystal field exhibits a j (j + 1)/2 power law
at low temperatures for the second-, fourth- and sixth-order terms, which vary
respectively as the third, tenth and twenty-first powers of the magnetization;
Kj (T )/Kj (0) = Mj (j+1)/2. Close to TC , these turn into Mj power laws. Here
is a rare example of an effect whose temperature dependence is determined by
symmetry alone.
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Quantitative overview of
magnetic anisotropy, from
all sources. (After Cullity
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5.6 Ferromagnetic phenomena

Magnetic order in a crystal can influence the lattice parameters and the elastic
moduli. These effects reflect the volume or strain dependence of bandwidth,
exchange energy, magnetic dipole energy or crystal-field interaction. Some
effects, like linear magnetostriction, are small, λs ≈ 10−5. Others like the  E
effect, the change of Young’s modulus associated with domain alignment, can
be as large as 90%. Even very small magnetoelastic effects may be critical
when optimizing the properties of soft magnets, because of the sensitivity of
coercivity to stress-induced anisotropy. Ferromagnetism also influences the
thermal, electrical and optical properties of solids. These intrinsic effects in
ferromagnets are discussed in the following paragraphs.

l

l
s

H

Development of
magnetostriction of a
polycrystalline material as
a function of applied
magnetic field.

5.6.1 Magnetostriction

Spontaneous volume magnetostriction ωs is the fractional change of volume of
an isotropic crystal due to magnetic order; the effect is proportional toM2. The
sign may be positive or negative but the magnitude does not normally exceed
1%. Iron-rich fcc alloys, for example, have ωs > 0, reflecting the sensitivity
of exchange to interatomic spacing (Fig. 5.15). By expanding slightly, the
iron-rich alloy increases the ferromagnetic exchange interaction, and lowers its
energy.
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The invar effect;
magnetostriction, Young’s
modulus and thermal
expansion of an iron-based
ferromagnetic alloy. The
dotted line shows the
thermal expansion of a
reference material, while
the thermal expansion of
an invar alloy is shown by
the solid line. The
difference is the
magnetovolume anomaly.

Invar is an fcc iron–nickel alloy of composition Fe65Ni35, discovered by
Charles Guillaume in 1896. The alloy has zero thermal expansion because of
a positive magnetovolume anomaly. Its discovery was important at the time
because of the practical uses for alloys that are dimensionally stable in preci-
sion instruments. By varying the Fe:Ni ratio slightly, a match can be achieved
with the thermal expansion of other materials, such as Si or quartz. The spon-
taneous volume magnetostriction of a ferromagnet is inferred by comparison
with the thermal expansion of a nonmagnetic reference material, as shown
in Fig. 5.33.

In weak ferromagnets, there is also a forced volume magnetostriction in high
magnetic fields, as the moment is slightly increased by additional field-induced
band splitting.
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Table 5.7. Summary of magnetoelastic effects

Isotropic Anisotropic

Atomic spacing Spontaneous volume magnetostriction Spontaneous linear magnetostriction
Forced volume magnetostriction
Anomalous thermal expansion

Elastic moduli Anomalous elastic moduli Morphic effect,  E effect

M
s 
= 0

H = 0

H
w

s > 0

l
s 

> 0

ls < 0

Figure 5.34

Spontaneous volume and
linear magnetostriction.

Linear magnetostriction was discovered by James Joule in nickel in 1842.
The linear strain δl/ l in the direction of magnetization is associated with the
magnetization process. Saturation magnetostriction is denoted as λs. Iron has
λs = −7 × 10−6 (the dimensionless unit of 10−6 is known as a microstrain),
so it contracts by 8 ppm along the magnetic axis as the magnetization is sat-
urated. Volume is conserved, which means that it also expands by 4 ppm in
the perpendicular direction and λ|| + 2λ⊥ = 0. Thanks to magnetostriction, no
ferromagnetically ordered crystal can ever be strictly cubic! Linear magne-
tostriction is the reason why transformers hum.

In general, if θ is the angle between the magnetization and the easy axis,

λ(θ ) = λs(3 cos2 θ − 1)/2.

The main magnetostrictive effects, summarized in Table 5.7, are greatly
exaggerated in Fig. 5.34.

James Joule 1818–1889.

Linear magnetostriction depends on the direction of magnetization relative
to the crystal axes, although, not of course, on the sense of its orientation along
a particular direction. A change of strain is associated with rotation of domains
as the magnetization approaches saturation, not with motion of 180◦ domain
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Table 5.8. Summary of linear magnetostrictive effects

Joule effect Villari effect
Field-induced strain Strain-induced anisotropy
Wiedemann effect Matteuchi effect
Helical-field-induced torque Torque-induced anisotropy

walls. Magnetization reversal within a domain produces no strain. A single
parameter is sufficient to describe the linear magnetostriction of an isotropic
polycrystalline or amorphous material, but magnetostriction is really a third-
rank tensor, since it relates strain εij (a second-rank tensor) and magnetization
Mk (a vector – first-rank tensor). In cubic crystals, there are two principal
values. For example, in iron λ100 = 15 × 10−6 and λ111 = −21 × 10−6. The
isotropic average,

λs = 2
5λ100 + 3

5λ111,

is 7 × 10−6. Larger magnetostriction is found in nickel, where Joule first saw
the effect, and in cobalt (Table 5.4). Some mixed rare-earth–iron alloys exhibit
λs values of up to 2000 × 10−6. The converse effect, where mechanical stress
applied to a demagnetized multidomain ferromagnet modifies its easy axes and
changes the initial susceptibility is known as the Villari effect.

I

H +H

H

II

The Wiedemann effect. The
sense of the twist shown is
for λs > 0.

A variant of linear magnetostriction is the Wiedemann effect. A ferromagnetic
rod subject to a transverse helicoidal field tends to twist. Torque can therefore
be generated by the field produced by passing a current through a ferromagnetic
wire while applying a field along its axis. The twist angle φ is proportional to
the length of the wire l, the current density j and the magnetostriction λs :

φ = 3
2λsj lH‖. (5.66)

The effect can be used to measure magnetostriction.
The converse of the Wiedemann effect, known as the Matteuchi effect, is the

modification of the susceptibility of a ferromagnetic wire by torque. The Joule
and Wiedemann effects find applications in various types of magnetic actuators,
whereas the Villari and Matteuchi effects are exploited in electromechanical
sensors. The linear magnetostrictive effects are summarized in Table 5.8.

5.6.2 Other magnetoelastic effects

The effect of imposing a uniaxial stress σ N m−2 on a ferromagnetic material is
to create strain-induced anisotropy. The elastic energy density for a polycrys-
talline material is

Ems = −λs(E/2)(3 cos2 θ − 1)ε + (1/2)Eε2,
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The �E effect in a soft,
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ferromagnet. E is Young’s
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domain structure when
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where ε is the strain, E is Young’s modulus and θ is the angle between the
magnetization and the strain axis. Minimizing the energy with respect to ε
gives ε = λs/2(3 cos2 θ − 1). If no stress is applied, the equilibrium strain
ε = λs . Since σ = εE, the angular-dependent term is

Ems = −λs(σ/2)(3 cos2 θ − 1). (5.67)

Comparing with the usual expression for uniaxial anisotropy energy Ea =
Ku sin2 θ (5.62), we see that

Ku = 3
2λsσ , (5.68)

as mentioned in §5.5.4. In iron λs ≈ −7 × 10−6 and E ≈ 200 GPa, hence a
stress of 1.4 MPa (14 bars) can be created by the magnetostriction.

The coupling of strain and magnetostriction is manifest in a dramatic way
in the  E effect. The magnetization directions of domains in an unsaturated
ferromagnet will be modified by an applied stress, which in turn leads to a
magnetostrictive strain in the direction of the stress. This looks like a change in
Young’s modulus E, hence the name. Regardless of the sign of λ, the effect is
always to reduce E, which is defined as the ratio of linear stress to strain (σ/ε).
If a tensile stress is applied to a material with positive λ, the magnetization
directions align with the stress, and there is an elongation, which increases ε
and reduces E. If the tensile stress is applied to a material with negative λ,
the magnetization directions align perpendicular to the stress, producing an
elongation which is half as large, but again reduces E. The effect disappears
as soon as the magnetization is saturated along or perpendicular to the stress
direction. Some applications of the E effect (Fig. 5.35) in ferromagnetic thin
films are presented in Chapter 12.

The morphic effect is the dependence of the elastic constants on the direction
of magnetization of a ferromagnet.
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Table 5.9. Summary of uniaxial anisotropy

Anisotropy Energy Ku kJ m−3

Magnetocrystalline Crystal field K1 1–104

Magnetic dipole
Shape Magnetostatic 1

4µ0
M2
s [3N−1] 1–500

(magnetic dipole)
Stress Magnetoelastic 3λsσ/2 0–100

Table 5.10. Energy contributions in a ferromagnet, in kJ m−3

Exchange −2nJZS2 103–105

Anisotropy Ku,Ki 10−1–104

Magnetic self-energy Ed 0–2 × 103

External field energy (in 1 T) B0Ms 102–103

External stress energy (in 1 GPa) σλ 1–102

Magnetostrictive self-energy cλ2 0–1

103 kJ m−3 is roughly equivalent to 1 K or 0.1 meV atom−1

The sources of uniaxial anisotropy are summarized in Table 5.9. A summary
of the magnitudes of the energies involved in ferromagnetism is provided in
Table 5.10.

5.6.3 Magnetocaloric effect

We have seen that a specific heat of magnetic origin is associated with the
progressive disordering of atomic moments in a magnetically ordered material
on increasing the temperature. There is a λ anomaly at the Curie point. The
contributions to the total specific heat of nickel are illustrated in Fig. 5.36.
The exchange energy, Eex in the molecular field model is − 1

2µ0H
iMs , where

Hi = nWMs. Hence the specific heat of magnetic origin, Cm = dEex/dT =
(dEex/dMs)(dMs/dT ), giving

Cm = −µ0nWMs
dMs
dT

. (5.69)

In this model, there is no magnetic contribution above TC where Ms = 0.
However, short-range spin correlations persist above TC. A more accurate
expression for the specific heat, deduced from (5.24) for nearest-neighbour
exchange coupling in terms of the spin correlation function 〈Si · Sj 〉, is

Cm = −2nZJ ∂〈Si · Sj 〉
∂T

.

where n is the number of atoms per unit volume.
The persistence of magnetic specific heat above TC is evident in Fig. 5.36.
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The effect of an applied magnetic field is to reduce magnetic disorder, and
decrease magnetic entropy. If this is done adiabatically, with no exchange of
heat with the surroundings, there has to be an increase of temperature of the
sample. Conversely, if the thermally isolated sample is magnetized in an applied
field, which is then reduced to zero, there must be a decrease of temperature
in the sample due to adiabatic demagnetization, as described for paramagnets
in §4.3.4. The entropy change is related to the temperature derivative of the
Magnetization by Eq. 2.102.

The work done by the field to produce an increase of magnetization δM is
δW = µ0H

′δM (2.93), so the heat resulting from the change of magnetization,
which is the difference between this work and the change of exchange energy
−µ0nWMδM , is

δQ = µ0(H ′ + nWM)δM. (5.70)

In the paramagnetic temperature range above TC , χ = C/(T − TC), which
from (5.6) is TC/[nW (T − TC)], hence

M = H ′TC
nW (T − TC)

. (5.71)

Substituting (5.71) into (5.70), it follows that

δQ = µ0

2nW

T TC

(T − TC)2
δ(H 2).

The corresponding change of temperature is δT = δQ/CM , where CM is the
specific heat at constant magnetization (in units of J K−1 m−3). Expressed in
terms of the change of magnetization, we find from (5.71) for T > TC :

δT = µ0nW

2CM

T

TC
δ(M2).
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The magnetocaloric effect
for Ni in different applied
fields. It peaks at TC .

The result for T < TC is almost the same; it is obtained by neglecting the
applied field H ′ relative to the molecular field nWM in the expression for δQ

δT = µ0nW

2CM
δ(M2).

The magnetocaloric effect for Ni in a field of 2 T is illustrated in Fig. 5.37.
The temperature change at Tc is of order 2 K in a field of 1 T. Gd-based alloys
with Tc as 320 K may be used for magnetic refrigeration.

5.6.4 Magnetotransport

Here we consider intrinsic magnetotransport effects which do not depend on
the shape or form of a ferromagnetic sample. Several types of magnetoresistive
and Hall effects fall into this category. Magnetoresistance may be defined as

MR = [�(B) − �(0)]/�(0). (5.72)

The ordinary positive B2 magnetoresistance of a nonmagnetic metal due to
cyclotron motion of the electrons was mentioned in §3.2.7.

There are other magnetoresistance phenomena intrinsic to ferromagnets,
notably anisotropic magnetoresistance (AMR), a small effect depending on the
relative orientation of current and magnetization, and colossal magnetoresistance

(CMR) a much larger negative effect which appears in the vicinity of the Curie
point of materials where the exchange coupling is by double exchange, and
the electron transfer is linked to nearest-neighbour spin alignment. A further
source of negative magnetoresistance in ferromagnets is spin disorder scattering

in the vicinity of TC . Ferromagnets also exhibit an additional term in the Hall
effect which is proportional to the magnetization.

Conduction electrons in 3d ferromagnets and their alloys are in s-like or
d-like states, which coexist at the Fermi level. The s-electrons resemble free
electrons; they have high mobility and carry most of the current. The d-electrons
are relatively ineffective current carriers on account of their high effective mass
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m∗ and low mobility,µ = eτ/m∗, where τ is the scattering relaxation time. The
d-bands are spin-split, with different densities of states at the Fermi level for
the ↑ and ↓ subbands. The s-bands are not spin-split, but s states at the Fermi
level acquire predominantly ↑ or ↓ character by hybridization with d states
there. Scattering is more severe for the ↓ s-electrons in a strong ferromagnet,
because they can only be scattered into 3d↓ states if spin-flip scattering is
neglected. In a weak ferromagnet electrons of either spin can be scattered into
unoccupied d states of the same spin. The densities of state of copper and nickel
were compared in Fig. 5.15. The conduction electrons in copper are s-like and
weakly scattered, leading to low resistivity. In nickel, a strong ferrromagnet,
the ↑ states at the Fermi level conduct like copper, but the ↓ states are very
strongly scattered on account of the large density of d states at the Fermi level
into which they can scatter.

The situation in 4f metals and alloys is different. The 4f -band is usually
very narrow because of the limited overlap of 4f wave functions on adjacent
sites. There is integral 4f n electron occupancy, so the band does not conduct.
The Mott criterion for conduction in a narrow band isW > U , whereW is the
bandwidth and U is the screened Coulomb energy of an extra electron on the
atomic site. When W < U , the charged configurations 4f n±1 necessary for
metallic conduction cannot be accommodated in the band, and the material
is a Mott–Hubbard insulator. Conduction in the rare-earth metals and alloys is
therefore due to the partially occupied 5d- and 6s-orbitals at the Fermi level.
The 5d states are exchange-split by on-site 4f –5d exchange coupling. The
electronic configuration of a rare-earth is roughly 4f n5d26s, so they behave in
some ways like light d-elements.

The 5f -band of ferromagnetic compounds of the early actinides is broad
and conducting, as in the 3d metals, but for the heavy actinides there is integral
5f occupancy, and the f electrons are localized, as in the rare-earths.

For ionic compounds, such as oxides, the 3d band is narrow and the electrons
tend to be localized. There are a few exceptions such as CrO2 or SrRuO3

where the band is broad enough for 3dn and 3dn±1 configurations to coexist.
Thanks to the on-site exchange interaction, these d states are spin polarized
and 3dn+1 � 3dn electron hopping produces ferromagnetism, via the double
exchange interaction. Mobility is low, and the velocity of the electrons may be
slow enough in oxides for the Born–Oppenheimer approximation to be invalid.
The electrons drag a local lattice distortion along with them, forming a polaron,
which further enhances their effective mass. When the conduction electrons
are spin polarized, they drag a cloud of spin polarization of the 3d or 4f ion
cores along with them; then we have a spin polaron.

The ↑ or ↓ electrons in a ferromagnet may undergo spin-flip scatter-
ing events, associated with excitation or absorption of a magnon ( S = 1).
The spin-orbit interaction also mixes ↑ and ↓ channels, because L · S =
LxSx + LySy + LzSz can be written in terms of raising and lowering operators
as 1

2 (L+S− + L−S+) + LzSz. It therefore mixes | 1
2 ,m�〉 with | − 1

2 ,m� + 1〉
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Table 5.11. Room-temperature resistivity of metals (10−8 � m)

Metal Orbitals Magnetization �↑ �↓ � α

Cu s-band Paramagnet 4 4 2 1
Ni d-band Strong ferromagnet 13 65 11 5
Co d-band Strong ferromagnet 8 120 7 15
Fe d-band Weak ferromagnet 32 28 15 0.9
V d-band Paramagnet 52 52 26 1
aFe80B20 d-band Amorphous ferromagnet 320 320 120 1
Gd f -level; 5d/5s-band Ferromagnet 270 270 130 1

states. Nevertheless, these spin flipping events are relatively rare compared
with normal momentum scattering events. An electron in a ferromagnetic 3d
metal may undergo 100 or more scattering events, before it experiences a spin
flip. This led Mott to propose his two-current model in 1936, whereby the ↑ and
↓ conduction channels are regarded as independent, and conduct in parallel.
Hence σ = σ ↑ + σ↓, or in terms of resistivity

� = �↑�↓
(�↑ + �↓)

. (5.73)

The quantity α is defined as the ratio of conductivity in the ↑ and ↓ chan-
nels: α = σ↑/σ ↓ = �↓/�↑. The conductivity of a metal is always greater than
the conductivity of either spin channel – double when the metal is param-
agnetic and σ↑ = σ↓. Values of �↑,↓ and α for a few metals are given in
Table 5.11.

A useful result for the field dependence of the resistivity of a metal
where the resistivity can be described by a single scattering time is Kohler’s

rule:

�(H )

�(0)
= f

(
H

�(0)

)2

. (5.74)

It follows that  �/� ≈ (H/�)2.

Spin-disorder scattering Electrons in ferromagnetic solids experience a
spin-dependent potential. When the material is perfectly ordered, there is no
magnetic scattering. But as the temperature approaches TC the electrons see
a potential that fluctuates between values differing by the on-site exchange
interaction. This random potential contributes to the resistivity as shown in
Fig. 5.38.

The normal temperature variation of the resistivity of a metal is described
by Matthiesen’s rule, a statement that the resistivity is the sum of a temperature-
independent term �0 due to impurity scattering, which is of order 10 n� m
per % of impurity, and a temperature-dependent term �ph(T ) due to phonon
scattering, which varies as T n, where n = 1 at temperatures well above the
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The resistivity of a normal
metal showing the impurity
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An extra term due to
spin-disorder scattering �sd

appears in a ferromagnet.

Debye temperature and n = 3–5 far below it. In ferromagnets, there is an
extra impurity-like term due to disordered spins. When majority-spin elec-
trons, which carry most of the current, encounter an atom with reduced
spin moment, they are strongly scattered because of the increased local
exchange potential. The spin disorder scattering term in the paramagnetic state
varies as

�para ∼ kFm
2
eJ 2
sd

e2�2
s(s + 1), (5.75)

where Jsd is the exchange between localized and conduction electrons. This
leads to an expression for the spin disorder resistivity in the ferromagnetic state

�ferro = �para{1 − [Ms(T )/Ms(0)]2}. (5.76)

Spin-disorder scattering is pronounced in rare-earth metals and alloys, and
in half-metals. Applying a magnetic field close to TC where the susceptibility
is high, increasesM , and therefore produces a negative magnetoresistance.

An alternative way to describe spin mixing is to introduce a spin mixing
resistivity �↑↓ which is zero at low temperature, but large above TC. The
expression for resistivity is then

� = �↑�↓ + �↑↓(�↑ + �↓)

�↑ + �↓ + 4�↑↓
. (5.77)

This has the correct behaviour in the high-temperature limit, where it tends
to (�↑ + �↓)/4 = �para, and in the low-temperature limit where it reduces to
(5.73).

j

j

⊥

H

H

M

M

Measurement of AMR for a
thin film.

Anisotropic magnetoresistance AMR is a much smaller change, but it is
useful for sensors because the resistance change can be achieved in thin films
with magnetic fields of a millitesla or less. William Thompson discovered in
1857 that the resistivity of nickel varies slightly with the direction of current
flow, relative to the direction of magnetization. The resistance is a few per cent
higher when the current flows parallel to an applied field than when it is in



185 5.6 Ferromagnetic phenomena

j

(j)

π/2

8.00

8.05

8.10

8.15

8.20

0 2 4

2.5%

⊥

⊥

∆

Figure 5.39

AMR of a permalloy film,
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the transverse direction. Anisotropy in this sense is usual for ferromagnetic
metals. The maximum AMR may be defined as  �/�⊥, where  � = (�‖ −
�⊥). The magnitude of the effect is usually no more than about 3%. The angular
dependence of the saturated anisotropic magnetoresistance is

�(ϕ) = �⊥ + (�‖ − �⊥) cos2 ϕ, (5.78)

where ϕ is the angle between the current density j and the magnetization Ms .

Results for permalloy are shown in Fig. 5.39.
Note that the greatest sensitivity of the resistance to a change in ϕ, determined

by the condition d2�/d2ϕ = 0, arises when ϕ = π/4, a fact that is exploited in
AMR sensors, discussed in §14.3.

When the current flows in the x-direction, an easy-anisotropy direction –
this could be determined by the shape anisotropy of a wire, for example – with
anisotropy constant Ku and the field applied in the perpendicular y-direction,
then ϕ is obtained by minimizing

E = MsH
′ sinϕ +Ku cos2 ϕ (5.79)

with respect to ϕ, which gives sinϕ = MsH/2Ku. Hence, from (5.78)

�(H ) = �⊥

[
1 +  �

�⊥

(
1 − M2

s H
2

4K2
u

)]
(5.80)

or �(H ) = �(0) − �(M2
s H

2/4K2
u), provided MsH/2Ku < 1. Note the H 2

variation, as predicted by Kohler’s rule. This result applies for anhysteretic
magnetization rotation. Magnetization processes that only involve motion of
domain walls in a direction perpendicular to the easy axis have no effect on the
magnetoresistance, whatever the angle between the current and applied field.

The reason why AMR is usually positive (�‖ > �⊥) is related to the spin-
orbit interaction, which tends to mix the ↑ and ↓ channels. Spin-flip scattering
of the mobile ↑ electrons is permitted, and the scattering is effective when the
plane of the orbit lies in the plane of the current, but not when it lies in the
perpendicular direction.
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Calculation of the planar
Hall effect.

A phenomenon related to AMR, which depends on the direction of magneti-
zation of a conducting ferromagnet, is the planar Hall effect. Amagnetic field is
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applied in the plane of a thin sample, transverse to the direction of the current
jx , which is in the x-direction. If the magnetization lies in-plane at an angle
ϕ to the current direction, a transverse electric field Ey appears, just as in the
normal Hall effect. The anisotropic resistivity is related to the direction of M.
Resolving the electric field E into components parallel and perpendicular to
M , we have

E‖ = �‖jx cosϕ; E⊥ = �⊥jx sinϕ.

Now the components of the electric field parallel and perpendicular to the
current are Ex = E‖ cosφ + E⊥ sinφ and Ey = E‖ sinϕ − E⊥ cosϕ, hence

Ex = jx(�⊥ + � cos2 ϕ) and Ey = jx � sinϕ cosϕ.

The planar Hall voltage is therefore

VpH = jxw � sinϕ cosϕ, (5.81)

wherew is the width of the film. The planar Hall resistivity is�xy = 1
2 ρ sin 2ϕ.

The greatest change is found when the magnetization switches from ϕ = 45 ◦

to ϕ = 135 ◦.
So far, we have assumed that the magnetization of the ferromagnet is uniform,

and that the current flows at some fixed angle ϕ withM.When electrons move
in a solid they are influenced by the B-field they experience. In a ferromagnet,
the magnetization contributes to electron scattering, so that Kohler’s rule (5.74)
should be generalized to read

 �

�
= a(H/�)2 + b(M/�)2. (5.82)

Data for nickel in Fig. 5.40 show that the resistance exhibits a butterfly hysteresis
loop that reflects the hysteresis of the magnetization, although it is an even
function ofM , as expected.
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Anomalous Hall effect There is a term in the Hall resistivity of a ferromag-
net when the field is applied in the z-direction, perpendicular to the plane of
the film, in addition to the normal Hall effect (3.53). This is the anomalous Hall

effect, which varies with the magnitude of the magnetizationM:

�xy = µ0(RhH
′ + RsM). (5.83)

The anomalous Hall effect is yet another consequence of spin-orbit coupling.
The symmetry of the radial component of the Lorentz force j × B which
produces the normal Hall effect is the same as the symmetry of the spin-orbit
interaction L · S since L = r × p, p ∝ j , S ∝ µ0 M.

Applied field, H

xyr

Normal

Anomalous

H
al

l r
es

is
tiv

ity
, 

Anomalous Hall effect.

q
d

(i) Skew scattering and (ii)
side jump scattering which
both contribute to the
anomalous Hall effect.

In a ferromagnet the anomalous Hall effect varies as the macroscopic average
magnetization. Generally there are contributions which vary as �xx and as �2

xx ,
which are associated with different scattering mechanisms. Deviation of the
electron trajectories due to spin-orbit interaction is known as skew scattering.

Writing �m = µ0RH
′, the Hall angle φH is defined as �m/�xx. Thus φH =

α + β�xx ; α is the skew scattering angle. The second term is often larger. It is
associated with the side-jump mechanism due to impurity scattering. If δ ≈ 0.1
nm is the side jump, the Hall angle here is δ/λ, which is proportional to �xx.
Here λ is the mean free path.

The anomalous Hall effect is especially large in disordered ferromagnets with
strong impurity scattering, and in magnetic glasses. There is a small effect in
paramagnets, which follows a Curie–Weiss law. It is most useful for measuring
hysteresis in films when their Magnetization lies perpendicular to the plane.

Colossal magnetoresistance CMR is the substantial fall in resistance
observed in the vicinity of the Curie temperature of double-exchange mate-
rials such as La0.7Ca0.3MnO3 when they are subjected to a large applied mag-
netic field. The field aligns the partly disordered manganese moments, which
promotes electron hopping (§5.2), and in turn enhances the exchange. Such
ferromagnetic mixed valence oxides, where double exchange is the dominant
ferromagnetic coupling mechanism, show enhanced negative magnetoresis-
tance in the vicinity of TC. With our definition (5.72) the limit is −100%, but
an alternative, optimistic definition places �(H ) in the denominator:

MR = [�(H ) − �(0)]/�(H ),

producing a bigger number for the same change. For instance, if �(H ) =
0.1�(0), a 90% MR becomes a 900% effect with the new definition. There
is some justification for this, when the primary effect of magnetic field is to
increase conductance, since the definition is equivalent to

MR = [σ (H ) − σ (0)]/σ (0).

This is the order of magnitude that can be observed in materials such as
La0.7Sr0.3MnO3 in a large field, which merits the epithet ‘colossal’. Since
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Magnetoresistance of
La0.7Ca0.3MnO3 in a field of
10 T.

electron hopping (Fig 5.10) in a mixed-valence half-metal depends on
cos(θ ij /2) the resistance depends critically on the nearest-neighbour correla-
tions 〈Si · Sj 〉 ≈ 〈1 − θ2

ij 〉.Applying the field has the double effect of reducing
θ ij thereby increasing the ferromagnetic exchange and reducing θij further.
Some typical CMR data are shown in Fig. 5.41.

Despite the impressive magnitude of the resistance change, CMR is of limited
use because of the huge fields needed to create it. If the ratio of the resistance
change to the field needed to produce it is taken as the figure of merit, one
is better served by an AMR of 1% in a few milliteslas, than a CMR of 90%
in several teslas. The temperature dependence of resistivity near TC in CMR
materials has found some use in bolometers.H

M

j

s

'

Magnetoimpedance. The
AC field created by jAC

penetrates the wire to a
depth δs, the skin depth.
The permeability of the
circumferentially
magnetized wire is
saturated in the applied
field H ′.

Magnetoimpedance The total impedance Z of a ferromagnetic component
changes when it is exposed to a static magnetic field. The effect relates to the
inductance L:

Z = R + iωL,

where L = �/I is the ratio of magnetic flux to current. Magnetoimpedance is
conventionally defined as

MI = Z(H ) − Z0

Z0
, (5.84)

where Z0 is the impedance in a field that is large enough to saturate the effect.
In soft ferromagnets, the effect may be hundreds of per cent at megahertz
frequencies. Hence the ‘giant’ epithet again.

The effect is related to the skin depth δs (12.2), which is the depth an
AC field penetrates into a metal. In a ferromagnet, δs varies as (µrω)−1/2.



189 5.6 Ferromagnetic phenomena

f (MHz)

 Im
pe

da
nc

e 
(a

rb
ita

ry
 u

ni
ts

)

1

0.8

0.6

0.4

0.2

0
0.01 0.1

1

10 100

Figure 5.42

Frequency response of the
impedance of an
amorphous Fe4.3Co68.2Si12.5

B15 wire, 30 µm in
diameter, in zero field, and
in a field of 800 A m−1

applied parallel to the wire
(after L. V. Panina and K.
Mohri, Appl. Phys. Lett. 65
1189 (1994)).

Magnetoimpedance is best explained for a soft ferromagnetic wire carrying
an AC current I = I0 exp(iωt). The current creates a circumferential magnetic
field around the wire that penetrates to a depth δs. Circumferential anisotropy
Kc is created if the wire has a small positive magnetostriction. The anisotropy
field Ha = 2Kc/µ0Ms controls the response of the induced magnetization to
a DC field H ′ applied parallel to the wire, and hence the permeability in the
skin depth. For good results, Ha should be an order of magnitude greater than
the field H ′ it is desired to measure. A typical response of a soft amorphous
ferromagnetic wire is shown in Fig. 5.42.

x

y
z

E
B

An electromagnetic wave.

5.6.5 Magneto-optics

Michael Faraday’s 1845 discovery of a connection between magnetism and
light was an advance comparable in importance to Hans-Christian Oersted’s
discovery of the connection between magnetism and electricity. He found that
the plane of polarization of light rotates as it passes through a glass plate
when a magnetic field is applied parallel to the direction eK of propagation
of the light. Light is an electromagnetic wave, where the E-field and the H-
field are perpendicular to each other, and transverse to the propagation vector
K = (2π/�)eK ; � is the wavelength of light. The direction of polarization is
defined by E.

k
qF

M

The magneto-optic Faraday
effect. The plane of
polarization of incident
light is rotated through an
angle θ F . In a
magneto-optic isolator,
θ F = π/4, and polarizers
offset by this angle are
placed at each end.

An H-field has no influence on the electromagnetic wave; the Faraday effect

is due to the interaction of light with the induced magnetization M of the solid
medium. Faraday’s original demonstration was for paramagnetic glass, but Fara-
day rotation is also observed when light traverses a diamagnet or a transparent,
spontaneously magnetized ferromagnet or ferrimagnet. The Faraday rotation
in water, for example, is 3.9 rad T −1m−1. The sense of rotation reverses when
the magnetization direction is switched. Conventionally, the angle of rotation
θF is positive if the plane of polarization of the light turns clockwise when the
observer faces the source.
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Table 5.12. Faraday rotation in ferromagnetic
metals and ferrimagnetic insulators

θF /t at 830 nm θF /t at 1.06 µm
(◦ µm−1) (◦ mm−1)

Fe 35 Y3Fe5O12 28
Co 36 Tb3Fe5O12 54
Ni 10

The Faraday constant is proportional to the optical path length

θF = kV
∫
µ0 M · dl (5.85)

where kV (�) is the Verdet constant of the material, which depends on wave-
length. Since the H-field has no influence, (5.85) may be equally well written
as θF = kV Bl for a uniformly magnetized sample. The Faraday effect is nonre-

ciprocal in the sense that the rotation (clockwise or counterclockwise) depends
on whether the wavevector K of light is parallel or antiparallel to M. Hence
Faraday rotation is cumulative; as light is reflected back along its path in a
magnetic medium, the resultant rotation is twice that for a single pass, not zero.
This property is exploited in magneto-optic isolators. If the length l is chosen
so that θF = π/4, light entering through a polarizer passes through the isolator
in one direction, but reflected light is blocked. Some values of θF per unit path
length are given in Table 5.12. The Verdet constants are 1000 times greater
for ferromagnetic metals than for transparent ferrimagnetic insulators, but the
comparison is misleading because metals are opaque unless they are very thin.
A better figure of merit is the product of kV and the absorption length, which
is a few degrees per tesla for both. The Faraday rotation is strongly wavelength
dependent, and it is enhanced near an absorption edge.1 2

°
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of photon energy for Fe,
Co, Ni.

A related effect for reflected light was discovered by John Kerr in 1877. He
noticed that the plane of polarization of light reflected from the polished iron
pole face of an electromagnet was rotated by less than 1◦ . The sense of the
rotation again switched when the magnetization reversed. The Kerr rotation
for 3d ferromagnets shows a maximum in the optical region at about 1.5 eV
(Table 5.13).

The polar configuration is one of three where a magneto-optic Kerr effect
(MOKE) can be observed. In the other two, the magnetization lies in-plane,
either transverse to the plane containing the incident and reflected rays, or lon-
gitudinal within that plane (Fig. 5.43). In the longitudinal configuration, there is
also a rotation of the polarization of the incident ray by less than a degree, and a
slight ellipticity of the reflected beam, but in the transverse configuration there
is just a difference in reflectivity for light polarized in-plane or perpendicular
to the plane of incidence, which depends on the magnetization of the sample.
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Table 5.13. Kerr rotation in ferromagnetic
metals at 830 nm (1.5 eV)

θK (◦) θK (◦)

Fe −0.53 CoPd −0.17
FePt −0.39 CoPt −0.36
FeCo −0.60 Ni −0.09
Co −0.36 PtMnSb −1.3

( a ) ( b ) ( c )

M

M

M

Figure 5.43

Three configurations in
which the magneto-optic
Kerr or Faraday effects can
be observed: (a) polar, (b)
transverse, (c) longitudinal.

For the polar and longitudinal effects, there is a small, magnetization-sensitive
component kK at right angles to the reflected intensity rK which leads to the
Kerr rotation θK and ellipticity eK. When kK � rK , θK and eK are given by
the expressions

θK = ψK cosφK and eK = ψK sinφK,

whereψK = |K/r|, and φK is the phase difference betweenK and r . The polar
Kerr effect finds applications in measuring the hysteresis of thin films, domain
imaging and magneto-optic recording.

Both Faraday and Kerr effects are related to spin-orbit coupling. They may
be enhanced by incorporating heavy elements such as bismuth into the crys-
tal lattice. Magnetic permeability is not involved because the permeability is
frequency-independent and equal toµ0 at optical frequencies, which are orders
of magnitude greater than the Larmor precession or ferromagnetic resonance
frequency. The speed of light in a medium, v, just depends on its electrical
permittivity ε: v = (µ0ε)

−1/2, where ε = ε0εr .

The permittivity of a crystal is generally a symmetric tensor defined by
Di = εijEj . It is simplified in the principal axis system to one with only diag-
onal elements, εxx, εyy, εzz. When the crystal is isotropic, all three are equal.
However, if the crystal is magnetized along Oz the direction of propagation
of the light, the magneto-optic permittivity tensor becomes a Hermitian, skew-
symmetric matrix if spin-orbit coupling is present:

ε̂ = ε0εr


 1 iQ 0

−iQ 1 0
0 0 1


 . (5.86)
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This is an example of Onsager’s principle for the symmetry of a response function
εij (M) = −εji(M) = εji(−M). Both the index of refraction n = ε1/2

r and the
magneto-optic parameter Q have real and imaginary parts:

n = n′ − in′′ and Q = Q′ − iQ′′,

which are complex constants of the material that define its magneto-optic
properties.

An interpretation of the off-diagonal matrix elements is that the magnetic
field H in the electromagnetic wave gives rise to a Lorentz force −µ0e(v × H)
which mixes the x and y components of the electron’s motion. In ferromag-
nets with quenched orbital moments, it is not possible to distinguish between
clockwise and anticlockwise electron motion, and εxy = 0.However, spin-orbit
interaction restores an orbital moment, and leads to magnetic dichroism and
Faraday or Kerr rotation.

An eigenvalue equation ε̂E = n2
0 E can be formed from (5.86). The eigenval-

ues obtained by diagonalizing the matrix are n = ε1/2
r (1 ±Q)1/2 � ε1/2

r (1 ±
1
2Q) since Q is a small quantity, of order 10−3 or 10−4. The two eigenmodes

are

[
1
i

]
and

[
1
−i

]
or Ex ± iEy , which corresopond to left and right circular

polarization of the electric field. These modes, denoted σ+ and σ−, experience
slightly different refractive indices, and therefore propagate at slightly different
speeds c/n = cε−1/2

r (1 ± 1
2Q)−1. This is an effect known as circular birefrin-

gence and the resulting phase difference between the modes causes the Faraday
rotation.

The two fundamental modes σ+ and σ− correspond to the quanta of elec-
tromagnetic radiation, known as photons, which are massless particles with
� = 1 and m� = ±1 (but not zero). Photons carry angular momentum, which
can take two values, ±�, when projected along the direction of propagation.
The polarization of the left- and right-circularly polarized beams rotate clock-
wise and anticlockwise respectively, when viewing the source. When the light
is absorbed by the electron system of a solid, the photons can transmit their
angular momentum to the electrons, thereby changing the projection of the
magnetic moment along Oz.

When K‖M, the orbital contribution to the magnetization involves electrons
circulating in the same sense as E for one mode and in the opposite sense for
the other. The two modes see slightly different relative permittivities ε+,−r and
refractive indices n+,−, where εr = n2. The absorption is also slightly different
for the two modes, an effect known as circular dichroism which leads to an
elliptical polarization of the rectilinearly polarized incident light.

A summary of the four main magneto-optic phenomena is provided in
Table 5.14. Besides the Faraday and Kerr effects, linear inM , which depend on
spin-orbit coupling, there are also second-order magneto-optic effects varying
as M2 which depend on whether the plane of polarization of the light lies
parallel or perpendicular to the magnetization, which is in the xy-plane.
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Table 5.14. Magneto-optic phenomena

Geometry Physical effect Phenomenon Condition M dependence

M‖K Circular birefringence Faraday/Kerr rotation n+ �= n− ∼ M
Circular dichroism Magnetic circular dichroism α+ �= α− ∼ M

M⊥K Linear birefringence Cotton-Mouton effect n‖ �= n⊥ ∼ M2

Linear dichroism Magnetic linear dichroism α‖ �= α⊥ ∼ M2

Magneto-optic effects are not restricted to the optical frequency range, but
exist also in the microwave, ultraviolet and X-ray ranges. Magnetic permeability
is important at microwave frequencies. Magnetic circular dichroism (MCD) is
enhanced near X-ray absorption edges, especially the L-edges of transition
metals. It is a useful technique for investigating magnetic materials because it
is element specific, and capable of separating the spin and orbital contributions
to the magnetic moment (see §10.4.2).

Finally, we mention nonlinear optical effects which appear as a result of the
intense electric fields in pulsed laser beams. These effects are forbidden in cen-
trosymmetric crystals. At surfaces, there is no centre of symmetry, and second

harmonic generation is a particularly sensitive method for selectively studying
the magnetization of ferromagnetic surfaces and interfaces in reflection.
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EXERCISES

5.1 Calculate the heat capacity for a ferromagnet near TC in Landau theory.
5.2 Estimate the Curie temperature of gadolinium from the RKKY model. Take

S = 7/2 and n = 3 × 1028 m−3.

5.3 Use the magnetic valence model to estimate:
(a) the average moment/atom in an Fe40Ni30B20 alloy and in Co80Cr20;
(b) the critical concentration for the appearance of magnetism in amorphous

Y1−xFe.
5.4 Diagonalize the matrix (5.39). Rank the eigenvalues in order and identify the

states to which they correspond.
5.5 Use (5.24) and (5.57) to deduce the result that the ground state for a chain of

spins has eigenvalue −2(N − 1)J S2.
5.6 Show that the low-temperature heat capacity due to excitations which obey a

dispersion relation ε = Dq2 varies as T 3/2 for a three-dimensional solid. How is
the heat capacity modified by an anisotropy gap  at q = 0?

5.7 By minimizing the energy of a uniaxial ferromagnet with two anisotropy con-
stantsK1 andK2, show how to deduce the two constants from the magnetization
curve in the hard direction (Sucksmith–Thompson plot).

5.8 Explain why it is impossible to produce a permanent magnet of arbitrary shape
using shape anisotropy alone.

5.9 Show explicitly that the quadrupole moment of a rare-earth ion vanishes at high
temperatures. Is it possible to observe anisotropy above the Curie point?

5.10 Deduce the κj (T )/κj (0) = Mj (j+1)/2 law for j = 2, 4 (see H. B. Callen and E.
Callen; J. Phys. Chem. Solids, 27 1271 (1966)).

5.11 Show that the spontaneous volume magnetostriction varies asM2
s . The associated

energy is 1
2Kω

2
s , where K is the bulk modulus.

5.12 Discuss the effect on (a) the magnetization and (b) the resistivity of introducing
5% of Cr into a Ni host.

5.13 Devise a mechanical experiment to show that light carries angular momentum,
making an estimate of the magnitude of the effect that might be observed.

5.14 The magnetization calculated from Langevin theory has nonzero slope at
T = 0 K. According to (2.102) this implies that the entropy is finite, which
is incompatible with the third law of thermodynamics. Discuss.



6 Antiferromagnetism and other
magnetic order

Je prefere explorer les forêts vierges que cultiver un jardin de curé.
Louis Néel

Negative exchange J < 0 leads to magnetic order that depends on lattice topol-
ogy. Structures with more than one magnetic sublattice include antiferromagnets
and ferrimagnets. An antiferromagnet has two equal but oppositely directed sub-
lattices, where the sublattice magnetization disappears above the Néel point T N .
Two unequal oppositely directed magnetic lattices constitute a ferrimagnet. The
molecular field theory is extended to cover these cases. A wealth of more complex
noncollinear magnetic structures exist. The subtle effects of a noncrystalline struc-
ture are manifest in amorphous magnets, where spins sometimes freeze in random
orientations. Magnetic model systems highlight the influence of some particular
feature on collective magnetic order, such as reduced space or spin dimensionality,
a particular distribution of exchange interactions, special topology or lack of crystal
structure. Examples include the two-dimensional Ising model, frustrated antiferro-
magnets and canonical spin glasses.

Antiferromagnetism is an occult magnetic order. A crystal lattice is subdivided
into two or more atomic sublattices which order in such a way that their net
magnetization is zero. Louis Néel, who was a student of Pierre Weiss, first
discussed this possibility in 1936 for two equal and oppositely aligned sub-
lattices. The antiferromagnetic ordering transition, known as the Néel point,

is marked by a small peak in the magnetic susceptibility, and a substantial
specific heat anomaly, similar to that found at the Curie point of a ferro-
magnet (Fig. 5.36). It was only with the advent of neutron scattering in the
1950s that it became possible to measure the sublattice magnetization Mα
directly. Sublattice magnetization is the order parameter, and its conjugate field
(which we cannot produce in the laboratory, although we can measure the
generalized susceptibility χ (K ,�) by neutron scattering) is a staggered field
which alternates in direction from one atomic site to the next, in at least one
direction.

Data on a few well-known antiferromagnets are collected in Table 6.1.
Transition-metal oxides and fluorides are frequently antiferromagnetic, as are
Cr, Mn and many of their alloys.
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Table 6.1. Some common antiferromagnets

Structure TN (K) θp (K) µ0Mα (T)

Cr sdw 311 0.20
Mn Complex 96 ∼ −2000 0.20
NiO Néel 524 −1310 0.54
αFe2O3 Canted 958 −2000 0.92
MnF2 Néel 67 −80 0.78
FeMn Néel 510 0.53
IrMn3 Néel 690 0.50

sdw – spin density wave; Néel – two collinear sublattices.

6.1 Molecular field theory of antiferromagnetism

Néel antiferromagnets have two equal and oppositely directed magnetic sub-
lattices, designated ‘A’ and ‘B’, with sublattice magnetizations MA = −MB .
The negative Weiss coefficient nAB represents the intersublattice molecular
field coupling, and a further coefficient nAA may be included to account for
intrasublattice molecular field interactions.

The ‘molecular’ fields acting on each sublattice are

H i
A = nAAMA + nABMB + H,

(6.1)
H i
B = nBAMA + nBBMB + H,

where nAA = nBB , nAB = nBA and H is the contribution from an externally
applied field.

The net magnetization M = MA + MB is zero when H = 0. The magneti-
zation of each sublattice falls to zero at the Néel point TN, and the spontaneous
magnetization of each of them is represented by a Brillouin function (4.17):

Mα = Mα0BJ (xα), (6.2)

where α = A,B and xα = µ0m|Hiα|/kBT . Here MA0 = −MB0 =
(n/2)gµBJ = (n/2)m. The number of magnetic ions per unit volume is
n, with n/2 on each sublattice.

M/M0

TTN

M

MB

A

Sublattice magnetization of
an antiferromagnet. T N is
the Néel temperature.

In the paramagnetic region above TN, Mα = χH i
α, where χ = C ′/T with

C ′ = µ0(n/2)m2
eff /3kB . Hence

MA = (C ′/T )(nAAMA + nABMB + H),
(6.3)

MB = (C ′/T )(nBAMA + nBBMB + H).

The condition for the appearance of spontaneous sublattice magnetiza-
tion is that these equations have a nonzero solution in zero applied field.
The determinant of the coefficients of MA and MB must be zero, hence
[(C ′/T )nAA − 1]2 − [(C′/T )nAB]2 = 0, which yields the Néel temperature:
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TN = C ′(nAA − nAB). (6.4)

nAB is negative and TN is positive, so the negative sign is chosen in the square
root. To calculate the susceptibility above TN we evaluate χ = (MA +MB )/H .
Adding Eq. (6.3) gives the Curie–Weiss law

χ = C/(T − θp), (6.5)

where C = 2C′ and the paramagnetic Curie temperature is given by

θp = C ′(nAA + nAB ). (6.6)

The inverse susceptibility of an antiferromagnet is shown schematically in
Fig. 6.1. In the two-sublattice model, we can therefore evaluate both nAB and
nAA from a knowledge of TN and θp. Since nAB < 0, it follows that θp < TN ;
the paramagnetic Curie temperature is usually negative. Normally 1/χ is plotted
versus T to determine θp by extrapolation, and meff is obtained from the slope
using (4.16). TN is marked only by a small cusp in the susceptibility.

The antiferromagnetic axis along which the two sublattice magnetizations
lie is determined by magnetocrystalline anisotropy, and the magnetic response
below TN depends on the direction of H relative to this axis. There is no shape
anisotropy in an antiferromagnet, because there can be no demagnetizing field
when M = 0. It might be thought that there would be no antiferromagnetic
domains for the same reason, but entropy can drive domain formation at finite
temperature.

H

MA

MB

c||

c⊥

Calculation of the
susceptibility of an
antiferromagnet well
below T N . The dashed lines
show the configuration
after a spin flop.

If a small field is applied parallel to the antiferromagnetic axis, we can
calculate the parallel susceptibility χ || by expanding the Brillouin functions
about their argument x0 in zero applied field in terms of the derivative
B′
J (x) = ∂BJ (x)/∂x: BJ (x0 + δx) = BJ (x0)+ δxB′

J (x0). For simplicity we set
nAA = 0. The result for χ || = [MA(H ) +MB(H )]/H is

χ || = 2C ′[3J/(J + 1)]B′
J (x0)

T − nABC ′[3J/(J + 1)]B′
J (x0)

, (6.7)

where x0 is −µ0mnABMα/kBT , |MA| = |MB | = ngµBJ/2 and m2 =
g2µ2

BJ (J + 1). As T → 0 K, it can be seen from (6.7) that χ‖ −→ 0, so
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Parallel and perpendicular
susceptibility of an
antiferromagnet.

the field has no effect because the two sublattices are saturated, B′
J (x0) = 0.

As T increases, MA and MB are reduced by thermal fluctuations, and the sus-
ceptibility rises from zero at T = 0 K to reach the paramagnetic value (6.5)
at TN . When Mα = 0 and B′

J (0) = (J + 1)/3J the susceptibility adopts the
Curie–Weiss form, since TN = −θp = −C ′nAB. The susceptibility reaches its
greatest value χ ‖ = −1/nAB at TN . The stronger the antiferromagnetic inter-
action, the lower the maximum susceptibility.

M
A

MB

d

2d

H

Calculation of
perpendicular
susceptibility.

The perpendicular susceptibility can be calculated assuming the sublattices
are canted by a small angle δ. In equilibrium the torque on each one is zero,
henceMAH = MAnABMB sin 2δ. SinceM⊥ = 2Mα sin δ,

χ⊥ = −1/nAB. (6.8)

The perpendicular susceptibility is therefore constant, independent of temper-
ature up to TN , Fig. 6.2. The exchange parameter |nAB | is greater than 100
for materials that are antiferromagnetic at room temperature, so their suscep-
tibility is typically of order 10−2. For a powder, the average susceptibility is
1
3χ || + 2

3χ⊥, or 2/(3nAB ) at low temperatures.
Since χ⊥ > χ || for all T < TN , one might have expected that an antiferro-

magnet would always adopt the transverse, flopped configuration in an applied
field. That it does not is due to magnetocrystalline anisotropy, represented by
an effective anisotropy field (§5.5.2), which acts on each sublattice to pin the
magnetization along the easy antiferromagnetic axis. If the uniaxial anisotropy
constant isK1, the anisotropy fieldHa is equal toK1/µ0Mα.When H is applied
parallel to Mα a spin flop occurs in the field where the energies of the parallel
and perpendicular configurations are equal:

−2MαHa − 1
2χ ||H 2

sf = − 1
2χ⊥H 2

sf

Hsf = [4MαHa/(χ⊥ − χ ||)]
1
2 . (6.9)

When T � TN , from (6.2), (6.7) and (6.8) this reduces to Hsf = 2 (HaH i
a)

1
x .

Taking as orders of magnitude for the anisotropy field µ0Ha and the molecular
field µ0H

i, 1 T and 100 T respectively, the spin-flop field µ0Hsf is of order
10 T. Further increase of the applied field leads to saturation when H = Hiα.
Low-temperature antiferromagnets with weak intrasublattice interactions which
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(a) Magnetization of an
antiferromagnet as a
function of applied
magnetic field, showing: (i)
a metamagnetic transition
and (ii) a spin-flop
transition. (b) The phase
diagram for the
antiferromagnet.

undergo a transition directly to the saturated ferromagnetic state whenH > Ha
are known as metamagnets, Fig. 6.3.

6.1.1 Artificial antiferromagnets

Artificial antiferromagnets are thin-film stacks with alternating layers of a fer-
romagnet such as cobalt and a nonmagnetic metal such as copper or ruthenium
which serves to provide magnetic coupling from one ferromagnetic layer to
the next. The structure can be reduced to a three-layer sandwich. Now Mα is
the magnetization of the ferromagnetic layer, and µ0H

i
α represents the inter-

layer coupling. Typically µ0H
i
α and µ0Ha are of order 1 T, so the spin-flop

field µ0Hsf is similar in magnitude. Artificial antiferromagnets are used in
spin-valve structures, discussed in Chapter 8.

Ferromagnet
    e.g. Co

Nonmagnetic 
metal, e.g. Ru

An artificial
antiferromagnet. The
nonmagnetic coupling
layer is shaded dark grey.
The simplest structure
consists of just three
layers.

6.1.2 Spin waves

The spin waves in an antiferromagnet can be calculated by considering a two-
sublattice chain where the atoms are numbered sequentially and writing the
equations of motion for each of the two sublattices. Following the procedure
of §5.4.1, we obtain the following equations of motion for the transverse spin
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components for the two sublattices:

�
dSxj
dt

= 2J S(−2Syj − Syj−1 − Syj+1) j odd (6.10)

�
dSyj
dt

= −2J S(−2Sxj − Sxj−1 − Sxj+1) (6.11)

and

�
dSxj
dt

= 2J S(2Syj + Syj−1 + Syj+1) j even (6.12)

�
dSyj
dt

= −2J S(2Sxj + Sxj−1 + Sxj+1). (6.13)

Adding the pairs of equations and using the definitions of S± (§3.1.4),

�
dS+
j

dt
= 2iJ S[2S+

j + S+
j−1 + S+

j+1] for j odd,

�
dS+
j

dt
= −2iJ S[2S+

j + S+
j−1 + S+

j+1] for j even.

Looking for wave-like solutions

S+
j = A exp i(qja − ωqt) for j odd,

S+
j = B exp i(qja − ωqt) for j even

leads to the equations

−i�ωqA = 4iJ S[A+ B cos qa],

−i�ωqB = −4iJ S[A cos qa + B].

Equating the determinant of the coefficients to zero then yields the antiferro-
magnetic spin-wave dispersion relation:

�ωq = 4J S sin qa. (6.14)

The dispersion is linear for small values of q, �ωq ≈ q, unlike the quadratic
dispersion for ferromagnetic magnons (5.56). In general, if bosons have a dis-
persion relation �ωq ≈ qn the sublattice magnetization and specific heat both
vary as T 3/n (Exercise 6.3). The T 3 variation of magnetic specific heat in an
antiferromagnet is practically indistinguishable from the phonon contribution.
As with ferromagnetic magnons, there is a gap  at q = 0 due to magne-
tocrystalline anisotropy. Magnon dispersion relations for haematite, a common
antiferromagnet, are shown in Fig. 6.4.

6.2 Ferrimagnets

A ferrimagnet may be regarded as an antiferromagnet with two unequal
sublattices. Most oxides which possess a net ordered magnetic moment are
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Table 6.2. Some common ferrimagnets

Sublattices Tc (K) Tcomp (K)

Fe3O4 8a;16d 856
YFe5O12 16a;24d 560
BaFe12O19 2a,2b,4f1,4f2,12k 740
TbFe2 8a,16d 698
GdCo5 1a,2c,3g 1014 287
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Antiferromagnetic
spin-wave dispersion
relations in αFe2O3 along
different directions in the
Brillouin zone, determined
by inelastic neutron
scattering. (E. J. Samuelsen
and G. Shirane, Phys. Stat.
Sol b42, 241 (1970).)

ferrimagnets. Some of them are listed in Table 6.2. An example is yttrium–iron
garnet (YIG) Y3Fe5O12 (§11.6.6). The iron in YIG is ferric (Fe3+, 3d5) and
occupies two different crystallographic sites, one (16a) octahedrally coordi-
nated by oxygen, the other (24d) tetrahedrally coordinated by oxygen. Neigh-
bouring sites share a common oxygen ligand, and there is a strong antiferromag-
netic a–d interaction. The ferrimagnetic configuration leads to a moment of 5µB
per formula at T = 0 K, due to the single uncompensated 3d5 ion per formula
unit.

24d

16a

8a

16d

YIG

Magnetite

Ferrimagnetic con-
figurations of YIG and
magnetite.

The most famous ferrimagnet of them all is magnetite (§11.6.4), the archetyp-
ical permanent magnet. Magnetite has the spinel structure with formula Fe3O4.
Again there are two cation sites with different multiplicities in the unit cell,
an 8a tetrahedral site (A site) and a 16d octahedral site (B site). The iron in
magnetite is a 2:1 ferric:ferrous mixture to ensure charge neutrality with the
O2−. The A site is occupied by ferric iron, Fe3+, and the B site by an equal
mixture of ferric and ferrous, Fe3+ and Fe2+. The ferrimagnetic configuration
leads to an uncompensated ferrous (Fe2+, 3d4) spin-only moment of 4µB per
formula at T = 0 K.

Labelling the two unequal and oppositely directed magnetic sublattices ‘A’
and ‘B’, the net magnetization M = MA + MB is nonzero. Three different
Weiss coefficients nAA, nBB and nAB are needed to represent the inter- and
intrasublattice interactions. The essential interaction, nAB , is negative. The
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Sublattice magnetization of
a ferrimagnet. Tc is the
ferrimagnetic Néel
temperature. On the left,
|nAB | � |nAA|, |nB B |, and
on the right, |nB B | � |nAB |,
|nAA|. Tcomp is the
compensation temperature
where the net
magnetization is zero.

difference compared with (6.1) is that MA �= MB and nAA �= nBB :

H i
A = nAAMA + nABMB + H,

(6.15)
H i
B = nBAMA + nBBMB + H .

The magnetization of each sublattice is represented by a Brillouin function,
and when H = 0 each falls to zero at a critical temperature Tc, known as the
ferrimagnetic Néel temperature. In some circumstances (Fig. 6.5) it is possible for
the two sublattice magnetizations to cancel exactly at a temperature known as
the compensation temperature, Tcomp. The sublattice magnetizationMα equals
Mα0BJ (xα), where α = A,B and xα = µ0mαH

i
α/kBT .

Above Tc, Mα = χαH i
α, where χα = Cα/T with Cα = µ0nαm

2
eff /3kB .

Here nα is the number of atoms per cubic metre on a particular sublattice.
Hence

MA = (CA/T )(nAAMA + nABMB + H),
(6.16)

MB = (CB/T )(nABMA + nBBMB + H).

The condition for the appearance of spontaneous sublattice magnetization is
that these equations have a nonzero solution in zero applied field. The determi-
nant of the coefficients is zero, hence [(CA/T )nAA − 1][(CB/T )nBB − 1] −
(CACB/T 2)n2

AB = 0, which yields

Tc = 1
2

[
(CAnAA + CBnBB ) +

√
(CAnAA − CBnBB )2 + 4CACBn2

AB

]
.

(6.17)
The expression for the susceptibility above Tc is obtained from (6.16):

1

χ
= T − θ
CA + CB − C ′′

T − θ ′ , (6.18)
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Inverse susceptibility of a
ferrimagnet above its
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where

C′′ =
(
CACBn

2
AB

CA + CB

)
[CA(1 + nAA) − CB (1 + nBB)]2,

θ =
(
CACBnAB

CA + CB

)[
nAA

CA

CB
− nBB CB

CA
− 2

]
,

θ ′ =
(
CACBnAB

CA + CB

)
[nAA + nBB + 2].

Equation (6.18) is the equation of an hyperbola, as shown in Fig. 6.6.

6.3 Frustration

Ferromagnetic interactions are satisfied by a parallel alignment of the atomic
moments. Antiferromagnetic interactions may not be so easily appeased. In
structures with odd-membered rings it is impossible to satisfy all the anti-
ferromagnetic interactions simultaneously. A consequence is that TN � |θp|.
Examples of crystal lattices where nearest-neighbour interactions are naturally
frustrated include the triangular, kagomé, fcc and tetrahedral lattices. The 16d
sites of the spinel structure form a tetrahedral lattice; each tetrahedron has four
triangular faces.

As an illustration of frustration, consider the lowest-energy configurations
for three-, four- and five-membered rings in Fig. 6.7. The exchange is supposed
to be of the form −2J Si · Sj with either Ising spins, which have only one
component (S = (0,±1)) or vector spins (S = (Sx, Sy), with S2

x + S2
y = 1).

Triangular lattice

Kagomé lattice

Some frustrated
two-dimensional
antiferromagnetic
lattices – the triangular
and kagomé lattices.

Exchange in the odd-membered rings is frustrated, which means that the total
exchange energy divided by the number of bonds is less than J . Besides a low
ordering temperature, the hallmarks of frustration are increased degeneracy of
the ground state and a tendency to form noncollinear spin structures, epitomized
by the three- and five-membered rings in Fig. 6.7(b).
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(a)

Energy per bond:

Degeneracy:

Energy per bond:

[6] [2] [10]

(b)

Figure 6.7

Lowest-energy
configurations for (a) Ising
and (b) classical 2D vector
spins forming three-, four-
or five-membered rings.
Energy per bond in units
of J and the degree of
degeneracy for Ising spins
are shown.

6.3.1 Cubic antiferromagnets

A feature of many crystal lattices is that there can be several different ways
of constituting the two equal antiferromagnetic sublattices. Different spin con-
figurations have different topology. The orientation of the spins relative to the
crystal axes is a separate issue, determined by magnetocrystalline anisotropy.
Heisenberg exchange is isotropic, so it imposes no particular antiferromagnetic
axis.

1

2

Magnetic interactions in a
simple cubic lattice.

Simple cubic Four possible antiferromagnetic modes for a simple cubic lat-
tice are shown in Fig. 6.8. Two possible superexchange paths J1 and J2 exist
for nearest-neighbour and next-nearest-neighbour interactions. Longer-range
interactions are possible, especially in metals. Although no simple cubic ele-
ments exist, except polonium, the magnetic ions in a compound often form a
simple-cubic sublattice: the ‘B’ sites in perovskite, ABO3 are an example. If
J1 is the only antiferromagnetic interaction, the bonds are unfrustrated and a
G mode is adopted, where all the six nearest neighbours of a particular atom
lie on the opposite sublattice. The structure is composed of alternate ferromag-
netic [111] planes. If J2 is the only antiferromagnetic interaction, it becomes
impossible to satisfy all twelve next-nearest-neighbour bonds simultaneously,
and the best solutions have eight of them on the opposite sublattice and four
on the same sublattice, as in the A and C modes. There are four magnetic
sublattices, and the equation for TN involves a fourth-order determinant. The
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Antiferromagnetic modes
for the simple cubic lattice.
The two sublattices are
represented by light and
dark shading.

fourth, F , mode is ferromagnetic. More general magnetic structures can be
generated by combining different modes with components along the Cartesian
axes. Small distortions of the lattice may favour particular orbital occupancy
for Jahn-Teller ions, which modifies orbital overlap, and hence the exchange.

Body-centred cubic Here, there exist unfrustrated structures where either
nearest-neighbour interactions J1 or next-nearest-neighbour interactions J2

can be completely satisfied. In the latter case, there are two completely decou-
pled simple-cubic antiferromagnetic structures. The structures are known as
type I and type II bcc order, respectively. If both antiferromagnetic interactions
are present, conflicts arise which may have to be accommodated in a partly
frustrated, compromise ground state. If the two exchange interactions J1 and
J2 are represented by molecular field coefficients, the regions of stability of
the ferromagnetic and antiferromagnetic structures are as shown in Fig. 6.9.

Face-centred cubic The best-known frustrated antiferromagnet has an fcc
lattice. Here the nearest-neighbour exchange J1 is always frustrated, just like
J2 in the simple-cubic lattice. The fcc lattice divides into four simple-cubic
sublattices with magnetizations MA, MB , MC and MD. Each atom has four
nearest neighbours on each of the other three sublattices. At best two out of three
neighbours of a given spin can be aligned antiparallel. In zero applied field, the
molecular field equations are MA = M0BJ (xA), where xA = µ0mA[nAAMA +
nAB(MB + MC + MD) + H]/kBT , etc.
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Antiferromagnetic modes
for the bcc lattice.

Considering only the intersublattice interaction nAB , it follows that

TN = C ′nAB , θp = 3C′nAB, (6.19)

where C′ = µ0NAm2
eff /3kB . Note that θp = 3TN . We can read the strength of

the individual exchange interactions in extrapolating to zero the susceptibility
measured at high temperature. The Néel temperature, however, reflects the
extent to which it is possible to satisfy all the exchange bonds simultaneously.
When the magnetic structure is known, it may be possible to deduce the two
molecular field coefficients, and hence the exchange interactions J1 and J2

from knowledge of TN and θp.
There are three possible magnetic modes for the fcc lattice, illustrated in

Fig. 6.10. The structure with alternating ferromagnetic [001] planes is type I.
That with a structure of alternating ferromagnetic [111] planes is type II. Type
III is made up of alternating antiferromagnetic [001] planes. The transition-
metal monoxides MnO, FeO, CoO and NiO all have type II order. MnTe2

and MnS2 are examples of type I and type III order, respectively. The regions
of stability for different values of the first and second neighbour molecular
field coefficients are shown in Fig. 6.10. A fourth type of order, consisting
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Antiferromagnetic modes
for the fcc lattice.

of alternating ferromagnetic [110] planes, can be stabilized by interactions
extending beyond second neighbours, as in CrN.

Just as there can be no strictly cubic ferromagnet, because of magnetostric-
tion, so there can be no strictly cubic antiferromagnet for the same reason.
Magnetostriction produces a deformation of the structure along the antiferro-
magnetic axis. A slight tetragonal or rhombohedral distortion arises, depending
on whether the axis is [100] or [111].

6.3.2 Orbital order

Cations with d-electrons in orbitally degenerate energy levels may exhibit elec-
tronic ordering effects that are formally equivalent to antiferromagnetism. Con-
sider the example of Cu2+, a 3d9 cation, octahedrally coordinated by oxygen.
This cation has its ninth electron in an e↓g level, where the dz2 and dx2−y2 orbitals
are degenerate. However, d9 is a Jahn–Teller ion, which tends to elongate or
flatten the octahedron in order to stabilize one orbital or the other. It may be
energetically favourable to alternate the configurations, so that the distortions of
neighbouring octahedra match. There is thenG-type orbital order, where there
are two sublattices, composed of ions with electrons in dz2 or dx2−y2 orbitals.

Correlated distortions of
oxygen octahedra around
d4 or d9 ions. The arrows
indicate displacements of
the oxygen ions.

1

2

A planar helimagnet.

6.3.3 Helimagnets

It is possible for ferromagnetic and antiferromagnetic interactions to be in
conflict. A good example is a layer structure where ferromagnetic layers couple
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(a)

(b)

(c)

(d)

Figure 6.11

Some incommensurate
magnetic structures:
(a) helical, (b) cycloidal,
(c) helicoidal and
(d) sinusoidally modulated.
Only (b) has a net
ferromagnetic moment.

ferromagnetically to the neighbouring layers, but antiferromagnetically to the
next-neighbour layers. A helical spin structure is then possible. If J1 and J2 are
the exchange constants for the first and second neighbour planes, the energy of
a spin in the central plane,

ε = −4J1S
2cosθ − 4J2S

2 cos 2θ,

is minimized when cos θ = −J1/4J2. The helimagnetic structure arises when
J1 > 0, J1 < −4J2.

Other modulated structures that can arise from a balance of exchange and
anisotropy are the helicoidal (easy cone) and cycloidal structures shown in
Fig. 6.11. The magnitude of the moment can sometimes be periodically mod-
ulated, rather than its direction. The best-known example of a sinusoidally
modulated structure is chromium. When the modulation period is unrelated to
the underlying periodicity of the lattice, as it is in pure Cr, the structure is incom-

mensurate. Any commensurate magnetic order can equally well be described
as a multisublattice structure in an enlarged unit cell.

6.3.4 Rare-earth metals

The 4f metals from cerium to ytterbium, and their nonmagnetic analogues
yttrium, lanthanum and lutecium, are a playground for researchers in mag-
netism. The metals are chemically similar, but they possess widely differ-
ing magnetic moments and single-ion anisotropy. The magnetic properties are
remarkably diverse. Rare-earths usually adopt a trivalent configuration of the
4f shell in metals 4f n(5d6s)3, and in insulators they lose their three outermost
electrons to form trivalent R3+ 4f n ions. Yb and Eu are exceptions, which pre-
fer a divalent configuration to benefit from the particularly stability of a filled or
half-filled 4f shell (Fig. 11.2). Ce can be quadrivalent, with an empty 4f shell.

The crystal structures of the trivalent rare-earths are based on close pack-
ing of two-dimensional hexagonal sheets. The decrease of lattice parameters
along the series is known as the lanthanide contraction, and the quantum number
J varies as shown in Fig. 4.4. Effective exchange coupling scales as the de
Gennes factor G (Table 4.10). The extraordinary variety and complexity of



209 6.4 Amorphous magnets

rare-earth magnetism, which embraces ferromagnetic, antiferromagnetic, heli-
cal and periodically modulated structures, sometimes in the same metal at dif-
ferent temperatures, reflects the interplay of anisotropy and exchange. Exchange
is long range, of the RKKY type, with many shells of interacting neighbours
having positive or negative coupling (§5.2.2). In these circumstances, it is con-
venient to define a wavevector-dependent exchange interaction

J (q) =
∑
j

J (rij )e
−iqrij , (6.20)

which is the Fourier transform of the real-space exchange interaction J (rij ).
The period of the helical magnetic structure is determined by the wavevector
for which J (q) is minimum. If the minimum is at q = 0, the structure is
ferromagnetic.
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Anisotropy at high temperatures is predominantly second-order – easy-
axis or easy-plane – with a sign determined by the product of the rare-earth
quadrupole moment and the electric field gradient at the rare-earth site, as
discussed in §4.4.4. At low temperatures, fourth- and sixth-order terms, pro-
portional to 〈J nz 〉, come into play and modify the magnetic structure to suit
themselves. The crystal field can play tricks, such as stabilizing a nonmagnetic
|MJ = 0〉 state for Pr on some sites in the structure, but not in others. We return
to the rare-earths and rare earth intermetallics in Chapter 11.

The rare earths form extended families of isostructural intermetallic com-
pounds and pseudobinary solid solutions with the 3d elements such as RFe2

or R2Co17, which are stable across the 4f series. These families include many
of the most interesting and useful magnetic materials; examples are SmCo5

(huge anisotropy), (Tb,Dy)Fe2 (giant magnetostriction), and Gd5 (Si, Sn)4 or
La(Fe11Si) (large magnetocaloric effect).

6.4 Amorphous magnets

Amorphous solids have no crystal lattice. The atoms are in a frozen, liquid-like
state. It is practically impossible to retain pure metallic elements in such a
state at room temperature, so noncrystalline materials of interest in magnetism
are alloys or compounds of the 3d or 4f elements, sometimes in the form of
very thin films. Amorphous alloys are usually prepared by quenching from the
liquid or vapour phase. Generally a mixture of the chemical (site), bond and
topological disorder, illustrated in Fig. 6.12, is present in the structure.

The structure of an amorphous solid is represented in an average way by the
radial distribution function G(r), where G(r)dr is the number of atoms between
r and r + dr from an arbitrary central atom, averaged over all positions of the
central atom, Fig. 6.13. At large distances G(r) tends to a parabola because the
atomic density is uniform when averaged over a sufficient volume, but at short
distances the radial distribution function shows a few peaks corresponding to
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The radial distribution
functions for liquid and
amorphous cobalt. The
dashed parabola is the
large-r limit.

the first atomic coodination shells. The short-range order is like that of a frozen
liquid. G(r) can be derived experimentally from the Fourier transform of the
diffraction pattern I(k).

The prefix ‘a-’ will be used for amorphous materials. A binary a-AB alloy
needs three partial radial distribution functions GAA, GAB and GBB just to
provide this averaged description of the structure. GAB(r)dr denotes the number
of B atoms between r and r + dr from a central A atom.
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Further scraps of structural information are obtained from techniques such
as NMR and Mössbauer spectroscopy which probe the local electric field gra-
dients, and other methods that are sensitive to three-centre correlations such as
bond angle. Local coordination numbers can be deduced from the X-ray absorb-
tion edge fine structure (EXAFS). Nevertheless, modelling is the single most
powerful technique for learning about the structure of noncrystalline materi-
als. The test of a model is that it must reproduce experimental observations,
especially X-ray or neutron diffraction patterns.

J. D. Bernal, 1901–1971.
The packing fraction f of an atomic structure is defined as the volume frac-

tion of space occupied by the atoms, regarded as hard spheres. Amorphous
metals often adopt the random-dense-packed Bernal structure, which has f =
0.64, compared to 0.74 for cubic or hexagonal close packing and 0.68 for
the bcc lattice, which is not close-packed. Locally there are dense clusters of
13 atoms (filled dodecahedra) in the random close-packing, but these cannot
fill space without leaving large interstitial holes. The ratio of atoms to holes
is about 4:1. The holes can be blocked by smaller atoms, which stabilize the
noncrystalline structure. A typical composition is a-Fe80B20, where the cova-
lent boron plugs the holes in the Bernal structure of iron. Another example is
a-Gd80Au20.

The Bernal structure can be generated in the laboratory by packing peas into
a jar, or ball-bearings into a football bladder, where they are fixed with wax,
and then removed one-by-one to examine their coordination and bond lengths.
Such tedious but instructive procedures now tend to be conducted by computer.

Eutectic melts with depressed freezing temperatures Tm are good glass for-
mers. A glass is defined as a noncrystalline solid obtained by simply quenching
the melt to below a temperature known as the glass transition temperature Tg
where diffusive motion ceases on the timescale of the measurement. This is
easiest near a eutectic point on a binary, or pseudobinary phase diagram, where
(Tm − Tg)/Tm is small. Metallic, semiconducting and insulating glasses can be
formed in this way.

Insulating dielectric glasses, like those in a window, are typically mixtures of
several different oxides. One of them acts as a glass former, for example, SiO2,
which forms a tetrahedral continuous random network, and the others, whose
cations occupy sites with tetrahedral, octahedral or greater oxygen coordination,
act as network modifiers. Magnetic 3d cations normally occupy tetrahedral or
octahedral sites in the oxygen lattice. They are network modifiers rather than
glass formers, and their concentration is usually insufficient to allow percolation
of the nearest-neighbour exchange interactions. The percolation threshold xp is
the fraction of magnetic cations beyond which continuous exchange paths form
throughout the structure. It is approximately 2/Zc, whereZc is the cation–cation
coordination number; you need at least two bonds to form a network. Covalently
bonded amorphous structures such as the four-fold tetrahedral random network
structure of a-Si are not favoured by magnetic atoms or ions. Nevertheless,
a few concentrated amorphous ionic compounds do exist, notably amorphous
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Summary of the
ingredients of cooperative
magnetism, showing how
unique values of m, D, J
and Hd are replaced by
probability distributions in
a noncrystalline solid.

FeF3, which has an octahedral continuous random network structure which
preserves six-fold coordination of iron by fluorine, and two-fold coordination
of fluorine by iron. Examples of magnetic glasses are presented in Chapter 11.

Any amorphous structure entails a distribution of nearest-neighbour envi-
ronments and bond lengths for a given magnetic atom, described by the radial
distribution function and higher-order correlation functions. These distribu-
tions lead to a distribution of site moments, exchange interactions, dipolar
and crystal fields, all of which influence the nature of the magnetic order, as
summarized in Fig. 6.14.

6.4.1 One-network structures

These are structures with a single magnetic network. For example, the iron
atoms in a-Fe80B20 or a-FeF3 constitute a single magnetic network. In this dis-
cussion of magnetic order in amorphous materials, we will ignore the magneto-
static, dipole–dipole interactions which lead to domain formation in structures
with a net ferromagnetic moment, focussing rather on the consequences of
distributions of exchange and single-ion anisotropy.

J > 0 When exchange is ferromagnetic and local single-ion anisotropy is
negligible, the magnetism is straightforwardly ferromagnetic. There is a Curie
point, and differences compared with a crystalline ferromagnet are minor.
Obviously, there can be no magnetocrystalline anisotropy K1, because there is
no crystal lattice, and there is no overall preferred direction of magnetization in
the bulk unless it is due to shape or an anisotropic texture somehow imparted
to the amorphous solid (by annealing near the glass transition in a magnetic
field, for example). Nevertheless local magnetic anisotropy does exist at an
atomic scale. Linear magnetostriction is present in amorphous alloys, since
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(a) Reduced magnetization
versus temperature for
crystalline and amorphous
ferromagnets, according to
the Handrich molecular
field model (R. Handrich,
Phys Stat Sol 32, K55
(1969)). (b) Reduced
magnetization data for
crystalline Fe and
amorphous Fe80B20.

magnetostriction depends on spin-orbit coupling, which is an atomic-scale
interaction. Volume magnetostriction may also be present as it depends on the
distance dependence of interatomic exchange. It is possible to find amorphous
alloys that exhibit zero magnetostriction − the invar effect. Indeed, it is easier
to tune the properties by modifying the composition in the amorphous state
than it is in a crystal, because the amorphous dense-packed structures evolve
continuously with composition. For example, the Fe : Co ratio can be varied
in all proportions in a-Fe80−xCoxB20, whereas in Fe100−xCox there is a change
from bcc to fcc at x = 20.

The amorphous structure is accounted for in molecular field theory by admit-
ting a distribution in J , such that

J = J0 + �J , (6.21)

where �J is a random quantity with a symmetric gaussian distribution. This
is the Handrich model. In the absence of an external field, the Brillouin function
is replaced by

〈M(T )〉 = (M0/2){BS[x(1 + δ)] + BS[x(1 − δ)]}, (6.22)

where δ is the normalized root-mean-square exchange fluctuation: δ is defined
by the expression

δ2 =
〈(∑

j � J
)2〉/(∑

j 〈J 〉
)2
.

As a result, the magnetization declines more rapidly with temperature than it
would otherwise. TC is usually reduced by the spatial fluctuations of J , as
shown in Fig. 6.15.

Although there is no net magnetic anisotropy, there are local easy directions on
the scale of an atom or a nanoscale volume with dimensions of a few interatomic
spacings. There is always an electrostatic field at any atomic site, although
there is no precise site symmetry in an amorphous solid. A differently oriented
electric field gradient tensor leads to a different easy axis ei at every site. The
leading term in the electrostatic interaction is the second-order term (4.32).
This random local anisotropy may be sufficient to pin the local magnetization
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Figure 6.16

Illustration of the
increasing ferromagnetic
correlation length for a row
of spins aligned along
random anisotropy axes:
(a) randomly oriented
spins, (b) spins oriented as
closely as possible with
their two nearest
neighbours, (c) spins
oriented as closely as
possible with eight
neighbours and (d) spins
oriented as closely as
possible with all their
neighbours.

direction in 4f alloys, but it is generally insufficient to pin it in 3d alloys. In
some sense, however, the random anisotropy always destroys the ferromagnetic
order.

A uniform dispersion of
atomic moment
orientations within a
hemisphere gives an
average magnetization
〈m〉 = 1

2 m.

The situation can be represented by a Hamiltonian known as the Harris–

Plischke–Zuckermann model, which is based on (4.33):

HHPZ = −2
∑
ij

Jij Si · Sj −
∑
i

Di(ei · Si)
2 −

∑
i

µ0gµB(Si · Hz).

(6.23)

This can be simplified if exchange is restricted to nearest neighbours, Jij = J ,
and if the random anisotropy has constant magnitude, but random direc-
tion, Di = D. The key parameter is the ratio α = D/J . If α � 1, the random
anisotropy dominates the exchange, and destroys the ferromagnetic order. The
length scale over which the ferromagnetism is scrambled can be estimated by
considering the direction of the exchange field at any site. This is the resultant of
a z-component proportional to 1

2Z, and a transverse component in the xy-plane
proportional to (π/4)

√
Z. Here Z is the number of interacting neighbours, and

1
2 and (π/4) are the average values of a unit vector, randomly oriented within
a hemisphere, in a direction parallel and perpendicular to Oz. Therefore the
exchange field is misoriented by an angle ζ = tan−1(π/2

√
Z) on average. (If

Z = 12, ζ = 24◦.) These misorientations accumulate in a random way on mov-
ing out from the central atom in any direction, so that, approximating tan ζ ≈ ζ ,
beyond a distance (π/2ζ )2a, where a is the interatomic spacing, memory of
the original z-direction is lost. The ferromagnetic correlation length is ≈ Za.
The increase of correlation length with the number of interacting neighbours is
illustrated in one dimension in Fig. 6.16. The local ferromagnetic axis wanders
over a few nearest-neighbour distances when there are only a few interacting
neighbours, but asZ → ∞, the magnetization directions are distributed at ran-
dom within a single hemisphere centred on the z axis, and the magnetization
Ms = 1

2nm because the integral of m cosθ over a hemisphere

〈m〉 = ∫ π/20 m cos θ2πr2 sin θdθ/
∫ π/2

0 2πr2 sin θdθ = 1
2m.
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Figure 6.17

(a) Reduced magnetization
curve at T = 0 K for the
random-anisotropy model
with negligible exchange.
h is the reduced applied
field [gµB /D S]µ0 H . (b)
Reduced remanence as a
function of α = D/J , the
ratio of anisotropy to
exchange energy.
Calculations are for classical
spins.

In an applied field, the magnetization continuously approaches saturation, as
shown for classical spins in Fig. 6.17. The remanence in the same limit falls
from 1 to 0.5 as α increases from 0 to ∞.

Turning to the limit α � 1, which is more realistic for amorphous 3d ferro-
magnets where the local anisotropy may be 100 times less than the exchange,
we again find a wandering ferromagnetic axis, but on a much longer length
scale. Admitting that the spin directions are correlated in a region of dimen-
sion L containingN = (L/a)3 atoms, the anisotropy produces local deviations
from parallel alignment of order α. Statistical fluctuations within the region
will ensure that some particular direction of magnetization is preferred. The
average anisotropy energy per atom εa will be DS2/

√
N . The ferromagnetic

axis changes its orientation by π/2 on passing from one region to the next, so
the average increase in exchange εex is JS2(πa/2L)2.Minimizing the sum of
these two energies gives

L = (1/9α2)π4a. (6.24)

The argument shows that random anisotropy never averages away completely.
A pure ferromagnetic state will always be destroyed by random anisotropy,
however small. But if α is small to begin with, the effect can be neglected. In
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Reduced coercivity as a
function of α, deduced
from Monte-Carlo
simulations for a block of
996 spins in the random
anisotropy model. (C. Chi
and R. Alben, J. Appl. Phys.
48, 2487 (1977).)

our example, α = 1/100, L ≈ 105a. The ferromagnetic axis wanders over a
distance of some tens of micrometres, which is comparable to the size of a nor-
mal ferromagnetic domain. In the small-α limit, the amorphous ferromagnet is
practically indistinguishable from its soft crystalline counterpart. A qualitative
changeover from strong to weak pinning, accompanied by the appearance of
coercivity occurs at α ≈ 0.3, Fig. 6.18.

J < 0 When exchange is antiferromagnetic, the absence of a crystal lat-
tice has more dramatic and far-reaching consequences. Topological disorder
is normally present, which leads to frustration of the individual superex-
change bonds in an amorphous oxide or halide. Spins ultimately freeze
into a random, noncollinear ground state with a high degree of degener-
acy. Many different spin configurations of the system have almost the same
energy. The freezing temperature Tf is much less than the magnitude of the
paramagnetic Curie temperature θp, which reflects the averaged strength of
the individual antiferromagnetic interactions. Site-averaged spin correlations
〈Si(0) · Sj (r)〉 are negative at the nearest-neighbour distance, but rapidly
average to zero at longer distances. This random spin freezing is known as
speromagnetism.

An intermediate situation arises when the exchange distribution is broad,
but biased towards a net positive value. Locally, there is a net magnetization,
but the ferromagnetic axis wanders under the influence of the local balance of
exchange. This type of random spin freezing is called asperomagnetism. The
same random magnetic structure arose when J > 0 under the influence of
strong random local uniaxial anisotropy.

(a) (b) (c)

Distributions of exchange
interactions giving rise to
(a) speromagnetism,
(b) asperomagnetism and
(c) ferromagnetism.

Speromagnetism and asperomagnetism are distinguished by the length scale
over which the spin correlations average to zero. In a speromagnet, this is
at most a couple of interatomic spacings (the nearest-neighbour correlations
are antiferromagnetic), whereas in asperomagnets it is much longer, and the
integrated correlations on a mesoscopic scale are ferromagnetic.

r

<S (0) . S (r )>

(a)

(b)
i j

Averaged spin correlations
in (a) a speromagnet and
(b) an asperomagnet.

The different sorts of one-sublattice magnetic order in amorphous materials,
sketched in Fig. 6.19, are best distinguished by their magnetization curves,
which are compared in Fig. 6.20.
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Magnetization curves at
low temperature for a
ferromagnet, a
speromagnet and an
asperomagnet.

6.4.2 Two-network structures

One might imagine a situation where two amorphous sublattices could be
defined topologically, as sketched in Fig. 6.12, but it seems unlikely that this
ever arises in practice.

There remains, however, the possibility of distinguishing two magnetic sub-
networks in amorphous solids on a chemical basis. Generally, these are the
sublattices composed of 3d and 4f atoms, The d–d exchange is strongly ferro-
magnetic, defining a ferromagnetic 3d subnetwork, and the 3d–4f interactions
then tend to align the 4f subnetwork spins antiparallel to the 3d subnetwork.
Hence the subnetwork moments are aligned parallel for heavy rare-earths, but
antiparallel for the light rare-earths. We can therefore have an amorphous fer-

rimagnet where the A and B subsystems are defined chemically. An example
is a-Gd25Co75. There may be a compensation point at the temperature where
M4f > M3d , just as in crystalline ferrimagnets.

For rare-earths with strong uniaxial anisotropy and weak exchange coupling
to the 3d subnetwork, their local easy axes are defined by the local crystal-field
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Possible two-subnetwork
magnetic structures in
amorphous binary alloys.

interaction DiJ 2
zi . These local easy axes are random, leading to the sperimagnetic

structures illustrated in Fig. 6.21.1

6.5 Spin glasses

Dilute alloys containing magnetic impurity atoms which retain their moments in
a nonmagnetic matrix, where the positions of the magnetic atoms are essentially
random are known as canonical spin glasses. Examples are CuMn and AuFe (the
metal in bold type is the host, and the alloy composition is M100−xTx). When
the impurity concentration x is below 1%, the discrete nature of the lattice is
imperceptible and the impurities couple magnetically via the long-range RKKY
interaction

H = −2
∑
i>j

JRKKY Si · Sj .

JRKKY is given by (5.30) (9πν2/64εF )Jsd2F (ξ ), where ν is the number of
conduction electrons per atom and F (ξ ) is the RKKY function, which falls off
as 1/r3

ij in the limit of large separation in three dimensions. Jsd is the coupling
between an impurity moment and the conduction electrons. The distances
between impurities become random in the dilute limit. Coupling varies as
V0/r

3 with V0 equally likely to be positive or negative. The average strength of
an exchange bond is zero in this case. A symmetric exchange distribution P (J )

1 The spero/speri root in the names for these random structures comes from the greek
διασπειρειν, meaning to scatter in all directions. Other words with this root are dispersion
and diaspora.
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Comparison of the
magnetization measured in
a small applied field for a
ferromagnet, an
antiferromagnet and a spin
glass. The dashed line
indicates zero-field-cooled
behaviour (ZFC), which
evolves with time. The
field-cooled line (FC) is
reversible.

of width �J , centred at zero, is the hallmark of a canonical spin glass. Since
the average exchange interaction is zero, the inverse susceptibility follows a
Curie law, not a Curie–Weiss law.

The characteristic experimental feature of a spin glass is a cusp in suscepti-
bility at a temperature Tf < �J /kB , known as the spin freezing temperature.
The spins freeze in essentially random directions below Tf . There is a myriad
of nearly degenerate magnetic ground-state configurations for the system, and
an applied field picks out the one which has the biggest net moment in the
direction of the field. Unlike a ferromagnet, where the response to a small
applied field is reversible provided there is no coercivity, the field-cooled and
zero-field-cooled responses of the spin glass are quite different, with a small
remanent magnetization being frozen in below Tf in the former case, Fig. 6.22.
The dynamics of the response to any change in field there are very protracted,
varying as the logarithm of time. Another experimental signature of canonical
spin glasses is a specific heat of magnetic origin which is linear in temperature
and independent of the concentration of magnetic impurities below Tf , yet
there is no specific heat anomaly at the freezing temperature.

Some insight into the behaviour of dilute-alloy spin glasses is achieved
by picturing the positions of randomly placed impurities. It is impossible to
infer the concentration from the picture. If a length scale Rx related to the
distance between two impurities is chosen, the volume R3

x contains a constant
number of impurities proportional, on average, to xR3

x. Any thermodynamic
property P of the system can be derived from the partition function Z =
Tr exp(−H/kBT ). If H and T are scaled by the same constant, the properties
of the system are unchanged. Dividing HRKKY (5.30) by x makes it a function
of xr−3

ij , which is independent of concentration. If a Zeeman term is included,
the applied field H must also be divided by x. Hence the thermodynamic
properties P obey scaling laws of the form P/x = f (T/x,H/x). Specifically,
the specific heat and magnetization can be written as C = xfC(T/x,H/x) and
M = xfM (T/x,H/x), Fig. 6.23.

Rx

A picture which can be
used to represent a dilute
alloy, regardless of
concentration (scaling).

Spin-glass behaviour is not restricted to the dilute-alloy spin glasses, where
Tf ∝ x. It is much more general, being found in a wide range of dilute
and concentrated magnetic materials, amorphous or crystalline. Essential
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Scaling of the
magnetization curves of
dilute GdxLa80−xAu20 spin
glasses. (S. J. Poon and
J. Durand, Solid State Comm
21, 793 (1977).)

(a) (b) (c) (d)

Figure 6.24

Different concentration
regimes for an amorphous
magnetic alloy: (a) is the
dilute limit, where scaling
laws apply; (b) is below
the percolation threshold,
where nearest-neighbour
clusters form; (c) is at the
percolation threshold; and
(d) is the concentrated
limit.

ingredients are disorder and frustration of the interactions. As concentration
increases, the scaling breaks down, and magnetic atoms begin to form nearest-
neighbour clusters. Beyond the percolation threshold, a ‘bulk cluster’ appears,
which means that there is a group of connected atoms of infinite extent
(Fig. 6.24(c)). This can lead to ferromagnetic long-range order throughout
the material if the nearest-neighbour coupling is ferromagnetic. The mag-
netic phase diagrams for many of these systems with ferromagnetic nearest-
neighbour interactions resemble that shown in Fig. 6.25. There is a crossover
from spin-glass to ferromagnetic order near the percolation threshold, but when
x � xp there is a re-entrant transition at a temperature Txy to a spin-glass-like
phase which is characterized by a difference between field-cooled and zero-
field-cooled magnetization, a softening of the spin waves and an upturn in the
hyperfine field, which is proportional to the average magnitude of the local
moment 〈mi〉. The longitudinal component of the spins orders at TC , but addi-
tional freezing of the transverse components in random directions occurs at
Txy , which is a ferromagnetic → asperomagnetic transition.

In a broad sense, all speromagnets and asperomagnets can be considered
as variants of spin glass. The essential feature of all these systems is that
some random frustration of the exchange interactions leads to many nearly
degenerate ground states. Differing degrees of magnetic short-range order can
be inbuilt, in the form of ferromagnetic clusters or antiferromagnetic nearest-
neighbour correlations, but the site-average correlations 〈mi · mj 〉 tend to zero
as rij extends much beyond a few interatomic spacings.
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6.6 Magnetic models

A magnetic model system is one with a simple lattice structure, populated
by spins with one, two or three components, which is susceptible to precise
theoretical analysis. Although every real sample has a finite, defective, three-
dimensional lattice, populated by atoms or electrons with three spin compo-
nents, as always in physics there is much insight to be gained by calculating the
properties of simplified models. Furthermore, solid-state chemists have been
remarkably adept at devising compounds with localized magnetic moments
that are good approximations to the ideal theoretical models.

6.6.1 Heisenberg, xy and Ising models

The interaction between two spins in the Heisenberg model −2J S1 · S2 may be
written out in terms of their x, y and z components:

H = −2J (Sx1S
x
2 + Sy1Sy2 + Sz1Sz2). (6.25)

One can imagine two-dimensional spins which are confined to a plane – the xy
model:

H = −2J (Sx1S
x
2 + Sy1 Sy2 ), (6.26)

or even one-dimensional spins which have their single component along the z
axis – the Ising model:

H = −2J Sz1Sz2. (6.27)

Experimentally, it is possible to approximate the latter models with reduced
spin dimensionality by using ions with a large uniaxial anisotropy constant D
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Table 6.3. Summary of magnetic model
systems which exhibit a phase transition

d\D 1 2 3

1(Ising) ×a
√ √

2(xy) × √b √
3(Heisenberg) × ×a

√

a Transition at T = 0 K.
b Transition at T > 0 K to a state withM = 0.

(4.35). The single-ion anisotropy energy is written as DS2
z , so the ions behave

as 2d or 1d spins when D � 1 or D � 1. Magnetically decoupled or weakly
interacting units can form in certain crystal lattices where magnetic sublattices
can be delineated which have reduced spatial dimensionality D.

Chains are one-dimensional, while layer compounds have two-dimensional
character. The space and spin dimensionality {D, d} together define a model
class. Some of these models, such as the two-dimensional Ising model {2,1},
can be solved exactly. Others must be solved numerically. It is convenient in
this section to set S = 1, so the energy of a pair of nearest neighbours with
parallel spins is −2J .

Magnetic ordering at a finite phase transition temperature becomes more
likely for lower spin dimensionality d, because the spins then have fewer
degrees of freedom, and in higher spatial dimension D, because fluctuations
are then less likely to destroy the order, as indicated in Table 6.3.

6.6.2 Critical behaviour

Thermal fluctuations characterize the behaviour of a magnetic system in
the vicinity of a continuous, second-order phase transition, a zone known
as the critical region. There is a mathematical singularity in the Gibbs
free energy at the transition temperature TC , where the order parameter
drops continuously to zero, and there is a discontinuity in its tempera-
ture derivative. The critical fluctuations are absent at a first-order transi-
tion, where the order parameter is discontinuous. Strictly speaking, a sys-
tem must be infinite in extent for the free energy to exhibit any singularity,
so a perfectly sharp phase transition is a fiction realized only in an infinite
system. In practice, rounding of the transition only becomes evident in
submicrometre-sized samples.

An important result of statistical thermodynamics is the fluctuation dissipation

theorem that relates the susceptibility of a ferromagnet in thermal equilibrium
to fluctuations of the magnetization by

χ = µ0

kBT
(〈M2〉 − 〈M〉2). (6.28)
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Figure 6.26

Illustration of critical
fluctuations at two
temperatures just above
the Curie point in the
two-dimensional Ising
model. The black and white
squares represent ↑ and ↓
atomic moments. The
correlation length diverges
at Tc , but the
magnetization there is
zero.

The fluctuations diverge at TC, where the correlation length also diverges.
Analogous expressions relate the specific heat to fluctuations in the enthalpy
and compressibility to fluctuations in the density. These results allow physical
observables to be deduced from computer simulations of model systems of
spins, for example. The pair correlation function �(r) between two spins i and
j is defined as

�(rij ) = 〈Si · Sj 〉 − 〈Si〉 · 〈Sj〉.
The correlations decay exponentially, and the correlation length ξ is defined by
limr→∞ �(r) ∼ exp(−r/ξ ).

The pair of numbers representing the space and spin dimensionality {D, d}
specify a universality class for critical behaviour. Examples are the two-
dimensional Ising model {2.1} or the three-dimensional Heisenberg model
{3,3}. Close to TC is a region where critical fluctuations are important. There
is a different type of critical behaviour for each universality class, but all
the materials within a class behave similarly, regardless of their composi-
tion or lattice structure. A reduced temperature is defined, ε = (1 − T/TC),
and the critical region can be considered as the zone where ε < 10−2. The
critical exponents were introduced in §5.1.2 in the context of the mean field
model. When ε is small, M ≈ εβ (ε � 0),M ≈ H 1/δ(ε = 0), χ ≈ |ε|γ (ε ≈ 0)
and C ≈ |ε|−α(ε ≈ 0). HereM is the order parameter,H is the conjugate field
and χ is the susceptibility dM/dH . In an antiferromagnet, the order parameter
is the sublattice magnetization Mα and the conjugate field is a staggered field.
In the spin glass there is an order parameter q̃ for which the conjugate field is
a random field.

Two more critical exponents ν and η describe the correlation length ξ and
the correlation function at TC. They are defined by

ξ ≈ |ε|−ν(ε ≈ 0) and �(r) ≈ |r|−(D−2+η)(ε = 0).

Critical fluctuations are shown for a plane of Ising spins in Fig. 6.26. Fluctua-
tions are self-similar on different length scales. The figure illustrates how it is
possible for the correlation length to diverge, while the magnetization remains
vanishingly small.
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Table 6.4. Critical exponents for the three-dimensional d-vector models

d α β γ δ ν η

0 Polymer 0.236 0.302 1.16 4.85 0.588 0.03
1 Ising 0.110 0.324 1.24 4.82 0.630 0.03
2 xy −0.007 0.346 1.32 4.81 0.669 0.03
3 Heisenberg −0.115 0.362 1.39 4.82 0.705 0.03
∞ Spherical −1 1/2 2 5 1 0

The static scaling hypothesis for the free energy and the correlation function
implies that only two of the exponents are actually independent. They are related
by equalities such as

2 = α + 2β + γ ,
γ = β(δ − 1),

α = 2 − νD,
(2 − η)ν = γ .

The mean field exponents, are α = 0, β = 1
2 , γ = 1, δ = 3, ν = 1

2 and η = 0.
The mean field theory of a ferromagnet or an antiferromagnet does not account
properly for the real critical fluctuations that are observed when D = 3, but
whenD = 4, according to the equalities, the theory could be exact! The dimen-
sion where the mean field theory is exact is known as the upper critical dimension.
Generally in the critical region, close to TC , the equation of state can be written
(5.14)

(H/M)γ = a(T − TC) − bM1/β . (6.29)

The critical exponents have been calculated numerically when there is
no analytical solution, using the renormalization-group method developed by
Kenneth Wilson, Leo Kadanoff and others. The properties of the original
lattice are compared with those of a lattice expanded by a scaling fac-
tor. It turns out that iterative scaling preserves the physics of the critical
region. Values for the practically important three-dimensional Heisenberg
model are included in Table 6.4. Critical components for the Ising model,
including the exact Onsager solution in two dimensions, are collected in
Table 6.5.

The value of the critical temperature, the Curie or Néel point, is not inde-
pendent of lattice structure. It too can be calculated numerically; it increases
with D and coordination number Z, as seen in Table 6.6, and also with
spin dimension d. For the three-dimensional Heisenberg model, the ratio
kBTC/ZJ is 0.61, 0.66 and 0.70 for the simple cubic, bcc and fcc lattices,
respectively.
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Table 6.5. Some Ising-model critical exponents; D ≥ 4
is the mean field case

D α β γ δ ν η

2 0 1/8 7/4 15 1 1/4
3a 1/8 5/16 5/4 5 5/8 0
≥4 0 1/2 1 3 1/2 0

a Approximate values.

Table 6.6. The ratio kB TC /Z J for Ising spins on
different lattices

Lattice D Z

Chain 1 2 0
Honeycomb 2 3 0.506
Square 2 4 0.567
Triangular 2 6 0.607
Diamond 3 4 0.676
Simple cubic 3 6 0.752
Body-centred cubic 3 8 0.794
Face-centred cubic 3 12 0.916

6.6.3 Spin-glass theory

Returning to spin glasses, a much-debated theoretical question has been ‘Is
there a phase transition at Tf , or do the spin dynamics evolve continuously,
but exponentially with temperature as the spins progressively freeze?’ In other
words, is the freezing of the spins simply analogous to the freezing out of
long-range diffusive motion in a glass at its glass transition (as the name ‘spin
glass’ would suggest), or is there some sort of collective behaviour producing
a singularity in the free energy or its derivatives at Tf , just as there is at the
Curie point.

If there is a phase transition, it should be possible to identify the order
parameter that plays the role of magnetization in a ferromagnet or sublattice
magnetization in an antiferromagnet, and goes to zero at Tf . The local magnetic
moment mi at the ith site averaged over all sites 〈mi〉 is not a possible choice,
because it is zero at all temperatures. It is better to take the projection of the spins
onto a particular random configuration, or replica of the system. There is an
energy landscape where different spin configurations occupy different, mutually
inaccessible energy minima. An order parameter was defined by Edwards and
Anderson as the mean-square spontaneous magnetization in a single minimum
α, averaged over all possible minima:

q̃ =∑Pα
〈
m2
iα

〉
, (6.30)
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Theoretical phase diagrams
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where Pα = exp(−εα/kBT )/
∑

exp(−εα/kBT ). Associated with the order
parameter is a conjugate field. This is not the uniform field accessible in the
laboratory, but a different randomly staggered field for each configuration.
The corresponding susceptibility is χq̃. Fortunately, it turns out that χq̃ is not
inaccessible, because the nonlinear susceptibility χnl , defined by

M = χH − χnlH 3, (6.31)

is proportional to χq̃ .
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The question of whether or not there is a phase transition at Tf turns out
to be unexpectedly subtle. It is unclear whether the system ever really reaches
equilibrium, as the relaxation is logarithmic in time. A solution of the model,
where there is a Gaussian distribution of exchange interactions of width  J ,
centred at J0, has been given for an Ising spin glass in the mean field approxi-
mation (Fig. 6.27(a)). It shows a re-entrant transition to uniform spin glass. The
diagram for a mean field solution of the Heisenberg model shows a transition
Txy , where the transverse spin components freeze, and another transition at a
lower temperature where irreversibility sets in.
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Table 6.7. The lower critical dimensionality
in a uniform crystal (first column) compared
with materials with random anisotropy and

random field

Di  J

Ising 2 1 2
xy 2a 3 4a

Heisenberg 3 4 4

a There is a transition to a state whereM = 0.

The molecular field approximation exaggerates the tendency towards mag-
netic order. More sophisticated calculations use the renormalization group
method. They indicate the lowest spatial dimension where a phase transition
can be expected, Table 6.7, which is believed to be 4 for a spin glass with
Heisenberg spins but 2 for Ising spins. Theoretically, there should be no phase
transition in three dimensions unless the spin dimensionality is reduced from 3
by local anisotropy. Mean field theory for a spin glass is thought to be accurate
in D = 6 dimensions, compared with four dimensions for a ferromagnet.

6.6.4 Chains, ladders and sheets

Chains Isolated magnetic chains never order magnetically. The most
favourable case would be the one-dimensional Ising chain {1,1}, but a sim-
ple energetic argument shows that order is impossible. Consider the cost of
reversing a block of spins, as shown below:

↑↑↑↑↑↑↑↓↓↓↓↓↓↓↓↓↑↑↑↑↑↑↑
Reversal of the segment increases the energy of the chain by 8J , but this can

always be recovered from the entropy term in the free energy, F = U − T S,
which is −kBT lnN , by making the N -member chain sufficiently long. The
ordering temperature is then 8J /kB lnN , which tends to zero as N −→ ∞.

If interchain interactions J ′ are not completely negligible, they easily trans-
form the magnetic dimensionality of the system from D = 1 to D = 3. The
three-dimensional magnetic ordering temperature varies as

√
JJ ′, so even

if J /J ′ = 100, the weak interchain coupling can induce magnetic order at a
fairly high Curie temperature.

Although there is no long-range magnetic order in a chain, there can be
magnetic excitations. In the Ising chain, the excitation is the flip of a block of
spins. Once created, the excitation can expand, or move along the chain at no
extra cost. The dispersion relation is flat. The behaviour is the same whether
the chain is ferromagnetic or antiferromagnetic.
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The antiferromagetic Heisenberg spin chain {1,3} is quite different. The
excitations there are known as spinons. They have a dispersion relation of the
form

�ωq = π |J sin qa| , (6.32)

which differs only by a factor π/2 from that of antiferromagnetic magnons
with S = 1

2 (6.14). The main difference is that the magnon is an excitation with
spin-1, corresponding to a delocalized spin deviation (or spin flip in an S = 1

2
system), whereas the spinon is a spin- 1

2 excitation. Magnon dispersion can be
probed directly by inelastic neutron scattering, because the neutron is a spin- 1

2
particle which undergoes a change  S = 1 in a magnon scattering event.
However, the neutron must excite spinons two by two, and there is a continuum
of excitation energies. Furthermore, the excitations of the linear Heisenberg
chain differ according to whether the ions forming the chain have integral or
half-integral spin. Half-integral spins have no gap at q = 0, as indicated by
(6.32) but integer spins exhibit a gap, known as the Haldane gap. The difference
is a consequence of the different behaviour of fermions and bosons under
exchange.

The half-integral spin chains can develop a gap if they dimerize to form alter-
nate pairs of strong and weak exchange bonds. This is analogous to the mechani-
cal instability – the Peierls distortion – that appears in a one-dimensional atomic
chain which spontaneously deforms to create alternating long and short bonds.
The magnetic version is the spin-Peierls effect. An example is CuGeO3, which
has Tsp = 14 K.

Ladders Solid-state chemists have produced materials with structures corre-
sponding to many of the magnetic models that theoreticians conceive. There
are materials having structures with single chains, or double or multiple-leg
ladders. The exchange is usually different along the chain J‖ and between
chains J⊥. An example of a two-leg ladder is SrCu2O3, and the series of com-
pounds Srn−1Cun+1O2n when n is odd is composed of [(N+1)/2]-leg ladders.
The coupling J⊥ creates a gap in the excitation spectrum if the number of legs
is even, but not if it is odd.

A magnetic ladder.

Sheets Crystal structures with planes of magnetic ions are model two-
dimensional systems. These may be layer-like structures, like the clay minerals,
with thick blocks of nonmagnetic material intercalated between the magnetic
planes, or else they can be three-dimensional structures, like K2NiF4, where
the antiferromagnetic Ni2+ planes are stacked in such a way that there is no net
coupling between adjacent planes when they are antiferromagnetically ordered.
Again, the effective spin dimensionality d may be 3, 2 or 1 depending on the
single-ion anisotropy.

The two-dimensional Heisenberg model does not order magnetically at any
finite temperature, acording to the Mermin–Wagner theorem, but there is
evidence that there are regions of correlated short-range order and that the
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correlation length diverges exponentially as T −→ 0. The system behaves as
if it had a phase transition at zero temperature.

A magnetic vortex in the xy
model.

The two-dimensional xy model is even stranger. There is a tendency to form
a vortex in a plane of xy spins. The exchange energy associated with the vortex
is approximately πJ ln(R/a), where R is the size of the system; it diverges
slowly as R −→ ∞. However, the centre of the vortex can be at any of the
(R/a)2 lattice sites, so the entropy of the vortex is kB ln(R/a)2. The free energy
F = [πJ − 2T kB] ln(R/a) becomes negative below a temperature TTK , the
Thouless–Kosterlitz transition:

TTK = πJ
2kB

.

It is an unusual transition, because the low-temperature phase (like that of a
spin glass) has no long-range magnetic order, and there is not the spontaneous
symmetry breaking that usually accompanies a phase transition. There is a large
energy barrier between degenerate states of opposite chirality.

A hedgehog.

A related defect in the three-dimensional Heisenberg ferromagnet is the
hedgehog. Again there are two degenerate versions, one inward and one out-
ward, with a large energy barrier between them. A similar argument gives
TH = πJ /3kB , which is lower than the ferromagnetic ordering temperature
TC = 3.66J /kB.The ferromagnetic state is more stable than the hedgehog
configuration. However, it may be possible to stabilize the hedgehog in a small
particle by surface anisotropy.

Finally, the two-dimensional Ising model {2,1} has a famous exact solution,
worked out by Onsager in 1944. The solution for Sz = ±1 on a square lattice
– a benchmark in the theory of phase transitions – is

〈S〉 = [1 − sinh4(2J /kBT )]1/8 (6.33)

and the Curie temperature is TC = 2J /kB ln(1 − √
2).

6.6.5 Quantum phase transitions

Quantum phase transitions take place at 0 K, unlike normal phase transitions
which occur as a function of temperature, driven by the greater entropy of the
high-temperature phase. An electronic phase transition as a function of compo-
sition x or gate voltage, or a magnetic phase transition as a function of J0/ J

(Fig. 6.27) may be examples of a quantum phase transition. Magnetic field or
pressure are the easiest variables to control in the laboratory. In any case, by
tuning some variable g one may enter a region where two states compete to
be the ground state of the system. In quantum systems, fluctuations like those
described by the uncertainty principle are always present.

An example is the compound LiHoF4, where the Ho3+ ion sits in a site
with uniaxial anisotropy which stabilizes an MJ = ±8 doublet, giving the
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ion an Ising-like character. Weak coupling between the Ho3+ ions causes the
compound to order ferromagnetically at 1.6 K. A field applied perpendicular
to the axis causes tunnelling between the two states, and eventually destroys
the ferromagnetic order, creating a quantum paramagnet.
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EXERCISES

6.1 Derive the susceptibility at T = 0 K and at T = TN from (6.5).
6.2 Derive (6.7). Calculate χ when nAA = nBB �= 0 and show that TN defined by the

condition χ || = χ 1 is given by (6.4).
6.3 Sketch the magnetic phase diagram for an antiferromagnet at T = 0 K, taking

H/H i and Ha/H i as the x and y axes.
6.4 Deduce the expressions for TN and θp for the fcc lattice, considering two inter-

actions, n1 and n2. Hence derive the exchange constants J1 and J2 for the inter-
and intrasublattice interactions for the NaCl-structure monoxides.

6.5 Show that if magnetic excitations in a lattice of dimension d obey a dispersion
relation ωq = αqn, the specific heat varies as T d/n.

6.6 Writing the Hamiltonian of a spin glass as the sum of terms due to exchange
(RKKY, in the limit of large r) and interactions with an external field, show that
any thermodynamic property P that can be derived from the partition function
follows a scaling law P/x = f (T/x,H/x).

6.7 Find a solution for the temperature dependence of the reduced magnetization
of an amorphous magnet with S = 1 and δ = 0.5, by solving (5.3) and (6.22)
graphically.
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Get into the loop

The domain structure of ferromagnets and ferrimagnets is a result of minimizing
the free energy, which includes a self-energy term due to the dipole field Hd(r).
Free energy in micromagnetic theory is expressed in the continuum approximation,
where atomic structure is averaged away and M(r) is a smoothly varying function
of constant magnitude. Domain formation helps to minimize the energy in most
cases. The Stoner–Wohlfarth model is an exactly soluble model for coercivity based
on the simplification of coherent reversal in single-domain particles. The concepts
of domain-wall pinning and nucleation of reverse domains are central to the expla-
nation of coercivity in real materials. The magnetization processes of a ferromagnet
are related to the modification, and eventual elimination of the domain structure
with increasing applied magnetic field.

The basic premise of micromagnetism is that a magnet is a mesoscopic con-
tinuous medium where atomic-scale structure can be ignored (§2.1): M(r) and
Hd (r) are generally nonuniform, but continuously varying functions of r . M(r)
varies in direction only: its magnitude is the spontaneous magnetization Ms .
Domains tend to form in the lowest-energy state of all but submicrometre-sized
ferrromagetic or ferrimagnetic samples, Fig. 7.1, because the system wants to
minimize its total self-energy, which can be written as a volume integral of the
energy density Ed , in terms of the demagnetizing field (2.78):

εd = − 1
2

∫
µ0 Hd · Md3r. (7.1)

Energy minimization is subject to constraints imposed by exchange, anisotropy
and magnetostriction. The domain structure is eliminated by a large-enough
applied field, and the underlying spontaneous magnetization of the ferromagnet
is then revealed. On reducing the field, a new domain structure forms and hys-
teresis appears as shown in Fig. 1.3. The hysteretic response of a ferromagnet,
like the behaviour of a person, depends not only on current circumstances but
on what has gone before. Magnets have memory.

Demagnetizing fields and stray fields arise whenever the magnetization has a
component normal to an external or internal surface. They also arise whenever
the magnetization is nonuniform in such a way that ∇ · M �= 0. The direc-
tion of magnetization in a domain is mainly governed by magnetocrystalline
anisotropy, so a stray field associated with surface ‘charge’ density σ = M · en
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Figure 7.1

Schematic domain
structures for hexagonal
and cubic crystals.

(a) (b)

(c)

Figure 7.2

Closure domains in (a) a
bar and (b) a thin film of a
cubic material; (c) maze
domains in a thin film of a
uniaxial material with
strong perpendicular
anisotropy. The shading in
(b) shows the region of
magnetostrictive stress.
The scale bar represents
100 µm.

may be created at surfaces which do not lie parallel to the easy axis of uniaxial
magnets (2.54). Magnetic charge qm, measured in A m, is a perennially useful
concept in micromagnetism, a typical value of surface magnetic charge density
is 106 A m−1. In cubic materials with 〈100〉 anisotropy, closure domains like
those in Fig. 7.2 eliminate the stray field due to surface charge. The internal
walls at 45◦ to the magnetization bear no net charge either. Cubic materials with
K1c > 0 exhibit these 90◦ walls, whereas materials with 〈111〉 anisotropy and
K1c < 0 exhibit 71◦ and 109◦ walls. The formation of closure domains, and
walls where the magnetization directions in adjacent domains are not antipar-
allel, is inhibited by magnetostriction. The magnetostrictive strains λs are then
incompatible, and there is an additional magnetoelastic energy associated with
a non-180◦ domain wall. The formation of domain walls is a consequence
of magnetocrystalline anisotropy. A perfectly soft ferromagnet would tend
to minimize its energy by adopting the most gradual possible variation of
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An energy landscape with
metastable minima gives
rise to remanence and
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magnetization direction with M everywhere parallel to the surface, so as to
create no surface charge.

Coercivity and hysteresis are related to a multivalley energy landscape in
magnetic configuration space, Fig. 7.3, which exists even for a uniformly
magnetized single-domain particle. There are energy barriers between dif-
ferent magnetization configurations M(r) and jumps from one configuration to
another, driven by the external field, are ireversible. The magnetization reversal
process in real materials is horribly complicated, generally involving coherent
and incoherent reversal processes, as well as nucleation of reverse domains
and movement of domain walls. A coherent process is one where the direc-
tion of M remains everywhere the same during reversal, independent of r
whereas an incoherent reversal process involves an intermediate state which is
not uniformly magnetized. In all but the very smallest, nanometer-sized par-
ticles, the reversal process is either incoherent, or it involves an intermediate,
multidomain state. Early progress in understanding coercivity largely relied on
simplified models and phenomenological explanations. More recently large-
scale computer simulations with software like OOMMF are providing direct
insight into the complexity of magnetization reversal.

In the magnetostatic limit (Chapter 2), no time dependence or conduction
currents are involved, and Maxwell’s equations are then

∇ × H = 0, ∇ · B = 0.

Using B = µ0(H + M), H = −∇ϕm, it follows that −∇2ϕm + ∇ · M = 0,
hence the magnetic scalar potential obeys Poisson’s equation, where the volume
magnetic charge density ρm is −∇ · M:

∇2ϕm = −ρm. (7.2)

The boundary condition for B at the surface of a ferromagnetic material (sub-
script 1) in air (subscript 2) is

B⊥
1 = µ0(H⊥

1 +M⊥) = B⊥
2 ,
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hence H1 · en − H2 · en + M · en = 0. In terms of the magnetic scalar potential
ϕm,

∂ϕm1/∂rn − ∂ϕm2/∂rn = M · en. (7.3)

The change in derivative of the scalar potential ϕm at the surface is therefore
equal to the surface magnetic charge density σm = M · en. Given M(r), there
is a unique solution of (7.2) and (7.3) for ϕm. If we know M(r) we can
calculate H(r), and thus evaluate the integral of (7.1) over the whole specimen.
Unfortunately, the converse is not possible; M(r) cannot be inferred uniquely
from a knowledge of H(r), which, in any case, we can normally measure only
outside the sample. The stray field is accessible, the demagnetizing field is not.

Experimental information on domain structures comes mainly from observa-
tions at the sample surface.1 The domain structure of the interior is inscrutable,
and it is practically impossible to infer unambiguously the arrangement of
domains from the stray field measured outside, except in the case of thin films.
Domain investigations often depend on models or numerical simulations which
are validated by their predictions at the surface.

7.1 Micromagnetic energy

The domain structure is a result of minimizing the total free energy, and it
reflects either a local or an absolute energy minimum. There are five other
terms besides εd that may have to be considered:

εtot = εex + εa + εd + εZ + εstress + εms. (7.4)

The first three terms due to exchange, magnetocrystalline anisotropy and the
demagnetizing field are always present to some extent in a ferromagnet. The
fourth is the response to an applied field, and it defines the magnetization
process and hysteresis loop. The last terms are due to applied stress and mag-
netostriction. We neglect them at first, because the associated energies are small
(Table 5.10).

The free energy is then written as a volume integral over the sample, where
M = M(r) and H = H(r):

εtot =
∫

{A(∇ M/Ms)
2 −K1 sin2 θ − · · · − 1

2µ0 M · Hd − µ0 M · H}d3r.

(7.5)
The meaning of (∇ M/Ms)2 is the sum of the squares of the gradient of the
three components (∇Mx/Ms)2 + (∇My/Ms)2 + (∇Mz/Ms)2. The exchange

1 It is possible, in principle, to build up a three-dimensional image of domains in a solid by neutron
scattering, electron holography or NMR tomography, but these methods are impracticable for
most real specimens.
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stiffness A and anisotropy constants K1, . . . , may also be position-dependent,
but the magnitude of the magnetization Ms is supposed to remain constant
everywhere. Only its direction, represented by the unit vector eM , wanders
from point to point. The reference z axis is generally taken as the anisotropy
axis. We now examine the terms in (7.5) one by one.

7.1.1 Exchange

The first term in (7.5) is the exchange energy in the continuum picture

εex =
∫
A(∇eM)2d3r,

where eM = M(r)/Ms is a unit vector in the local direction of magneti-
zation (θ, φ) relative to the z axis (usually defined by the leading term
in the anisotropy). By writing the unit vector eM in Cartesian coordinates
(sin θ cosφ, sin θ sinφ, cos θ ), it can be shown that an equivalent form for this
term is

εex =
∫
A[(∇θ )2 + sin2 θ(∇φ)2]d3r. (7.6)

A simplification arises if the magnetization twist is confined to a plane φ =con-
stant; the exchange term is then A(∇θ )2, which reduces further to A(∂θ/∂x)2

when the magnetization varies along a single direction, as in a Bloch wall.
However we choose to write it, the sense of the exchange term is to maintain
the smoothest possible variation of eM in all directions. Rapid fluctuations of θ
and φ incur an exchange energy penalty.

The exchange stiffnessA is related to the Curie temperature TC :A is roughly
kBTC/2a0, where a0 is the lattice parameter in a simple structure. It is also
proportional to the exchange constant J . The relation is

A ≈ J S2Zc/a0, (7.7)

where Zc is the number of atoms per unit cell – one for simple cubic, two for
bcc and four for fcc. For hcp,A = 2

√
2J S2/a. However, the best way to derive

A is from the spin-wave stiffness Dsw in the low-energy magnon dispersion
relation (5.56), since the energy of the long-wavelength spin waves is associated
with a gradual twist of the magnetization. The relation is

A(T ) = Ms(T )Dsw
2gµB

.

A typical value of A for a ferromagnet having a Curie temperature well above
room temperature is 10 pJ m−1. Cobalt and permalloy haveA = 31 pJ m−1 and
10 pJ m−1, respectively.
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The competition between the exchange energy εex and the dipolar energy εd
is characterized by the exchange length:2

lex =
√

A

µ0M
2
s

. (7.8)

A typical value of lex is 3 nm (Table 7.1). This is the shortest scale on which
the magnetization can be twisted in order to minimize the dipolar interaction.

If εex were the only term to consider, there would be no incentive for eM
to vary, and the magnetization would remain uniform. But εd is ever-present,
and its tendency is to reduce the net moment of an isotropic sample to zero
by continuous rotation of the magnetization. There will be an energy cost of
order J S2 ln(R/a) associated with the vortex, where R is the radius of the
particle. For micrometre-sized particles, ln(R/a) ≈ 10. This cost can be easily
compensated by the gain in demagnetizing energy (V/6)µ0M

2
s for all but the

smallest spherical particles of volumeV . Soft magnetic particles with negligible
anisotropy tend to adopt a curling or vortex state when they are larger than a
certain size, known as the coherence radius.

(a)

(b)

Stable ferromagnetic
configurations in a soft
spheroidal particle:
(a) without and (b) with
the effect of the
demagnetizing field.

7.1.2 Anisotropy

The anisotropy energy Ea is the single-ion or two-ion magnetocrystalline
anisotropy, the leading term of which is K1 sin2 θ with an anisotropy constant
K1 ranging from 0.1 to 104 kJ m−3. The anisotropy energy is usually expressed
in terms of the polar angles (θ, φ) of the magnetization direction eM , but
it is sometimes useful to make an expansion in terms of the operators Ô

m

n

of the crystal-field Hamiltonian. Shape anisotropy which is related to the
demagnetizing field is included in εd . In each crystallite there are easy
directions en, which will vary with position in a polycrystalline sample. The
balance of exchange and anisotropy usually leads to a structure in domains
where the magnetization lies along an easy axis, separated by narrow domain
walls, where the magnetization rotates from one easy direction to another.

A ferromagnetic domain
state resulting from the
interplay of uniaxial
anisotropy and
demagnetizing field. The
domain wall is the shaded
region.

For thin films and nanoparticles, we have to take into account an additional
surface anisotropy term

εas =
∫
Ks[1 − (eM · en)

2]d2r,

where en is the surface normal, which defines the z axis, and the integral
is over the sample surface. Typical values of surface anisotropy Ks are 0.1–
1 mJ m−2.

Exchange-related anisotropy may be present when there is coupling at a
ferromagnetic–antiferromagnetic or soft–hard interface. Unlike the other forms

2 Other definitions of exchange length can be found in the literature, such as
√

2A/µ0M
2
s or√

A/Keff , where Keff is an effective anisotropy constant.



237 7.1 Micromagnetic energy

of anisotropy, this one is unidirectional,

εea = −
∫
Kex cos θd2r,

where θ is the angle between eM and the preferred anisotropy direction.

7.1.3 Demagnetizing field

When no external field is present, it follows from B = µ0(H + M) and
∇ · B = 0 that ∇ · Hd = −∇ · M. Using the result (2.80)

∫
B · Hd3r = 0,

where the integral is over all space, it follows that the demagnetizing energy
(7.1) can be written in two equivalent ways:

εd = − 1
2

∫
µ0 Hd · Md3r (integral over the volume of the magnet)

(7.9)
εd = 1

2

∫
µ0H

2
d d3r (integral over all space).

If Hd is expressed in terms of the scalar potential ϕm, the integral in the second
expression for the energy can be evaluated from the volume and surface charge
distributions, −∇ · M and M · en (2.54), using Gauss’s theorem for a vector
field. In the case of a uniformly magnetized ellipsoid, the volume integral is
zero and the surface contribution is that of the uniform demagnetizing field
−N M , namely − 1

2µ0NM2
s . Values of Ed range up to 2000 kJ m−3.

7.1.4 Strain

An external stress σ ij applied to a sample introduces a strain term in the energy:

εstress = −
∑
i,j

σ ij εij , (7.10)

where εij = m̂ijklHkHl is the magnetoelastic strain tensor. For an isotropic
material with uniaxial stress σ along Oz, the contribution depending on M
is − 1

2λsσ (3 cos2 θ − 1) (5.67), where λs is the spontaneous magnetostriction.
This is equivalent to a uniaxial anisotropy with Ku = (3/2)λsσ .

7.1.5 Magnetostriction

Local stress may also be generated by the magnetostriction of the ferromagnetic
material itself. Stresses only arise if the magnetostrictive strains are frustrated.
The corresponding strain energy is

εms = 1
2

∫
( pe − ε) · c · ( pe − ε)d3r. (7.11)
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(a) (b)

Figure 7.4

(a) The van den Berg
construction to obtain the
domain structure of an
ideally soft
two-dimensional element.
In (b) extra domains are
introduced by a virtual cut
shown by the dotted line.

Here pe is the deviation from the nonmagnetostrictive state, ε is the strain in the
freely deformed state and c is the tensor of elastic constants. c · ( pe − ε) is the
magnetostrictive stress σ . Thankfully this term is usually small, < 1 kJ m−3.

7.1.6 Charge avoidance

The task of understanding how nature minimizes the sum of all six terms
in the micromagnetic free energy of a ferromagnetic specimen to arrive at
a stable configuration is a formidable one. Vortex states tend to be stable in
soft ferromagnets, multidomain states in hard ferromagnets and single-domain
states in the smallest ferromagnetic elements. A rough but useful guide for
minimizing the energy in a multidomain body is the charge avoidance principle.
Surface charge M · en is loathe to form, because of the high energy cost of the
stray field Hd which it creates (2.79). Charges of the same sign tend to avoid
each other as far as possible for the same reason. The magnetization in the bulk
should have as little divergence as possible to avoid creating volume charge
∇ · M. Complete freedom of the magnetization to rotate in order to maximize
charge avoidance implies an absence of anisotropy that is characteristic of very
soft magnetic material. The cost in exchange energy of forming the domain
walls needed to achieve the ‘pole-free’ configurations is overlooked, but charge
avoidance provides us with an idea of the magnetic configurations which would
arise from the influence of dipole interactions alone.

An elegant construction due to van den Berg produces ‘pole-free’ configu-
rations in thin-film elements that depend only on the shape of the element. His
method ensures that the magnetization is everywhere parallel to the surface.
The domain walls are the locus of points corresponding to the centre of a circle
which touches the edge of the element at two points at least, but does not cut
it anywhere. The magnetization pattern so obtained is not only parallel to the
surface, but also divergenceless in the interior. Walls end at singular points
within the element, or else at sharp corners. The construction is illustrated in
Fig. 7.4. Virtual cuts can be introduced anywhere in the element to create new
domains, as shown in Fig. 7.4(b). The van den Berg construction shows that
domains can arise from the dipole interaction (7.1) alone. It is best applied
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to soft magnetic films with little anisotropy and dimensions which exceed the
domain wall width.

Applying the van den Berg construction to a ring-shaped or rectangular frame
gives a configuration with a single wall running around the centre. In fact, a
lower ‘pole-free’ configuration exists without any wall. These stray-field-free
configurations are useful for measuring internal susceptibility (§2.2.6). The
picture-frame configuration with one or more domain walls is compatible with
〈100〉 cubic anisotropy of a single crystal. Closure domains with 90 ◦ domain
walls (Fig. 7.2) are very effective at reducing the stray field in soft ferromagnets
such as permalloy, as there is no surface charge.

(a) (b)

Configurations that create
no stray field: (a) ring and
(b) picture frame.

A permanent magnet is the antithesis of charge avoidance. Here the purpose
is to generate as much stray field as possible in surrounding space. Permanent
magnets are characterized by lots of surface charge and deep metastable minima
in their energy landscape which make configurations with close-to-saturated
magnetization stable almost indefinitely. The anisotropy term in (7.5) is the key
to achieving this.

Generally, the minimization of (7.4) or (7.5) involves finding a solution
where the magnetization direction is stable at every point, subject to bound-
ary conditions. If Heff is the local effective field, which makes an angle ϑ
with the local magnetization direction eM , the condition ∂Etot/∂ϑ = 0 means
that −MHeff sinϑ = 0. This is equivalent to the condition that no torque acts
anywhere on the magnetization; � = M × Heff = 0, so

eM × Heff = 0. (7.12)

The local effective field, in a vector notation, is

Heff = 2A

µ0Ms
∇2eM − 1

µ0Ms

∂Ea

∂eM
+Hd +H ′. (7.13)

The notation ∇2eM indicates a vector whose Cartesian coordinates are
M−1
s [(∂2Mx/∂x

2 + ∂2Mx/∂y
2 + ∂2Mx/∂z

2), . . .], and ∂Ea/∂eM is a vector
whose Cartesian coordinates are [∂Ea/∂eMx, ∂Ea/∂eMy, ∂Ea/∂eMz]. These
two are Brown’s micromagnetic equations, which have to be solved numerically,
subject to the surface boundary condition

eM ×
[

2A(en · ∇)eM + ∂Eas

∂eM

]
= 0.

Their meaning is that in equilibrium the magnetization lies everywhere parallel
to Heff given by (7.13).

William Fuller Brown,
1904–1983.

7.2 Domain theory

The micromagnetic approach is capable, in principle, of predicting the equilib-
rium magnetic configurations of any system where the exchange stiffness A(r)
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Figure 7.5

(a) A Bloch wall, and (b) a
Néel wall.

and anisotropy Ea(r) can be specified throughout. Hysteresis may be deduced,
knowing the magnetic history in an applied field H ′(t). No account is taken of
temperature. It is impractical to implement micromagnetic theory in any but
idealized situations. The problem is mathematically complex, and real materi-
als contain local defects and disorder which cannot be specified precisely, but
which nonetheless tend to dominate the magnetization process.

Domain theory is an attempt to reduce this complexity to manageable pro-
portions. It postulates the existence of large regions of uniform magnetization
in a macroscopic sample, which are separated by planar regions – the domain
walls – where the magnetization rotates from one easy direction to another.
Domain observations support the model. If domains exist, so must domain
walls. An applied field changes the net magnetization of the sample, either by
causing the walls to move or by making the magnetization in the domains rotate
towards the applied field direction. The magnetostatic energy depends on the
wall positions and the domain orientations.

Domain theory breaks down in very soft magnetic materials, especially in
thin film elements where the demagnetizing field is small. There, instead of
domains, states with continuous rotation of magnetization tend to form.

Now we look more carefully into the structure of the domain walls. A flip
of magnetization from one plane of atoms to the next would be prohibitively
expensive, costing 4J S2/a2 ≈ 2A/a or about 0.1 J m−2. Magnetization rotates
continuously over many interatomic distances under the combined influence
of exchange and anisotropy. Dimensional analysis gives the wall width δw ≈√
A/K1, which is of order 10–100 nm, and the wall energy γ w ≈ √

AK1, which
is of order 1 mJ m−2. The association of energy with the wall area means that
the domain wall behaves like an elastic membrane or soap film. Two common
types of domain wall are illustrated in Fig. 7.5.

7.2.1 Bloch wall

The commonest is the 180◦ Bloch wall illustrated in more detail in Fig. 7.6,
where the magnetization rotates in the plane of the wall. The Bloch wall has the
remarkable property that it creates no divergence of the magnetization. Each of
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Detail of the 180◦ Bloch
wall.

the three terms in ∇ · M = ∂Mx/∂x+ ∂My/∂y + ∂Mz/∂z is zero; there is no
component of magnetization in the x-direction, and the spins in each yz-plane
are parallel to each other. Since ∇ · M = 0, there is no magnetic charge and
no source of demagnetizing field in the wall.

To calculate the form of the Bloch wall, we minimize the free energy (7.5)
for clockwise (or anticlockwise) rotation. Ignoring the magnetostatic energy
originating at the sample surface, and considering only the leading anisotropy
term

εtot = εex + εk =
∫

[A(∂θ/∂x)2 +K sin2 θ ]dx. (7.14)

HereK = K1 is assumed to be positive, so that θ = 0 and θ = π are equivalent
easy directions. Magnetization is confined to the plane φ = π/2, and the only
variation of θ is along the x axis. Additional anisotropy terms are neglected.
There is no need to consider demagnetizing energy because there are no sources
of demagnetizing field in the wall. Minimizing the integral, which is of the form∫
F (x, θ (x), θ ′(x))dx, is equivalent to solving the Euler equation ∂F/∂θ −

(d/dx)(∂F/∂θ ′) = 0 where θ ′ = ∂θ/∂x:

∂(K sin2 θ )/∂θ − 2A∂2θ/∂x2 = 0. (7.15)
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Table 7.1. Domain wall parameters for some ferromagnetic materials

Ms A K1 δw γ w lex

(MA m−1) (pJ m−1) (kJ m−3) (nm) (mJ m−2) κ (nm)

Ni80Fe20 0.84 10 0.15 2000 0.01 0.01 3.4
Fe 1.71 21 48 64 4.1 0.12 2.4
Co 1.44 31 410 24 14.3 0.45 3.4
CoPt 0.81 10 4900 4.5 28.0 2.47 3.5
Nd2Fe14B 1.28 8 4900 3.9 25 1.54 1.9
SmCo5 0.86 12 17 200 2.6 57.5 4.30 3.6
CrO2 0.39 4 25 44.4 1.1 0.36 4.4
Fe3O4 0.48 7 −13 72.8 1.2 0.21 4.9
BaFe12O19 0.38 6 330 13.6 5.6 1.35 5.8

Hence K sin2 θ = A(∂θ/∂x)2, ∂θ/∂x = √
K/A sin θ , yielding the domain-

wall equation

x =
√
A

K
ln tan(θ/2), (7.16)

where θ = π/2 at the origin, which is the wall centre. The equation can be
inverted to read

θ (x) = tan−1[sin k(πx/δw)] + π/2,
where

δw = π
√
A

K
. (7.17)

The domain wall does not have a precisely defined width, since the direction of
magnetization only approaches 0 or π asymptotically. But it is usual to define
the extrapolated width from the tangent at the origin to (7.16). An alternative
is to define the width as the distance between points where some fraction,
say 90%, of the rotation has taken place. In that case δw ≈ 4

√
(A/K). Since

K sin2 θ = A(∂θ/∂x)2; the two terms in the integral (7.14) for the energy are
equal to each other at every point in the wall. The energy per unit domain wall
area is

γ w = 4
√
AK. (7.18)

If K were negative, and there were no terms other than K sin2 θ in the
expansion of the anisotropy energy, the magnetization would lie in the plane
θ = π/2. The domain wall M(φ) between regions with φ = 0 and φ = π
would be infintely extended because no anisotropy cost is incurred. Anisotropy
of some sort is necessary for a finite wall width. Domain wall parameters for
different materials are collected in Table 7.1.
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Figure 7.7

Néel lines in a Bloch wall.

Néel lines are topological defects between segments of Bloch walls where
the magnetization rotates in opposite senses, Fig. 7.7. Néel lines are rather
stable magnetic defects where the magnetization rotates in the plane of the
domain magnetization; they can only be eliminated by completely saturating
the magnetization.

Expressions for wall width and energy are different for cubic anisotropy. For
example, the energy for a 90◦ wall, which forms in iron and other materials
with 〈100〉 easy axes, is γ 100 = √

AK1c. When 〈111〉 axes are easy, as in nickel,
71 ◦, 109 ◦ and 180 ◦ walls may form, with energy c

√
AK1c with c = 0.5, 1.5

and 2.2, respectively.

7.2.2 Néel wall

The Néel wall, where the magnetization rotates within the plane of the domain
magnetization, is normally higher in energy than the Bloch wall because of the
stray field created by the nonzero divergence of M. But unlike the Bloch wall,
the Néel wall creates no surface charge, and there is no associated stray field.
Néel lines are actually strips of Néel wall. When two regions of Néel wall with
opposite chirality meet, there forms a strip of Bloch wall, which we call a Bloch
line.3

Néel walls are only stable in films thinner than the wall width. To explain the
formation of his walls Néel represented the wall by an elliptical cylinder of cross
section t × δ where t is the film thickness. For a bulk sample the demagnetizing
factor for the Bloch wall is zero, while that for the Néel wall is 1. When t < δ the
Néel wall has the lower magnetostatic energy. However, the Bloch wall width
itself is much reduced in thin films in order to minimize the stray field. The
Bloch–Néel crossover thickness in a film of permalloy (Ni80Fe20) is at 60 nm.

d

t
+
+

+-

-

-

Explanation of formation of
Néel walls in thin films.

A cross-tie wall.

A cross-tie wall is a Néel wall in which the magnetization rotates in opposite
directions in adjacent sections. Transitions between domains in thicker films
may have vortex structures, mixtures with Néel caps at the surface and Bloch
character at the centre. There is rich fauna in the micromagnetic jungle.

3 Often in the literature, the chirality-related line defect in a Bloch wall is called a Bloch line. It
seems more reasonable to use this name for the chirality-related defect in a Néel wall where the
magnetization rotates around a line perpendicular to the wall.
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7.2.3 Magnetization processes

The domain picture is a good one for ferromagnetic solids, when the domain
size is much greater than the domain wall width. Domain wall motion and
domain rotation are the two basic magnetization processes in any multidomain
solid. Consider a multidomain ellipsoidal specimen with no magnetocrystalline
anisotropy. This was the basis of the discussion of the demagnetizing fields in
§2.2.4. When the field is applied along the easy axis, the effect is to move
the domain walls in such a way as to grow the parallel domains and shrink
the antiparallel domains. The average magnetization Mav = M[(Vp − Vap)/
(Vp + Vap)] increases with increasing applied field in such a way that H =
H ′ − NMav = 0. The external susceptibility due to domain wall motion is
χext = Mav/H

′ = 1/N .
The other magnetization process, magnetization rotation, applies when the

applied field H ′ has a component perpendicular to the anisotropy axis. If Ku
is the effective anisotropy of whatever origin, the external susceptibility is
µ0M

2
s /2Ku. The magnetization attains saturation when the applied field equals

the anisotropy field, 2Ku/µ0Ms .

7.2.4 Condon domains

Domains of a different type, unrelated to electron spin, are associated with
Landau diamagnetism. When the magnetization exhibits strong de Haas–van
Alphen oscillations where the differential susceptibility exceeds a threshold
value of 1, the sample will break up into domains magnetized parallel and
antiparallel to the applied field, in order to minimize the energy associated with
the dipole field.

7.3 Reversal, pinning and nucleation

Hysteresis would never exist unless there was some chance of a ferromagnetic
specimin getting stuck in a metastable configuration with a remanant magne-
tization and higher energy than the absolute minimum energy configuration,
which is reached by cooling from above the Curie temperature in zero applied
field. In order to make some sense of the complex problem of hysteresis, we
first examine the magnetization reversal in a single-domain particle or thin-film
element, which can be calculated analytically. Then we look into how domain
theory allows us to formulate the elementary processes involved in coercivity
in multidomain samples.
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Progress towards
narrowing the gap
between the anisotropy
field Ha and coercivity Hc

(after Kronmüller and
Fähnle (2003)).

In 1947 William Fuller Brown proved rigorously that the coercivity for a
homogeneous, uniformly magnetized ellipsoid obeys the inequality

Hc ≥ (2K1/µ0Ms) − NMs, (7.19)

a surprising result known in micromagnetics as Brown’s theorem. The first term
is the anisotropy field, and the second is the demagnetizing field. In reality,
coercivity in bulk material is never this large. It is generally a long struggle,
following the introduction of a new hard magnetic material, to achieve a coer-
civity that exceeds 20–30% of the anisotropy field (Fig. 7.8). This apparent
contradiction between theory and practice is known as Brown’s paradox. The
explanation here, as in other cases – for example Earnshow’s theorem – where
there is an apparent conflict between theory and experiment, is that the assump-
tions of the theory are not met in practice. All real materials are inhomogeneous,
and magnetization reversal is initiated in a small nucleation volume around a
defect.

Surface asperities are sources of strong local demagnetizing fields. These
surface defects often act as nucleation centres because, in the second quadrant
of the hysteresis loop, the reverse magnetic fieldH is enhanced in their vicinty.
Once a small nucleus of volume V ≈ δ3

w has formed, the wall may propagate
outwards, growing from the nucleation volume. Otherwise the new wall may
become pinned at some other defect, as illustrated in Fig. 7.9.

Ms
Ms

+

–
–

++

–+++

––
–

Local stray fields near a
surface pit or bump. The
region prone to reversal is
shaded.

A magnetic particle reduces
its energy by forming
domains.

Very small magnetic particles must be single-domain; they do not benefit
energetically from wall formation if they are below a certain critical size.
Consider a spherical particle of radiusRwith cubic anisotropy, which forms two
90o domain walls in order to almost eliminate the stray field. The cost of creating
the two walls, 2πR2

√
AK1c, must be offset by the gain in demagnetizing energy

of the sphere, − 1
2µ0NVM2

s . The demagnetizing factor N = 1/3 gives the
following expression for the maximum single-domain size.

Rsd ≈ 9
√
AK1c/µ0M

2
s . (7.20)
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magnetization
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Bloch-wall
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Figure 7.9

Processes involved in
magnetization reversal in
the second quadrant of the
hysteresis loop. A is a
reverse domain which
nucleates in the bulk at a
defect, or from a
spontaneous thermal
fluctuation. B is a reverse
domain which has grown
to the point where it is
trapped by pinning centres
and C is a reverse domain
which nucleates at a
surface asperity.

(a) (b) (c)

Figure 7.10

Demagnetization processes
in a homogeneous
ellipsoid: (a) coherent
rotation, (b) curling, (c)
buckling. Coherent rotation
is the reversal mode for the
smallest, single-domain
particles.

Two or three different modes of reversal can occur in a single-domain
particle. They are investigated theoretically for infinite cylinders and homo-
geneous ellipsoids of revolution by looking for the first deviation from a uni-
formly magnetized state when a field is applied along an easy axis in a direction
opposite to the magnetization. They are illustrated in Fig. 7.10.

First is the coherent rotation mode where the magnetization remains uniform
everywhere, and it rotates in unison, increasing the stray field as it flips through
a configuration where the magnetization is perpendicular to the easy axis.
Second is the curling mode, which avoids creating stray field by passing through
a vortex state where the magnetization lies everywhere parallel to the surface
(Fig. 7.10(b)). This costs exchange energy. The vortex state is the lowest energy
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state of soft magnetic particles which are larger than the coherence radius. In
long prolate ellipsoids, a third reveral mode known as buckling may occur,
which is a combination of the other two that creates less stray field than coherent
rotation.

The simplest model of magnetization reversal, the Stoner–Wohlfarth model,
assumes the coherent mode of magnetization reveral. The magnetization is
supposed to remain uniform as its orientation changes with time during reversal.
However, even if a particle is smaller than Rsd , magnetization reversal does not
have to be coherent. Other possible reversal modes, curling and buckling, are
illustrated in Fig. 7.10. Curling is the one which arises in spherical particles
which are larger than the coherence radius.

7.3.1 Stoner–Wohlfarth model

Despite the restrictive and often unrealistic condition of coherent magnetization
reversal, the Stoner–Wohlfarth model is a beacon of light on the complex
landscape of hysteresis in real materials. It is the simplest analytical model
which exhibits hysteresis. Imagine a Stoner–Wohlfarth particle, a uniformly
magnetized ellipsoid with uniaxial anisotropy of shape or magnetocrystalline
origin in a field applied at an angle α to the anisotropy axis. The energy density
is

Etot = Ku sin2 θ − µ0MH cos(α − θ). (7.21)

H M
q

a

A Stoner–Wohlfarth
particle.

Peter Wohlfarth
1924–1988.

Minimizing Etot with respect to θ gives either one or two energy minima, as
shown in Fig. 7.3. Hysteresis arises in the field range where two minima are
present. Switching is the irreversible jump from one minimum to another, which
occurs when d2E/dθ2 = 0. It takes place in the second and fourth quadrants,
when α < 45◦, and the switching field Hsw is then equal to the coercivity Hc.
Otherwise, when α > 45◦, Hsw > Hc. It is interesting that when α = 77◦, the
switching leads to a small decrease of the component of magnetization along
H. The hysteresis of a Stoner–Wohlfarth particle is illustrated in Fig. 7.11. The
hysteresis loop is perfectly square when α = 0, and in that case the coercivity
is equal to the anisotropy field: Hc = 2Ku/µ0Ms , or

Hc = (2K1/µ0Ms) + [(1 − 3N )/2]Ms. (7.22)

Here, Ku is the sum of the magnetocrystalline anisotropy K1 and the shape
anisotropy 1

4µ0M
2
s (1 − 3N ) (5.62), which are assumed to have the same axis.

Equation (7.22) is consistent with Brown’s theorem (7.19) since the demagne-
tizing factor N lies between 0 and 1.

An array of noninteracting particles with a random distribution of anisotropy
axes is a crude model for a real polycrystalline magnet. The hysteresis loop
is plotted in Fig. 7.12 in terms of the reduced variables, m = M/Ms and
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Magnetization curves for
the Stoner–Wohlfarth
model for various angles α

between the field direction
and the easy axis. Note the
square loop when H is
applied along the easy axis,
and the lack of hysteresis in
the perpendicular direction.
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Hysteresis loop for a
randomly oriented array of
Stoner–Wohlfarth particles.

h = H/Ha , where Ha is the anisotropy field 2Ku/µ0Ms . The remanence for
the array of particles ismr = 1

2 ; and the coercivity is hc = 0.482. The remanent
coercivity hrc, defined as the reverse field needed to reduce the remanence to
zero is 0.524.

If the anisotropy directions are distributed at random within a plane, which
may be the case for some particulate recording media, the remanence is mr =
(2/π ) = 0.637, hc = 0.508 and hrc = 0.548.
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Wohlfarth also pointed out a simple relation between two remanence curves
for the system of noninteracting particles. The remanence on the initial mag-
netization curve Mr , and is obtained by applying a field H to the virgin state,
and reducing it to zero. The remanenceMrd is obtained in a reverse field after
saturating the magnetization. They are related by

2Mri(H ) = Mr −Mrd (H ). (7.23)

Deviations from a linear plot of Mri versus Mrd , known as a Henkel plot, are
evidence for interparticle interactions.

M

HH H+_
sw sw

An elementary ‘hysteron’
used in Preisach modelling
of hysteresis.

A popular way of modelling hysteresis curves is the Preisach model, where a
real hysteresis loop is decomposed as a superposition of elementary rectangular
loops known as hysterons with different switching fields. These can be regarded
as the loops of a distribution of Stoner–Wohlfarth particles with differing
anisotropy. Interactions among the particles mean that the positive and negative
switching fields H+

sw and H−
sw may be different.

7.3.2 Reversal in thin films and small elements

The magnetization of soft ferromagnetic films usually lies in the plane of the
film, in order to minimize the demagnetizing field. In-plane demagnetizing
factors are small (Fig. 2.8). A weak, in-plane uniaxial anisotropy Ku may be
induced deliberately to control the reversal process by magnetic annealing or
off-axis deposition. The thin-film element is equivalent to a Stoner–Wohlfarth
particle, for which the coherent rotation of the magnetization is confined to a
plane.

H'

H||

H |Easy 
axis

A magnetic field applied to
a small particle or thin-film
element with easy-axis
anisotropy. The field is
resolved into two
components.

Applying the theory of the previous section, a square loop with Hc =
2Ku/µ0Ms is obtained when the field is applied along the easy axis. When
it is applied in the transverse, in-plane hard direction, there is no hysteresis,
but saturation occurs in the same field – the anisotropy field. The applied field
can be resolved into components H cosα and H sinα along the easy and hard
directions, and these components are again normalized by the anisotropy field
to give the reduced variables h‖ and h⊥. Equation (7.21) becomes

Etot = Ku[sin2 θ − 2h‖ cos θ − 2h⊥ sin θ ]. (7.24)

The equilibrium angles θ are determined by the condition dEtot/dθ = 0, giving

h⊥
sin θ

− h‖
cos θ

= 1,

Switching occurs when the energy minimum becomes unstable, d2Etot/dθ2 =
0. Solving these two equations gives the parametric equations for the switching
field hsw: h⊥sw = sin3 θ, h‖sw = − cos3 θ . Eliminating θ , the switching field is
given by the Stoner–Wohlfarth asteroid drawn in Fig. 7.13:

h
2/3
‖sw + h2/3

⊥sw = 1. (7.25)



250 Micromagnetism, domains and hysteresis

h⊥

hII

b b’

h
M

a q

Figure 7.13

Stoner–Wohlfarth asteroid.
The asteroid indicates
where switching occurs.
Inside the asteroid, the
equilibrium orientation in a
normalized field h is given
by the tangent
construction. θ is either β

or β ′.

Outside the asteroid, there is a single energy minimum; the direction of mag-
netization responds to the applied field by continuous rotation. At any point
inside the asteroid, the energy (7.23) has a double minimum, one stable, the
other metastable. On crossing the asteroid by changing the magnitude or direc-
tion of the applied field, there may be a ‘catastrophe’ where the magnetization
of the particle jumps to a new minimum with a different direction. In other
words, the asteroid is the locus of points where a bifurcation of the free energy
surface occurs. Magnetization switching never takes place within the asteroid,
only on its surface. The remarkable properties of the asteroid emerge when we
address the question of how to determine the direction of magnetization in a
given field h. The slope dh⊥sw/dh‖sw of the tangent to the asteroid at a point θ0

deduced from the parametric equations is tan θ0, so the direction eM coincides
with the tangent to the asteroid drawn from the tip of the vector h.

The construction to determine the magnetization direction is illustrated in
Fig. 7.13. From a field point in the control plane, tangents are drawn to the aster-
oid. One represents the stable energy minimum θ = β, the other a metastable
minimum or a maximum θ = β ′. Hysteresis can be traced out in an oscillating
field applied along some direction, or in a rotating field. Loops as a function of
the variables h‖ and h⊥ are drawn in Fig. 7.14.

Irreversible, catastrophic discontinuities in magnetization are known as
Barkhausen jumps. In the present model, a Barkhausen jump takes place when-
ever the field crosses the asteroid, approaching it from inside.

Coherent rotation of the magnetization is an assumption of the Stoner–
Wohlfarth theory. It must be emphasized that other reversal modes may be
possible, which have less coercivity. One example for a thin film is shown in
Fig. 7.15. The film is initially magnetized along an out-of-plane hard direction,
and the field is reduced. The two in-plane easy directions have the same energy,
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Switching curves for thin
films as a function of the
field applied in-plane. The
hard-axis curve (h|| = 0) is
shown dashed.
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Figure 7.15

Magnetization reversal in a
thin film when the field is
applied in the
perpendicular hard
direction.

and initially a periodically modulated structure appears, which settles into a
structure of in-plane strip domains, not a single perpendicular domain. There
is no coercivity.

The C and S states which
may appear during reversal
of a thin film element in an
in-plane field.

Whereas small thin-film ferromagnetic elements tend to have a collinear
structure and reverse coherently, as described by the Stoner–Wohlfarth model,
larger elements with negligible anisotropy tend to adopt a vortex state. A circular
dot has four possible configurations, with clockwise or anticlockwise chirality
and the spins at the centre can point up or down out of the plane. Starting from
one of these, an in-plane field pushes the vortex reversibly towards the edge of
the dot, and the magnetization then switches irreversibly to saturation as shown
in Fig. 7.16. The vortex nucleates again when the field is reduced. Double
vortices and various metastable states, named C, S and W states because of
the shape of the spin configuration, can arise in differently shaped thin films,
and they all exert an influence on the reversal process.The C states lead to
coercivity and should be avoided if complete switching is sought in low field.
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Hysteresis loop of a circular
thin-film element with a
vortex configuration.
(Computer simulation,
courtesy of Pramey
Upadhyaya.)

Magnetization reversal in ferromagnetic thin-film elements is an important
topic, both for a fundamental understanding of the micromagnetics and for
applications in magnetic memory and recording.

7.3.3 Perpendicular anisotropy

We saw that the magnetization direction in uniformly magnetized thin films usu-
ally lies in the plane of the film for magnetostatic reasons. However, perpendic-
ular anisotropy can arise when an oriented or epitaxial film of a hard magnetic
material is, grown with its easy axis perpendicular to the film plane. In the very
thinnest films a few nanometers thick, surface anisotropy can sometimes lead
to perpendicular magnetization (§8.2.2). Multilayer stacks with perpendicular
anisotropy can be built up of alternating thin ferromagnetic and nonmagnetic
layers. If ϑ is the angle between the magnetization and the film normal, and
there is some perpendicular anisotropy Ku, the energy per unit volume,

Etot = Ku sin2 ϑ + 1
2µ0M

2
s cos2 ϑ,

has a minimum at ϑ = 0 when the quality factor Q, defined as 2Ku/µ0M
2
s , is

greater than unity; the condition for perpendicular anisotropy isKu >
1
2µ0M

2
s .

This condition is only satisfied by oriented films of hard magnetic materials,
and materials with a low magnetization Ms or dominant surface anisotropy
Ku = Ks/t, where t is the film thickness. If a film has surface anisotropy
of 1 mJ m−2 and µ0Ms = 1 T, the thickness t = 2Ks/µ0M

2
s below which

the magnetization tends to lie perpendicular to the film is 25 nm. Domain
formation increases the critical thickness. The perpendicular magnetization
of films with Q < 1 tends to break into maze domains with equal areas of ↑
and ↓ magnetization in zero applied field (Fig. 7.2(c)), in order to reduce the
demagnetizing energy − 1

2µ0M
2
s (§7.3.2).
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Figure 7.17

Magnetization and domain
structure of a thin film with
perpendicular anisotropy.
Maze domains give way to
bubble domains on
increasing magnetic field.

A perpendicular field progressively increases the width of the ↑ domains,
and narrows the ↓ domains up to a point known as strip-out, where the narrow
↑ stripes break up into short strips and small ‘bubbles’, which are cylindrical
islands about a micrometre in diameter that extend throughout the film thickness
(Fig. 7.17). Further increase of the field reduces the domain diameter, until
the bubbles eventually disappear at saturation. Bubbles can be manipulated
by suitable external fields and guided around magnetically defined tracks. In
some circumstances, it is possible to form an hexagonal bubble lattice. Bubble
domains in shift registers formed the basis of a sophisticated, but ultimately
uncompetitive nonvolatile memory technology developed in the late 1970s.

Perpendicular anisotropy was important for magneto-optic recording. It is
essential for modern perpendicular recording media (Chapter 14).

7.3.4 Nucleation

In order to calculate reversal properly, we need to include exchange and demag-
netizing energy terms in the expression forEtot . Starting from a uniformly mag-
netized ellispoidal sample, the nucleation field Hn is defined as the field where
the first deviation from the uniformly magnetized state appears. Coercivity is
conventionally positive, whereas the nucleation field is negative. Brown actu-
ally proved that Hn ≤ −2K1/µ0Ms + NM . Since nucleation must precede
reversal, Hc ≥ −Hn so his theorem (7.19) follows.

Nucleation of the coherent reversal mode is deduced from an eigenmode
analysis of the linearized micromagnetic equation:

Hn = − 2K1

µ0Ms
− 1

2
(1 − 3N )Ms, (7.26)

which is the Stoner–Wohlfarth expression for the coercivity (7.21) when the
anisotropy energyEa = K1 sin2 θ . If higher-order terms are included, for exam-
ple Ea = K1 sin2 θ +K2 sin4 θ , the nucleation field is unchanged, but when
0 < K1 < 4K2,Hc > −Hn.

The other common nucleation mode for ellipsoidal particles is curling, Fig.
7.18. This mode creates no demagnetizing field, but it costs exchange energy to
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Nucleation field as a
function of particle
size, showing
superparamagnetism,
coherent rotation, curling
and multidomain reversal.
The nucleation field is an
upper limit on the
coercivity. (After
Kronmüller and Fähnle
(2003).)

produce the deviation from a uniformly magnetized state. The nucleation field
for curling is

Hn = − 2K1

µ0Ms
+ NM − kcMs

(
R0

R

)2

, (7.27)

where R0 = √8πA/µ0M
2
s . A typical value with A = 1011 J m−1 and Ms =

106 A m−1 is R0 = 10 nm. The factor kc ranges from 1.08 for a long cylinder
to 1.48 for a flat plate. The curling therefore controls magnetization reversal
when specimen dimensions are larger than about 15 nm.

Critical micromagnetic dimensions for some ferromagnetic materials are
summarized in Tables 7.1 and 8.1. In samples much larger than Rsd there is no
reason to expect that the magnetization reversal from the saturated state will
be a coherent and uniform process. Real specimens are always inhomogeneous
to some extent, and they have a surface. Since it takes little energy to move
domain walls, the critical step in magnetization reversal is often the creation
of a small reverse domain by a spontaneous fluctuation at a weak point in the
system. The minimum size of such a nucleus is of order δ3

w . Once nucleated,
the reverse domain tends to expand under the action of the reverse field, unless
the domain walls are pinned by defects (Fig. 7.9).

7.3.5 The two-hemisphere model

The effect of exchange coupling in an inhomogeneous material is illustrated by
a simple model.

Consider a ferromagnetic sphere, Fig. 7.19, made up of two hemi-
spheres, α, β, which have different anisotropies, Kα,Kβ . Assuming first that
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Figure 7.19

A sphere made of two
halves, α, β, showing
(a) the uniform state,
(b) coherent rotation,
(c) incoherent rotation, and
(d) the mode where the
soft hemisphere switches
before the hard one when
Kα � Kβ unless the radius
of the sphere is less than
the exchange length lex .

Kα = Kβ = K , and that the magnetic moment of each half is located at ±R/2,
the energy per unit volume in an external field H for small deviations, θα,
θβ , is

E = [A/R2 − 1
24µ0M

2
]
(θα − θβ)2 + 1

4 [2K1 − µ0MH ]
(
θ2
α + θ2

β

)
. (7.28)

The first term represents the increase of exchange energy and the decrease in
dipole energy associated with an incoherent reversal mode. The second term
represents the anisotropy and Zeeman energies. Coherent and incoherent modes
of reversal are illustrated in Fig. 7.19(b) and (c).

The nucleation field for the coherent reversal mode is Hn = 2K/µ0Ms ,
whereas that for the incoherent mode is given by (7.27) with N =1/3, kc = 1
and R0 = √8A/µ0M

2
s . The reversal is incoherent if particles are larger than

the coherence radius, Rcoh = √24A/µ0M
2
s . If, on the other hand, we assume

Kα = K andKβ = 0, independent reversal of the soft hemisphere occurs when
H ≈

1
8Ms unless the sphere is very small. When R is less than the exchange

length (Eq. (7.8)) the soft hemisphere can no longer reverse independently. It is
stiffened by exchange coupling with the hard sphere. This exchange stiffening

effect operates in soft regions of dimensions of order 4lex ≈ 10 nm (Table 7.1).

7.3.6 Switching dynamics

When a ferromagnetic sample with moment m is placed in a magnetic field H
which is inclined to m, it experiences a torque � = µ0m × H . The gyromag-
netic ratio γ = gµB/� is the ratio of magnetic moment to angular momentum,
hence we have the gyroscopic equation

dM/dt = γµ0 M × H,

which describes the precession of the magnetization around the applied field.
The Larmor precession or ferromagnetic resonance frequency

ωL = γµ0H

corresponds to a frequency of 28 GHz T−1 when g = 2 and γ = −e/me.

wL
H

M

Precession of
magnetization in a
magnetic field. When there is uniaxial anisotropy, represented by an anisotropy field Ha =

2K1/µ0Ms , the Larmor precession frequency becomes

ωL = γµ0(H +Ha). (7.29)
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Losses, without which the moment would never be able to align itself with
the applied field, are represented by including a damping term (§9.2.2). The
Landau–Lifschitz–Gilbert equation

dM/dt = γµ0 M × H − (α/Ms)M × dM/dt (7.30)

is frequently used to describe magnetization dynamics. If the field is applied
in the plane of a ferromagnetic film, perpendicular to the easy axis, the mag-
netization tries to precess out of the plane and it is then subject to a large
demagnetizing field of order of a tesla, which accelerates the rotation of the
magnetization towards the field (Fig. 9.7). The time taken to turn through π /2
is of order (4 × 28 × 109)−1 ≈ 0.01 ns. Coherent reversal is an inherently fast
process.

7.3.7 Domain-wall motion

Reversal involving domain-wall motion is far slower. An applied field exerts a
pressure on the walls. If it is applied parallel to the easy z axis of a uniaxial
magnet, the wall will move in the x-direction. The change in Zeeman energy
per unit area of wall is 2µ0MHδx, hence the pressure is 2µ0MH . In small
fields, the wall velocity is essentially proportional to the pressure:

vw = µ0ηw(H −Hp), (7.31)

where ηw is the wall mobility andHp is the small field needed to depin the wall.
Mobilities range from 1 to 1000 m s−1 mT−1, but a value of 100 m s−1 mT−1 is
representative for thin films of a soft material like permalloy. A field of 0.1
mT will move the walls at about 10 m s−1. The linear increase of wall velocity
with field collapses at velocities beyond about 100 m s−1. Wall dynamics are
important in materials such as laminated electrical steel, where the walls move
more slowly, oscillating at 50 or 60 Hz (§12.1.1). Eddy currents control their
motion.

To obtain an expression for the mobility consider a single domain wall. If
the flux through the cross section of thickness t perpendicular to the wall is �,
the wall velocity is related to the rate of change of � by

d�/dt = 2µ0Ms tvw. (7.32)

Since j = σE ∝ (d�/dt)/t and pw, the power dissipated per unit length of
wall is proportional to j 2/σ , it follows thatpw ∝ σ (d�/dt)2. A full calculation,
valid for slow-moving, undistorted walls, yields

pw = σG
(

d�

dt

)2

, where G = 4

π3

∑
n odd

1

n3
= 0.1356. (7.33)

The work done per unit length and per unit time on the wall isH (d�/dt).Hence
H = σG(d�/dt). Using (7.32) to write d�/dt in terms of the wall velocity vw,
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we obtain an expression for the wall mobility in (7.31):

ηw = ρ/2Gµ2
0Ms t. (7.34)

For example, the domain-wall mobility in electrical sheet steel, t = 350µm,
µ0Ms = 2.0, ρ = 50 × 10−8 �m is 2.1 m s−1 mT−1. Since the mobility varies
as the inverse of film thickness, velocities in thin films are much higher.

For some purposes it is useful to associate an effective mass per unit area
with the domain wall

mw = 2π/µ0γ
2δw. (7.35)

A typical value for a soft magnet is 10 µg m−2. Domain-wall velocities can be
measured by examining the phase lag between magnetization and applied field
in a picture-frame experiment, or by timing the movement of a wall down a
ferromagnetic wire, detecting the change of flux in pick-up coils or the change
in anomalous Hall effect as it passes.

On account of the energy per unit area associated with the domain wall,
γ w = 4

√
AK , it tends to get pinned at defects, especially planar defects, where

A or K differs from the bulk values. Strong pinning arises when these defects
have a dimension comparable to the domain wall width δw . Planar defects are
the most effective pinning centres because the whole wall finds itself with a
different energy when it encompasses the defect. The planar defect acts either
as a trap or barrier to wall motion, depending on whether γ w is lower or higher
in the defect than it is in the bulk. Line and point defects are less effective
pinning centres, but they do best when their diameter is comparable to δw, and
when there is pronounced contrast in K or A between the bulk and the defect
region. Contrast is high at a void, where K = A = 0.

Weak pinning occurs when many small defects, particularly point defects,
are distributed throughout the wall. The energy for weak pinning derives
from statistical fluctuations in the numbers of defects contained in the
wall.

Domain wall pinned at a
defect.

Weak pinning by multiple
defects.

M

H

Barkhausen jumps.

Inevitably, there will always be some distribution of defects in any sample of
magnetic material. Suppose the energy per unit area depends only on the wall
position represented by a coordinate x, and the applied field H . Then

Etot = f (x) − 2µ0MsHx. (7.36)

It can be seen from Fig. 7.20 how a hysteresis loop results from an energy
landscape with many minima. At a local energy minimum, df (x)/dx =
2µ0MsH . The wall jumps from points with the same df (x)/dx on increas-
ing field, the magnetization changing discontinuously in a Barkhausen jump.
The hysteresis loop of a macroscopic sample consists of many discrete jumps.
These can be observed directly in a sensitive measurement of the magneti-
zation of a ferromagnetic wire. Heinrich Barkhausen heard the jumps in an
experiment he carried out in 1919, when he filled a long pick-up coil with
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(a) Energy as a function of
wall position, (b) the
equilibrium condition,
d f (x)/dx = 2µ0 Ms H and
(c) a hysteresis loop due to
field cycling.

a bundle of nickel wires, and detected the flux jumps in the coil on increas-
ing field using an amplifier connected to a loudspeaker. Each discontinuous
jump of magnetization induced a small EMF in the coil, and produced a
click.

Heinrich Barkhausen,
1881–1956.

7.3.8 Real hysteresis loops

Hysteresis loops in real materials exhibit features of nucleation, wall motion
and coherent rotation. A schematic loop for a material with cubic anisotropy
is shown in Fig. 7.21. The reversible linear segment 1 → 2, known as the
initial magnetization curve or virgin curve where 0 � (M/Ms) � 0.1, is where
the walls are pinned, but bow out from the pinning centres in a reversible way
and snap back to their original places when the field is removed. Segment 2 → 3
involves irreversible Barkhausen jumps as the domain walls sweep erratically
through the sample, eventually eliminating all but the one most favourably
oriented domain. Segment 3 → 4 is again reversible, as it involves coherent
rotation of the magnetization of the remaining domain towards the applied
field direction. This region, where the domain structure has been eliminated
and 0.9 � (M/Ms) < 1.0, is known as the approach to saturation. At some
point on the reverse segment 4 → 5, reverse domains nucleate and begin to
propagate, eventually reducing the sample to a multidomain state with no net
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Initial magnetization curve
and demagnetization curve
in the first and second
quadrants of a cubic
ferromagnet.

magnetization at the coercive fieldHc. This multidomain state is a minimum in
the energy landscape far removed from the virgin state 1, which is now forever
inaccessible, unless the ferromagnet is reborn by heating above the Curie point,
and cooling in zero field.

In bulk material, it is practically impossible to calculate a complete hysteresis
loop precisely. An empirical approach for hard magnets is to use the Kronmüller

equation, inspired by the Stoner–Wohlfarth model,

Hc = αK (2K1/µ0Ms) −NeffMs,

where αK andNeff are empirical parameters, to be determined from experiment.

M

H

An elementary, low-field
hysteresis loop of a soft
material is composed of
parabolic segments. The
lower dashed line shows
the initial susceptibility χ i .

Hard magnetic materials whose magnetization process is governed by nucle-
ation or pinning are readily distinguished by their initial magnetization curves.
The domain walls move freely through a nucleation-type magnet, which has a
high initial susceptibility, but they are constantly being trapped in a pinning-
type magnet, so the initial susceptibility is small until the depinning field is
reached (Fig. 7.22). Coherent rotation, the dominant reversal mechanism in
a uniaxial system, is provided by the dependence of coercivity on the angle
between the applied field and the easy axis. This varies as cosα in the Stoner–
Wohlfarth model, whereas if nucleation is involved, it is only the component of
field along the easy axis which is effective at creating reversal, hence there is a
1/ cosα dependence.

In soft magnetic materials, the hysteresis in the initial region in fields which
are small compared with the saturation coercivity is described by the empirical
Raleigh laws enunciated by John Strutt in 1887. These are, starting from a state
M1(H1) attained by reducing field,

M(H ) −M1 = χ(H −H1) + ν(H −H1)2, (7.37)

where H > H1, and starting from a stateM2(H2) attained by increasing field,

M(H ) −M2 = χ(H −H2) − ν(H −H2)2, (7.38)
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Hysteresis loops with initial
magnetization curves for
hard magnets where either
(a) a nucleation or (b) a
pinning process controls
the hysteresis.

where H < H2. In each case, there is the sum of a linear, reversible response
proportional toH , and a nonlinear, irreversible term varying asH 2. The rema-
nence remaining after applying a field H is νH 2/2. The elementary hystere-
sis loop is therefore made up of parabolic segments. Here χi represents the
reversible initial susceptibility, and the term in ν is the irreversible response to
the field. The initial magnetization curve, measured in an alternating field is

M = χiH + νH 2. (7.39)

Originally formulated to describe the magnetic properties of steel, the micro-
scopic origin of these Raleigh laws is the deformation and pinning of domain
walls by defects.

The high-field approach to saturation of the magnetization curve is repre-
sented by an empirical expression

M = Ms(1 − a/H − b/H 2 − · · · ) + χ0H, (7.40)

where the last term is a small high-field susceptibility due to field-induced
band splitting, which is called the paraprocess. The term in 1/H can arise
from defects, whereas the term in 1/H 2 arises from magnetization reorien-
tation when the anisotropy axis is misaligned with the field direction. If the
misalignment angle is α and the magnetization makes an angle θ with the
easy axis, minimizing the energy (7.21) yields (α − θ) ≈ 4K1 sin 2θ/µ0H ,
but M = Ms cos(α − θ) ≈ Ms(1 − (α − θ )2) when (α − θ) is small, hence
b = 16K1 sin2 2α/µ0.

7.3.9 Time dependence

The stable state of a bulk ferromagnet or an ensemble of superparamagnetic
particles is one with no net magnetization. The loop is not a static object, fixed
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in time. The magnetic states observed around the hysteresis loop are metastable,
and the loop looks different depending on whether the field is swept slowly or
rapidly. The slower the scan, the lower the coercivity. Furthermore, the magne-
tization in a fixed field evolves continuously with time, and the variation is most
pronounced in the vicinity of magnetization switching in the second and fourth
quadrants, where the ferromagnet totters at the edge of metastable equilibrium.
The time variation of the magnetization is approximately logarithmic, an effect
known as magnetic viscosity (Fig. 7.23):

M(t) ≈ M(0) − Sv ln(t/τ 0). (7.41)

This empirical expression cannot be valid for either very short or for very
long times. It follows from a sum of exponential decays with a flat distri-
bution of energy barriers  . The magnetic viscosity coefficient Sv can be
regarded as a magnetic fluctuation field whose magnitude is proportional to
temperature.

Another way of describing the time dependence is as a sum of exponential
decays, each with its own relaxation time τ , via the Fourier integral:

M(t) = M(0)

∞∫
0

P (τ )e−t/τdτ . (7.42)

The probability distribution P (τ ) may be taken to be a gamma distribution,

P (τ ) = 1

τ 0�(p)

(
τ

τ 0

)p−1

e−t/τ 0,

where τ 0 and p are the parameters that specify the mean value and width
of the distribution and �(p) is the gamma function (mean = pτ , variance
σ 2 = pτ 2

0). The advantage of this formulation is that (7.42) can be integrated
analytically. The magnetization processes associated with the time dependence
(7.41) are the usual suspects – domain-wall motion and magnetization rotation.
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Both processes may be influenced by mobile atomic defects in the crystal (or
amorphous) structure. For example, vacancies and interstitial defects such as
carbon or nitrogen can act as pinning centres, and the wall motion may be
retarded by the rate at which these defects can move. In alloys such as Ni–Fe,
local anisotropy may be associated with the alignment of Fe–Fe pairs with the
direction of magnetization in a domain or in a domain wall. The pairs can
reorientate as the wall moves or the magnetization rotates.

The term magnetic after-effect is used in connection with time-dependent
magnetization processes which are governed by physical diffusion of atomic-
scale defects. The time required for one to jump from one site to the next
is τ = τ 0 exp(−εa/kBT ), where the activation energy εa is 1–2 eV and the
attempt frequency τ−1

0 is of order 1015 s−1.
In hard magnetic materials, there is an activated process associated with mag-

netization reversal which is unconnected with defects, but leads to a variation
of magnetization similar to (7.41). This is the nucleation of reverse domains,
which requires a spontaneous thermal fluctuation leading to the reversal of
a volume of order δ3

w . This acts as a nucleus from which the magnetization
reversal spreads out.

In order to avoid gradual creep of the magnetization, permanent-magnet
arrays are often aged before use by annealing them at a temperature some
50–100 K above the operating temperature, in order to relax any easily excited
magnetization reversal.
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EXERCISES

7.1 Show that the first term in (7.5) is equivalent to (7.6).
7.2 What is the relation between A and J for a bcc material? If TC = 860 K,

a0 = 0.36 nm and S = 1, what are the values of the two exchange constants?
7.3 Deduce (7.20) by equating the cost of creating a domain wall in a spherical

particle with uniaxial anisotropy to the decrease of energy resulting from the
creation of a two-domain state, assuming it has half the demagnetizing energy
of the uniformly magnetized state.

7.4 Check that (7.20) is dimensionally correct.
7.5 Deduce an expression for Hc in the Stoner–Wohlfarth model for a spherical

particle with Ea = K1 sin2 θ +K2 sin4 θ and 4K2 > K1 > 0.
7.6 (a) Show that the slope at remanence of the hysteresis loop in Fig. 7.12 is 2/3.

(b) Deduce equation (7.25) for the Stoner–Wohlfarth switching curve. Justify
the geometrical construction for the angle θ .

7.7 Verify that the expressions for δw (7.17), γ w (7.18) and mw (7.35) are dimen-
sionally correct.

7.8 Estimate the width of the maze domains that form in a thin 001 cobalt film.
7.9 Deduce expressions for the pinning field for a film of thickness t, (a) with a

scratch of depth s and width s across its surface, assuming s > δw and (b) with
a random distribution of n nonmagnetic inclusions per unit volume of radius r ,
assuming r � δw .

7.10 How would you determine the two parameters αK and Neff in the Kronmüller-
equation?

7.11 Show that the coercivity of an ensemble of Stoner–Wohlfarth particles aligned
with a common easy axis varies as 1/ cosα.

7.12 Show that the magnetization of an array of ferromagnetic single-domain particles
decreases logarithmically with time when the applied field is reversed. Assume
a uniform distribution of barrier heights  +.

7.13 Deduce an expression for the depinning field in the weak pinning limit. Assume
the pinning centres are vacancies with volume a3.

7.14 Use the Stoner–Wohlfarth asteroid to describe the behaviour of a particle in a
rotating field h of magnitude shown in Fig 7.13.



8 Nanoscale magnetism

Nanoscale magnets have at least one dimension in the nanometre range. They
exhibit size-specific magnetic properties such as superparamagnetism, remanence
enhancement, exchange averaging of anisotropy and giant magnetoresistance
when the small dimensions become comparable to a characteristic magnetic or
electrical length scale. Thin films are the most versatile magnetic nanostructures,
and interface effects such as spin-dependent scattering and exchange bias influ-
ence their magnetic properties. Thin-film stacks form the basis of modern magnetic
sensors and memory elements.

Matter behaves differently down in the nanoworld, where the length scales of
interest range from about 1 nm up to about 100 nm. The atomic-scale structure
of matter can usually be ignored, but the mesoscopic dimensions of the magnetic
nano-objects are comparable to some characteristic length scale, below which
the physical properties change. We have already encountered one important
nanoscale object in bulk magnetic material – the domain wall. It is extended
in two directions, but not in the third; the domain wall width δw is one of the
characteristic lengths that concern us here.

Z

y

x

A domain wall where all
spins in a y−z plane are
parallel.

The number of small dimensions in a nanoscale magnet may be one, two
or three. Some examples of each are illustrated in Fig. 8.1. The one-small-
dimension class includes magnetic thin films, which are at the heart of many
modern magnetic devices. Magnetic and nonmagnetic layers can be stacked to
make thin-film heterostructures, such as spin valves and tunnel junctions. The
films are usually grown on a macroscopic substrate.

Two small dimensions give a nanowire. These can exist as separate acicular
(needle-shaped) nano-objects or they can be embedded in a matrix, to form a
nanocomposite. The wires themselves may be coated or segmented, with layers
of different compositions.

Three small dimensions define a nanoparticle. Again the magnetic particles
may be separate and dispersed, or embedded in a medium to form some kind of
composite. The materials in the bulk heterostructure may both be magnetic, or
one magnetic and the other not. By suitable engineering of the nanocomposite,
unique combinations of magnetic properties or magnetic and nonmagnetic
properties may be achieved that are unattainable in any homogeneous bulk
material. Magnetic nanoparticles can be structured in lines or planes. Examples
of the latter are patterned thin films or multilayers, and granular magnetic
recording media such as Co−Pt−Cr films.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8.1

Examples of magnetic
nanostructures:

one small dimension: (a)
thin film and (b) multilayer
stack;

two small dimensions:
(c) nanowire array and
(d) acicular particles;

three small dimensions:
(e) nanoparticles,
(f) nanocomposite,
(g) thin-film recording
medium and
(h) nanoconstriction.

A general feature of nanostructures is the large proportion of surface or
interface atoms. The fraction of atoms on the surface is 2a/t for an unsupported
film of thickness t and interatomic spacing a; it is 2πra/πr2 = 2a/r for
a nanowire of radius r and 4πR2a/(4/3)πR3 = 3a/R for a nanoparticle of
radius R. For example, if a = 0.25 nm, the fraction of surface atoms in a film,
wire or particle of dimension 10 nm is 5, 10 or 15%, respectively. These surface
atoms and the reduced dimensions alter the magnetic properties of the material.

8.1 Characteristic length scales

It is convenient to express magnetic length scales in terms of the exchange

length introduced in §7.1.1,

lex =
√

A

µ0M
2
s

, (7.8)

and the dimensionless magnetic hardness parameter

κ =
√

|K1| /µ0M
2
s . (8.1)

The exchange length reflects the balance of exchange and dipolar interactions. It
is in the 2–5 nm range for most practical ferromagnetic materials. The hardness
parameter κ is the dimensionless ratio of anisotropy to dipole energy. It should
be greater than 1 for a permanent magnet, and much less than 1 for a good
temporary magnet.

Expressions for characteristic micromagnetic lengths are gathered in
Table 8.1, together with their values for a spectrum of magnetic materials
where κ ranges from 0.01 to 4.3. Some of these lengths were discussed in
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the previous chapter. The quantity δw is the width of a 180◦ Bloch wall. The
coherence radiusRcoh is the maximum size of a uniformly magnetized particle,
where magnetization reversal takes place by coherent rotation. In other words
the direction of magnetization eM does not depend on r; M = (Mθ,Mφ). The
maximum size of a particle that will be single-domain in equilibrium is Rsd .
The lengths Rb and Req depend on temperature. The first is the superparamag-
netic blocking radius. Particles smaller than Rb undergo spontaneous thermal
fluctuations of the magnetization direction. The second gives the size of parti-
cles for which the thermal energy kBT and Zeeman energy −m·B are equal in
magnitude. It is not a fundamental length scale, rather an indication of when a
linear response can be expected. The values of Rb and Req listed in Table 8.1
are for room temperature, 300 K and 1 T.

 
s

The spin diffusion length ls

is much greater than the
mean free path λ, the
average distance an
electron travels between
collisions.

Length scales for transport measurements are the mean free path of the
electron λ, the inelastic scattering length λel and the spin-diffusion length ls .
These are, respectively, the mean distances travelled by an electron before it
experiences a scattering event that modifies its momentum, energy or spin state.
All three are spin-dependent in magnetic metals, and typically fall in the range
1–100 nm, which are the dimensions of interest here.

Another length scale relevant for magnetotransport is the cyclotron radius,
rcyc =mev/eB. However, this is a few micrometres in 1 T in typical metals,
where the electron velocity v is ≈ 106 m s−1. It only approaches the nanometre
scale in very high fields, or in semimetals or semiconductors, where the electron
density, and hence the Fermi velocity, is low.

Finally, there are quantum length scales. The wavelength λF =
2π (3π2n)−1/3 for a 3d metal with 0.6 s-like free electrons per atom is only
0.05 nm. Longer Fermi wavelengths in semiconductors facilitate the fabrication
of quantum wells and quantum dots. Furthermore, in magnetic quantum phe-
nomena such as Landau quantization, a magnetic length lB = √

�/eB appears.
Numerically, lB = 26/

√
B nm when B is in teslas.

8.2 Thin films

The intrinsic magnetic properties – magnetization, Curie point, anisotropy,
magnetostriction – may differ appreciably in thin films and bulk material. As
an example, the magnetostriction of iron, shown in Fig. 8.2, changes sign at
a film thickness of 20 nm, and it approaches the bulk value only in films a
few tens of nanometres thick. Many of these differences result from the special
environments of surface and interface atoms, and the strain induced by the
substrate. The lattice parameters of a perfectly relaxed film will differ from
those of the bulk. In 3d metal films, the separation of the surface planes tends
to be a few per cent greater than in the bulk. Surface atoms are missing some
of their neighbours, so their vibrational amplitude is enhanced and exchange
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Figure 8.2

Magnetostriction of iron as
a function of film
thickness – an example of
how physical properties
change in the nanoworld.
(after D. Sander, A. Enders
and J. Kirschner, J. Magn.
Magn. Mater 189, 519
(1999))

interactions are weakened. The bands are narrower at the surface, and the local
density of states and the local magnetic moments may be enhanced. These
effects are limited to the first one or two monolayers. Sometimes, the substrate
influences the electronic structure and magnetic moment of the first atomic
layers at the interface.

Clean surfaces can only survive in ultrahigh vacuum. On exposure to air,
they are instantly covered by a layer of adsorbed gas, which modifies their
electronic and magnetic properties. A monolayer forms in a matter of minutes in
a vacuum of 10−5 Pa. These effects are sensitive to crystallographic orientation,
and whether it is a single-crystal or a polycrystalline film. A cap layer serves
to protect an underlying film from these effects.

Substrate

Surface

Thin film

A thin film on a substrate.

.

Magnetic films with thicknesses ranging from a single monolayer to upwards
of 100 nm may be grown on crystalline or amorphous substrates by a variety
of physical or chemical methods, described in Chapter 10. An epitaxial single-

crystal film is one that grows in perfect atomic register with a single-crystal
substrate. An oriented film has one specific crystal axis oriented perpendicular
to the substrate. The region of the film near the interface may be highly strained
if there is a difference in lattice parameters between film and substrate. The
compressive or expansive biaxial strain is accompanied by a strain of opposite
sign in the direction normal to the substrate. Excess strain is relaxed in thicker
films by atomic-scale dislocations as the film eventually adopts its equilibrium
lattice parameters far from the substrate. When the lattice mismatch is too great
(>4%), or if the substrate is amorphous (e.g. glass) it has less ability to dictate
the structure of the film growing on it. Substrates can be chosen to influence
the crystallographic or magnetic texture of the film directly, or else a thin seed
layer can be deposited first to do the job.
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Variation of the average
magnetic moment of a thin
film of Ni on Cu (001) or
(111). (J. Tersoff and L. M.
Falicov, Phys. Rev B 26
6186 (1982).)

Epitaxial films may even have a different crystal structure to bulk material.
For example, iron grown on copper (100) is fcc, whereas bulk iron is bcc. There
is great scope to manipulate the structure and lattice parameters of solids in
thin-film form, by suitable choice of substrate and preparation conditions.

8.2.1 Magnetization and Curie point

Dramatic modifications of magnetization are found in films a few monolayers
thick. Vanadium and rhodium become ferromagnetic in films 1–2 monolayer
thick, although they are nonmagnetic in bulk. Metals such as palladium which
have an enhanced paramagnetic susceptibility, become ferromagnetic when
deposited on a substrate of iron or nickel. The example of nickel on copper is
illustrated in Fig. 8.3.

The magnetic properties of iron are notoriously structure-sensitive (Fig. 5.15)
While the bcc form is ferromagnetic, fcc iron may be nonmagnetic, antiferro-
magnetic or ferromagnetic, depending on the lattice parameter. When grown
epitaxially on fcc copper, the magnetic properties of an iron film depend on the
substrate temperature during deposition. Ambient temperature gives ferromag-
netic fcc iron films, but when the substrate is cooled, they are antiferromagnetic.
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The surface layer of a bcc film has been found to have a zero-temperature
moment that is about 20% greater than the bulk. The iron moment falls pro-
gressively as the coordination is increased, from 4.0 µB for an isolated atom to
3.3 µB for a chain, 3.0 µB for a plane to 2.25 µB in the bulk.

Hybridization with the d-orbitals of the substrate has an important influence
on the moments of the interface layers. A monolayer of iron on bcc tungsten
(100), for example, is antiferromagnetic, with a moment of 0.9 µB but when a
second layer is deposited, the iron becomes ferromagnetic.

The Curie temperature and critical behaviour are expected to change on
going from three to two dimensions. According to the Mermin–Wagner theorem
(§5.4.3), Heisenberg spins should never order magnetically in two dimensions,
but two dimensions here really means a monolayer. Furthermore, the perpen-
dicular surface anisotropy created by the broken symmetry means that the spins
inevitably take on an anisotropic, Ising-like character. The Curie temperature
is often diminished in thin films, but it does not necessarily extrapolate to zero
for a monolayer. There are examples among the rare-earths, for example, where
band narrowing at the film surface actually increases TC slightly.

H⊥ = 0

M

H || = 0M⊥ 

M || 

M

Neither component of a
uniformly magnetized thin
film produces a stray field.

An interesting feature of a uniformly magnetized thin film is that it produces
no stray field, whatever its direction of magnetization. This can be seen from
the boundary conditions on B and H (§2.4.2). If magnetized in-plane, the
demagnetizing factors Nx, Ny are zero, hence Hx and Hy are zero in the
film. Since H ‖ is continuous at the interface, H is zero outside the film as
well. However, if magnetized out-of-plane, Nz = 1, H = −NzM . Since B =
µ0(H +M) = 0 and B⊥ is continuous, it follows that H⊥ = 0 outside the
film. For any other angle, the magnetization can be resolved into parallel and
perpendicular components, so H is always zero outside the film. If any useful
stray field is to appear above the film, the magnetization must vary on a scale
comparable to the film thickness. Magnets need to be block-shaped in order
to be effective. This is as true for macroscopic permanent magnets as it is for
nanoscale recording media.

8.2.2 Anisotropy and domain structure

Besides the usual magnetocrystalline anisotropy due to the single-ion (crystal
field) and two-ion (dipolar) terms, there are also the ‘3s’ contributions in a thin
film – shape, surface and strain.

Shape anisotropy was introduced in §5.5.1. The principal components
(Nx,Ny,Nz) of the demagnetizing factor of a uniformly magnetized thin film
are (0, 0, 1), so the anisotropic contribution to the self-energy − 1

2µ0M
2
sz in the

demagnetizing field of a thin film is

Ed = 1
2µ0M

2
s cos2 ϑ, (8.2)
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Thickness  t
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t   =1.1 nmpd

Figure 8.4

Plot to determine the
surface and volume
anisotropy terms for a
Co–Pd multilayer (F. J. A.
den Broeder, W. Horing,
P. J. H. Bloemen et al.,
JMMM 93, 562 (1991).)

where ϑ is the angle between the magnetization direction and the surface
normal. This is equivalent, within a constant, to the leading term in the usual
expression for the anisotropy energy Ea = Ku sin2 θ (5.62), where the shape
anisotropy constantKu = Ksh = − 1

2µ0M
2
s . Values for Fe, Co and Ni are −1.85,

−1.27 and −0.15 MJ m−3 respectively (Table 5.4). These are relatively large
numbers, and since Ksh is negative, the demagnetizing field produces fairly
strong easy-plane anisotropy in a thin film. A permanent magnet needs to have
another source of anisotropy greater than this, if it is to be fabricated in any
desired shape. Roughening of the film surface will lead to the appearance of a
stray field, and diminish Ksh.

Next, there is the anisotropy in thin films and nanoparticles that comes
from the surface. Surface anisotropy was first discussed by Néel in 1956. He
estimated the magnitude as Ks ≈ 1 mJ m−2. It arises mainly from the single-
ion mechanism – the coupling of the surface atoms to the crystal field produced
by their anisotropic surroundings. Mostly it originates in the surface monolayer
which has broken symmetry, but it extends to the first few monolayers which
experience structural relaxation normal to the surface. The total anisotropy of a
thin film is therefore the sum of terms that scale with volume and surface area.
Writing Ea = Keff sin2 θ , where

Keff = Kv +Ks/t

and t is the film thicknes, it is possible to deduce both Kv and Ks by plotting
the anisotropy energy per unit area versus t for a series of films of differ-
ent thickness, provided they have a common easy axis (Fig. 8.4). From the
magnitude and sign of Ks , it is clear that the surface anisotropy is suffi-
cient to impose a perpendicular magnetization direction on a film less than
about a nanometre thick. The atomic density of the transition metals of about
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Figure 8.5

Strain anisotropy in thin
films of Ni on Cu
(R. Jungblut et al., Journal
of Applied Physics 75, 6424
(1994).)

9 × 1028 m−3 corresponds to an atomic volume ω = 1.1 × 10−29 m3. Hence,
if Ks = 1 mJ m−2 the energy per surface atom κs = Ksω2/3 � 4 K atom−1.
This exceeds by an order of magnitude the dipole interaction and the bulk
anisotropy energy normally found in crystals. The anisotropy of the surface
monolayer corresponds to Keff = 4.5 MJ m−3. It is interesting that the bulk
anisotropy of L10 compounds such as CoPt or FePd with a structure made
up of alternating layers of the two constituents is of a similar magnitude
(Table 11.7).

The third contribution to the anisotropy of a thin film is strain. The anisotropy
energy associated with stress is Kσ = (3/2)λsσ (5.68). This can have either
sign, depending on the signs of λs and σ . For example, a 2% epitaxial compres-
sion in a material with elastic modulus 2 × 1011 N m−2 corresponds, according
to Hooke’s law, to a stress σ = 4 × 109 N m−2. If λs = −20 × 10−6, the stress
anisotropyKσ = −120 kJ m−3. Epitaxial strain can extend for many monolay-
ers, so it is possible for the stress anisotropy to outweigh the surface term in
films that are about 1–10 nm thick.

Figure 8.5 illustrates the effect for a film of Ni grown on Cu. For thick films,
the plot is as expected forKv = 15 kJ m−3 andKs = 1.8 mJ m−2, but for films
thinner than 5 nm there is a change of slope, and when t < 2 nm the films
actually have easy-plane anisotropy. The surface contribution is overwhelmed
by the contribution of the epitaxially strained layer.

Apart from surface effects on the electronic structure, the magnetization
should be uniform in very thin ferromagnetic films. In thicker films with strong
surface anisotropy Ks � 1

2µ0M
2
s , we would expect the surface layers to be

magnetized perpendicular to the film, and the layers in the interior to be mag-
netized in-plane, with a progressive rotation of the magnetizationM(z), where
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Twist of magnetization due
to surface anisotropy.

θ = θ (z), φ =const. As in a domain wall, the distance over which the rotation
occurs is determined by the exchange stiffnessA. Generally, we cannot assume
that the response of a thin film to an applied field will be coherent rotation of
uniform magnetization. M may depend on x, y.

The energy density (§7.1) of a thick film with a surface at z = 0 and uniaxial
anisotropy Ku is

E =
0∫

−t

[
A

(
dθ

dz

)2

+ [Ku +Ksδ(0)] sin2 θ

]
dz,

where the delta function confines the surface anisotropy to the plane z = 0.
Minimizing the integral gives the Euler equation 2A∂2θ/∂z2 = ∂Ku sin2 θ/∂θ ,
hence ∂θ/∂z = √

Ku/A sin θ . The boundary condition from the integration of
the delta function is 2A(dθ/dz)z=0 = Ks sin 2θ0, where θ0 is the value of θ at
z = 0. The result is a domain wall equation

z =
√
A/Ku ln{tan[(θ − θ0)/2 + π/4]}.

This is just the result (7.16) with a shift of the origin. The orientation of the
surface layer θs is plotted in Fig. 8.6. When the net anisotropy is negative, or
Ku <

1
2µ0M

2
s , the magnetization is everywhere in-plane, but when it is positive,

or Ku >
1
2µ0M

2
s , the angle θ0 is never quite zero, and θ only approaches π/2

asymptotically for large values of z as in a domain wall.

10

1

2

0
Q

t/2dw

Magnetic domains in a thin
film as a function of Q and
film thickness t.

When considering the magnetization of thin films with a perpendicular
anisotropy which may be due to epitaxial stress, surface or growth-induced
texture, it is customary to use the quality factor Q = −Ku/Ksh where Ku is
the uniaxial perpendicular anisotropy, of whatever origin, andKsh = − 1

2µ0M
2
s

is the shape anisotropy of the thin film. When Q < 1, the magnetization of
the film lies entirely in-plane, if the film is thinner than twice the domain-wall
width δw. Otherwise, a system of stripe domains with an alternating in and
out of plane component develops (Fig. 8.7). In a polar Kerr effect image of
the surface, for example, these look like maze domains, although most of the
magnetization is actually in the film plane.
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Figure 8.7

Magnetization curves and
surface domain structure of
a 200 nm (001) film of Ni.

Another property that can be greatly influenced by surface effects and
substrate-induced strain is magnetostriction . As an example, we showed the
magnetostriction of iron films in Fig. 8.2. The bulk value of λ100 for iron is
20 × 10−6. Magnetostriction changes sign at a thickness of 20 nm.

8.3 Thin-film heterostructures

Magnetic multilayers are formed of alternating layers of magnetic and non-
magnetic metal. When the layers are all epitaxial, the multilayer becomes a
superlattice. Heterostructures can also be made of magnetic layers in direct
contact one with another; there will be direct exchange coupling at the inter-
face. Indirect exchange coupling in multilayers is mediated by spin polarization
in the nonmagnetic layers, provided they are thin enough. Dipolar interactions
also play a role in coupling ferromagnetic thin films which are not perfectly
smooth.

Gd

Co

Gd

Gd

Gd

Co

Co

Co

H

A field-controllable domain
wall in an YCo2–GdCo2

bilayer.

8.3.1 Direct exchange coupling; exchange bias

A magnetic bilayer composed of two different ferromagnetic layers with a clean
interface is expected to behave as a single ferromagnetic layer. However, if the
two layers are imperfectly separated by a thin spacer, as in some spin valves
and tunnel junctions, there is the possibility that irregularities in the spacer
can lead to pinhole contacts between the two ferromagnetic films. They are
exchange-coupled only over a small fraction of the interface area. The order of
magnitude of the coupling is 0.1 mJ m−2 (Exercise 8.5).

More interesting are bilayers composed of a ferromagnetic and a ferrimag-
netic layer, for example YCo2 and GdCo2. Both are Laves phase compounds
with similar lattice parameters a0 = 737 pm (see §11.3.5). They each have a
ferromagnetic cobalt sublattice with a moment of 1.5 µB/Co, but yttrium is
nonmagnetic whereas gadolinium has a moment of 7 µB coupled antiparallel
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Figure 8.8

Shifted loop of partially
oxidized cobalt particles,
measured after cooling to
77 K in a 1 T field (W. H.
Meiklejohn and C. P. Bean,
Phys. Rev. 105, 904
(1956)).

to the cobalt. The rare-earth behaves as a light transition element with three
electrons in a 5d/6s band, so its spin moments couple antiparallel to those of
heavy transition elements like Co, where the 3d↑ shell is full. Applying an
in-plane field to the system creates a twist in the magnetization, which resem-
bles a Bloch wall that becomes narrower as the field increases – effectively a
field-controllable domain wall.

F

AF

An antiferromagnetic (Af)
exchange bias layer
coupled to a Ferromagnetic
(F) layer.

When a ferromagnetic and an antiferromagnetic film are in contact, the cou-
pling between them leads to an unusual unidirectional anisotropy first observed
by Meiklejohn and Bean in 1956 in Co nanoparticles (TC = 1390 K) coated
with CoO (TN = 291 K), Fig. 8.8. The CoO was cooled through TN in the
exchange field of the cobalt, which has been aligned in an external field. The
effect was a shifted ferromagnetic hysteresis loop, from which the authors con-
cluded that ‘A new type of magnetic anisotropy has been discovered which is
best described as an exchange anisotropy. This anisotropy is a result of an inter-
action between an antiferromagnetic material and a ferromagnetic material’.
A related phenomenon is rotational hysteresis, illustrated in Fig. 8.9.

Néel later described a similar effect in a pair of coupled thin films. Exchange

bias arises when the Curie temperature of the ferromagnet exceeds the Néel
temperature of the antiferromagnet. Either the antiferromagnetic or the ferro-
magnetic layer may be on top; these are called top-pinned and bottom-pinned
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The effect of exchange
bias on the hysteresis loop
of a ferromagnetic layer
(F) coupled to an
antiferromagnetic layer
(AF). The direction of the
exchange field does not
necessarily coincide with
the antiferromagnetic axis.
The loop in (a) is measured
with the applied field
parallel to the exchange
field; the one in (b) with
the applied field in a
perpendicular direction.

structures, respectively. The exchange bias depends on the atomic scale struc-
ture of the interface between the two layers. It is set by cooling in a field
sufficient to saturate the ferromagnetic layer. An important application is in
spin valves, where the magnetization direction of one ferromagnetic layer is
pinned by exchange bias, while another layer remains free to flip its magneti-
zation in a small field.

The energy of a bilayer system when the magnetization lies at an angle φ to
the field, which was applied in plane, along the x axis is

Ex = −µ0MpHx cosφ −Kex cosφ. (8.3)

It is as if the effective field acting on the ferromagnetic pinned layer of mag-
netizationMp isHeff = H +Hex , whereHex = Kex/µ0Mp withMp the mag-
netization of the ferromagnetic pinned layer. The hysteresis loop is shifted by
the unidirectional anisotropyKexcosφ, as shown in Fig. 8.10(a). An additional
uniaxial anisotropy of the usual type Ku sin2 φ may be induced in the ferro-
magnetic layer by the thermal treatment in the magnetic field. If a field is then
applied in the transverse in-plane y-direction, the energy is

Ey = −µ0MpHy cos(π/2 − φ) −Kex cosφ +Ku sin2 φ.
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The dependence of
exchange bias on (a) the
thickness of the
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and (b) the thickness of the
ferromagnetic layer
(O’Handley, 2000).

Minimizing this energy leads to the transverse magnetization curve shown in
Fig. 8.10(b) where the slope at the origin Mpdφ/dHy is µ0M

2
p/(Kex + 2Ku).

The anisotropy field Ha determined by extrapolation of the slope to saturation
is (Kex + 2Ku)/µ0Mp.

The energy is often written per unit area of film, instead of per unit volume,
as above, because exchange bias is an interfacial interaction which scales
with the interface area. Replacing Kex by σ ex/tp, the energy per unit surface
area is

EA = −µ0MpHxtp cosφ − σ ex cosφ +Kutp sin2 φ, (8.4)

where tp is the ferromagnetic pinned layer thickness, and the field is applied in
the x-direction. The field corresponding to an anisotropy or exchange energy
per unit area is EA/µ0Mtp.

Minimizing EA gives

sinφ[cosφ + (σ ex/2Kutp) + (µ0MpH/2Ku)] = 0.

There are stable solutions at φ = 0 and φ = π , and switching
occurs at φ = π/2 if the rotation is coherent, when H = Hex =
−σ ex/µ0Mptp. The switching is independent of Ku, but it varies
as the inverse thickness of the ferromagnetic layer, as shown in
Fig. 8.11 for permalloy on FeMn. Taking Mp = 500 kA m−1 for permal-
loy, these data give σ ex = 0.12 mJ m−2, which is a typical value for
exchange bias (Table 8.2). The perpendicular anisotropy field obtained when
the field is applied in the y-direction can be written in terms of σ ex as
Ha = (σex + 2Kutp)/µ0Mptp. It varies inversely with tp for small thickness,
but becomes independent of tp for large thickness.

The effectiveness of the exchange bias depends on tp, but also on the thick-
ness and anisotropy of the antiferromagnetic layer, in the sense that there is a
threshold thickness tcaf which is necessary for exchange bias to become effec-
tive, as shown in Fig. 8.11(a). The threshold thickness can be used to estimate



278 Nanoscale magnetism

Table 8.2. Antiferromagnetic materials for exchange bias

TN Tb σ ex

(K) (K) (mJ m−2)

FeMn Fcc; four noncollinear sublattices; S || {111} 510 440 0.10
NiMn Fct; antiferromagnetic 002 planes, S || a 1050a ≈700 0.27
PtMn Fct; antiferromagnetic 002 planes, S || c 975 500 0.30
RhMn3 Triangular spin structure 850 520 0.19
Ir22Mn78 Fct; parallel spins in 002 planes, S || c 690 540 0.19
Pd52Pt18Mn50 Fct; antiferromagnetic 002 planes 870 580 0.17
aTb25Co75

b Tcomp =340 K 600 >520 0.33
NiO Parallel spins in 111 planes, S ⊥<111> 525 460 0.06
αFe2O3 Canted antiferromagnet, S ⊥c 960 ≈500 0.05

a Order-disorder transition
b Sperimagnetic; TN is the Curie temperature.
fcc – face centred cubic; fct – face centre tetragonal

the coupling constant σex ≈ tcaf Kaf , where Kaf is the volume anisotropy of
the antiferromagnet. Typical values of tcaf = 10 nm andKaf = 20 kJ m−3 give
σ ex ≈ 0.2 mJ m−2.

In seeking a nanoscale explanation of the origin of exchange bias, questions
that have to be addressed are: What is the origin of σ ex? Why is the blocking
temperature Tb below which exchange bias is effective significantly less than
TN (Table 8.2)?

    Grain 
boundaries
 (disorder)

Crystallographic
   orientation

Antiferromagnetic layer

Ferromagnetic  layer

 Interfacial
roughness

An ideal interface and a
real interface.

Consider first the case of an ideal atomically flat interface between a ferro-
magnet and an antiferromagnet. The antiferromagnetic surface may be one with
equal numbers of ↑ and ↓ spins, in which case σ ex = 0 if the ferromagnetic and
antiferromagnetic axes are parallel. Another possibility is a planar antiferro-
magnetic structure with alternating planes of ↑ and ↓ spins normal to the inter-
face. In that case, σ ex = A/d, where d is the interplanar spacing. Typical values
ofA and d of 2 × 10−11J m−1 and 0.2 nm, respectively, give σex ≈ 100 mJ m−2,
three orders of magnitude too big. Only a small fraction of the atoms in the inter-
face, perhaps one in a thousand, appear to participate effectively in the exchange
coupling. The real interface is bound to be somewhat rough, defining antiferro-
magnetic surface regions of dimension L, containing (L/a)2 atoms, where a is
the interatomic spacing. The uncompensated moment of these randomly drawn
regions is that of L/a atoms, so only a fraction a/L of the atoms participate in
the exchange. Hence L ≈ 1000a, or L ≈ 200 nm. Antiferromagnetic domains
are larger than this, but surface roughness on this scale is quite plausible. How-
ever, the moments of these regions themselves add randomly, giving an overall
fraction a/A of atoms participating in the exchange, where A is the sample
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area. This is tiny in a macroscopic sample, and cannot account for the magnitude
of σ ex .

The exchange bias could arise from the regions of the antiferromagnet such
as grain boundaries or other defects where the exchange is partly frustrated, and
the interaction with the ferromagnet can stabilize one specific spin configura-
tion at the defect. Another explanation is based on the idea that the susceptibility
of an antiferromagnet is anisotropic, taking its greatest value when the antifer-
romagnetic axis lies perpendicular to an applied field (Fig. 6.2). The interfacial
exchange may be represented as a molecular field Hi acting on the first plane
of antiferromagnetically coupled atoms at the interface. The antiferromagnetic
axis therefore tends to lie perpendicular to the ferromagnetic axis, as illustrated
in Fig. 8.12. The interfacial coupling energy (Fig. 8.13) comparable to that
stored in a 90◦ is domain wall 1

2

√
AKaf , which is ≈ 0.3 mJ m−3, the correct

order of magnitude. A spin flop occurs when Kaf is small; Fig. 8.14. The
exchange field is 1

2

√
AKaf /µ0Mptp.

To summarize, the exchange coupling between a ferromagnetic and an anti-
ferromagnetic film does not vanish when the structure of the interface is spin-
compensated. The coupling is weakened by surface roughness. The effective
surface exchange σ ex is 100 times less than might be expected from an uncom-
pensated interface, because a domain wall forms there allowing easier rever-
sal of the ferromagnetic layer. The exchange bias vanishes below a critical
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antiferromagnetic layer thickness. and it varies with the inverse of ferromag-
netic layer thickness.

Antiferromagnetic layer

Pinned layer

Free layer

A spin valve.

Exchange bias is practically important, but still imperfectly understood.
Indeed, it was the first practical application of antiferromagnetism, used in spin
valves to maintain the direction of the pinned layer, while an adjacent free layer

responds to a very small magnetic field. A spin valve is a sandwich of two fer-
romagnetic layers with a metallic or insulating spacer. The operating principle
is that its resistance depends on the angle between the directions of magnetiza-
tion of the free and pinned layers which is controlled by the applied field. The
exchange bias is set by cooling the ferromagnetic–antiferromagnetic bilayer
in a field applied during manufacture. The magnetoresistence is exploited in
about a billion spin valve sensors produced each year – an illustration of the
idea mentioned in Chapter 1, that practical applications of a technology need
not await a perfect understanding of the physics.

8.3.2 Indirect exchange coupling

The sign of the exchange coupling in multilayers with alternating ferromagnetic
and nonferromagnetic spacer layers oscillates with the thickness of the spacer,
Fig. 8.15, in a way that resembles the RKKY interaction, Fig. 5.8. In fact, the
true periodicity of the interaction may be masked by the fact that the spacer
thickness is a discrete number of monolayers, so that a different periodicity is
apparent. This is known as the aliasing effect (Fig. 8.16).

By tuning the spacer thickness, the interlayer coupling can be chosen to be
ferromagnetic, antiferromagnetic or zero. For example, in an FeCo–Ru–FeCo
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An experiment which
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The aliasing effect.

trilayer, the coupling is zero for ruthenium thicknesses of 0.5 and 1.0 nm
(Fig. 8.17). The idea of an artificial antiferromagnet (§6.1.1) can be extended
to a multilayer with antiferromagnetic coupling between an even number of
ferromagnetic layers of equal thickness. It exhibits many of the properties of a
normal antiferromagnet including transverse susceptibility and spin flop. The ↑
and ↓ layers play the part of the ↑ and ↓ sublattices. If the ↑ and ↓ layers are of
unequal thickness, the multilayer is an artificial ferrimagnet. Some values of the
maximum antiferromagnetic exchange coupling are collected in Table 8.3. The
optimum ruthenium thickness, for the strongest antiferromagnetic coupling of
cobalt layers is ≈ 0.7 nm.
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Table 8.3. Antiferromagnetic interlayer
exchange coupling in multilayers

ts(nm) σ ex(mJ m−2)

Fe Cu 1.0 −0.3
Fe Cr 0.9 −0.6
Co Cu 0.9 −0.4
Co Ag 0.9 −0.2
Co Ru 0.7 −5.0
Ni80Fe20 Ag 1.1 −0.01

Antiferromagnetic

Ferromagnetic

Spacer thickness, ts 
(nm)

1 2 30

0

0.05

0.1

CoFe
Ru(t)
CoFe

ex

Figure 8.17

Oscillating exchange
coupling in a CoFe–Ru–CoFe
trilayer. (S. S. P. Parkin and
D. Mauri, Phys. Rev. B44,
7131 (1991))

8.3.3 Dipolar coupling

There is no dipolar coupling between perfectly smooth, uniformly magnetized
ferromagnetic layers because they create no stray field. However, rough surfaces
do couple via dipolar fields. This is known as the orange-peel effect. When
the roughness of the two layers is correlated, the coupling is ferromagnetic.
The magnitude of the dipolar coupling associated with surface roughness was
calculated by Kools, who found

σd = π 2

√
2

δ2
s

l
µ0M

2
s exp(−2π

√
2ts/ l), (8.5)

where ts is the thickness of the spacer layer, δs is the surface roughness of the
spacer and l is the period of the roughness. Some typical values for a rough
film are ts = 5 nm, δs = 1 nm l =20 nm, which gives σd = 0.03 mJ m−2 for
a film with µ0Ms = 1 T. This is not insignificant compared with the exchange
coupling shown in Table 8.3.

+ + +
+ + +- - -

+ +- - - - ++
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- - -
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The orange-peel effect. NM
is a nonmagnetic spacer
layer.
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Dipolar coupling is also significant in magnetic nanopillars, where each
nanostructured layer creates a stray field.

Albert Fert, 1938–.

Peter Grünberg, 1939–.

8.3.4 Giant magnetoresistance

The most important property of magnetic multilayers from a practical viewpoint
is magnetoresistance. The unexpectedly large effect dubbed giant magnetore-
sistance (GMR) was discovered in an epitaxially grown, antiferromagnetically
coupled Fe–Cr multilayer by Albert Fert and coworkers, and independently
by Peter Grünberg and coworkers in 1988. Their discovery, which led to the
development of the spin-valve sensor, was recognized by the award of the
2007 Nobel Prize in physics. The magnitude of the GMR effect, given by
the ratio  R/R, where  R is the resistance change in the field, and R is the
zero-field resistance, can be some tens of per cent. Hence the effect is ‘giant’
by comparison with the intrinsic AMR effect discussed in §5.6.4. Some early
results on an Fe–Cr multilayer are shown in Fig. 8.18. The Cr layer thickness
gives antiparallel coupling of the Fe layers, so the effect of applying the mag-
netic field is to change from an antiparallel to a parallel alignment of adjacent
layers. The magnitude of the GMR in different multilayers is summarized in
Table 8.4.

The decrease of resistance on applying the field can be understood in terms
of Mott’s two-current model of conduction, which neglects spin-flip scattering.
The ↑ and ↓ electron channels conduct in parallel, but the scattering is different
for parallel and antiparallel magnetic alignment of the layers. Scattering occurs
in the bulk, and at the interfaces between the magnetic and nonmagnetic layers.
If we consider only bulk scattering in the ferromagnetic layers, the quantities
R↑ and R↓ are the resistances of the stack for the ↑ and ↓ electrons. When



284 Nanoscale magnetism

Table 8.4. Magnitude of the GMR effect in the
given field at 4 K for some multilayer stacks

Multilayer GMR (%) µ0H (T)

Fe–Cr 150 2.0
Co–Cu 115 1.3
NiFe–Co 25 1.5
NiFe–Ag 50 0.1
CoFe–Ag 100 0.3

the layer-averaged mean free path for electrons of one spin direction exceeds
the multilayer period, and differs from that of the other spin direction, GMR is
observed. Adding the contributions of the two spin channels, the net resistance
in the parallel state is given by

R−1
p = R−1

↑ + R−1
↓ , (8.6)

whereas, in the antiparallel state, each channel has the same resistance (R↑ +
R↓)/2, so

Rap = (R↑ + R↓)/4. (8.7)

The magnetoresistance defined as

Illustration of the
derivation of (8.8) and
(8.9).

 R/R = (Rap − Rp)/Rap (8.8)

can be expressed in terms of the resistivity ratio α = �↓/�↑ as

 �

�
= (1 − α)2

(1 + α)2
. (8.9)

According to the definition (8.8) magnetoresistance is positive whenRap > Rp.
This is the case when the stack is composed of one ferromagnetic material, and
a simple nonmagnetic spacer. The value of α = ρ↓/ρ↑ is about 5 for Co or Ni,1

so (8.9) predicts an effect of ∼45%. Resistance decreases when a magnetic
field is applied, unlike the classical B2 magnetoresistance of a normal metal or
semiconductor (§3.2.7).

In fact, interface scattering is usually dominant in magnetic multilayers –
the interface resistance can exceed the bulk resistance by a factor 100 – but
the equations can be retained by replacing the bulk values R↑ and R↓ by the
interface resistances Ri↑ and Ri↓.

The characteristic length scale for transport with current parallel to the
plane of the layers (CIP) is the mean free path λ, so the effect disappears

1 α is related to the polarization of the conduction electrons, P = (j↑ − j↓)/(j↑ + j↓) =
(1 − α)/(1 + α). Another definition is P = (2β − 1), where β ranges from 0 for pure ↓ current
to 1 for pure ↑ current.
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Matching the chemical
potentials at the interface
of: (a) two normal (N)
metals, (b) a half-metal
(HM) and a normal metal
and (c) a ferromagnet and
a normal metal. The
characteristic length scale
for spin accumulation in
the normal metal is ls, the
spin-diffusion length.

when the nonmagnetic layer thickness is much greater than λ because the
electrons do not then sample both layers. However, for transport with current
flowing perpendicular to the plane (CPP), the characteristic length scale is the
much-longer, spin diffusion length ls . The build-up of spin polarization near
the interface of a ferromagnet and a nonmagnetic metal whenever there is a
component of current flowing across the interface is known as spin accumulation.
Each of the spin channels is in dynamic equilibrium, and different chemical
potentials for the ↑ and ↓ channels persist until spin-flip processes succeed in
mixing electrons in the two channels.

Some different interfaces are shown in Fig. 8.19. The first is the interface of
two normal metals. There, the chemical potentialµ is continuous, with different
slopes for the two metals, depending on their conductivity, according to (3.49).
µ, which is equal to εF in the bulk metal at T = 0 K, is not actually a potential,
but an energy per electron. Next, consider the interface between a half-metal
(α = 0) and a normal metal (α = 1

2 ). Suppose the current in the half-metal is
composed of ↑ electrons only, as there are no ↓ states at the Fermi level. On
reaching the interface, these ↑ electrons diffuse some distance into the normal
metal before spin-flip scattering processes restore the equilibrium balance of
equal ↑ and ↓ occupancy. The distance over which the injected spins accumulate
at the interface is the spin-diffusion length. The interface between a normal
ferromagnet and a nonmagnetic metal is shown in Fig. 8.19(c). Here majority
spins are injected into the normal metal, as before, but there is also some change
of the spin polarization on the ferromagnetic side. Far from the interface, the
chemical potentials are equal, both in the ferromagnet and in the normal metal.
The individual chemical potentials of the two spin channels µ↑ and µ↓ must be
continuous at the interface if we ignore the interface resistance, but the average
chemical potential µ(0) is discontinuous there. Away from the interface the
slope of the chemical potential is constant, proportional to current density j ;
∂µ/∂x = ej/σ (3.49). The drop in µ at the interface is eVsa , where Vsa is
known as the spin accumulation voltage. It arises whenever current in separate
↑ and ↓ channels flows across an interface where there is a discontinuity in
conductance for the two channels. The voltage can be calculated from j = j↑ +
j↓, writing each current in terms of the chemical potentials and integrating. The
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result is

Vsa = (α − 1)

2e(1 + α)
[µ↑(0) − µ↓(0)]. (8.10)

The effect is greatest for a half-metal, when α = 0 (or ∞).

8.3.5 Spin valves

We can think of a spin valve as a slimmed-down multilayer. Basically, it has just
two ferromagnetic layers, although they may be buried in a complex thin-film
stack. A general definition is any stack with free and pinned magnetic layers
where there is a resistance change when the direction of magnetization of one
layer is switched relative to the other.2 The spin valve can be used as a bistable
device with two states – a low-resistance state with the two ferromagnetic
layers parallel, and a high-resistance state with the two ferromagnetic layers
antiparallel – or else in a sensor mode where the resistance varies continuously
as one layer turns relative to the other. Although (8.8) will do, a more optimistic
definition of the maximum magnetoresistance is

MRmax = (Rap − Rp)

Rp
= (Gp −Gap)

Gap
,

where the suffixes p and ap denote parallel and antiparallel orientations of the
two ferromagnetic electrodes. HereMRmax is unlimited, whereas with (8.8) it
cannot exceed 100%.

A pseudospin valve is a similar device without a pinning layer where two
magnetic layers switch in different fields, which means they must have differ-
ent coercivities. Ways of achieving different coercivities are to use different
compositions or different thicknesses of the layers, or to pattern them in dif-
ferent shapes. Pseudospin valves have symmetric resistance and antisymmetric
magnetization curves, like those shown in Fig. 8.20(a).

The exchange-biased spin valve (§8.3.1) is better for most sensor and memory
applications, and it is discussed further in Chapter 14. One of the ferromag-
netic layers is pinned by exchange coupling to an adjacent antiferromagnetic
layer, while the other layer, the free layer, is able to rotate, with as little coer-
civity as possible. In suitable spin-valve structures, the coupling between the
ferromagnetic layers may be reduced to almost nothing by suitable choice
of spacer thickness. Switching of the relative orientation of the pinned and
free layers may then occur in very small fields, giving sensitivities of about
20% mT−1 for current parallel to the plane of the layers, and even more for
current perpendicular to the plane of the layers.

2 A stricter definition of a spin valve is one where the spacer layer is metallic, and the resistance
change is due to GMR. We refer to this as a GMR spin valve. Our definition encompasses both
GMR and tunnelling magnetoresistance spin valves with exchange bias.
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Spin valves: (a) a
pseudospin valve where a
difference in coercivity of
the two ferromagnetic
layers, F1 and F2, leads to a
symmetric
magnetoresistance curve,
and (b) an
exchange-biased spin valve
where exchange coupling
of the pinned layer F1 to an
antiferromagnetic layer,
AF, leads to a shifted
magnetoresistance
response. The free layer,
F2, has very little coercivity,
and it flips near zero field.

Any sensitivity of the free layer to fields generated by the pinned layer can
be entirely eliminated by replacing it by an artificial antiferromagnet (§6.1.1),
one side of which is coupled to the antiferromagnetic exchange-bias layer. The
magnetizationMp for the artificial antiferromagnet (also known as a synthetic
antiferromagnet) is zero.

The magnetoresistance of GMR spin valves is ≈10% with either definition.
To achieve useful signals corresponding to resistance changes of order 100 �,
the dimensions of a CPP GMR device should be several tens of nanometres.
For CIP, the device may be extended in one direction to achieve the required
resistance.

8.3.6 Magnetic tunnel junctions

Metal–insulator–metal junctions Tunnel junctions are thin-film trilayer
structures in which an insulating layer, typically 1–2 nm of amorphous AlOx
or crystalline MgO, separates two metallic electrode layers. Organic spacers
are also used. Ferromagnetic metallic layers are used in a spin valve structure
in a planar magnetic tunnel junction (MTJ). There can also be tunnel barriers
at point contacts, at the interfaces between grains in polycrystalline materials
and pressed powders.
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The quality of planar magnetic tunnel junctions, gauged by the tunnelling
magnetoresistance (TMR) ratio, has improved spectacularly in recent years. The
devices have much higher resistance than all-metal CPP multilayer structures
with the same area. The probability T of an electron tunelling between two
metals separated by an insulating barrier of height φ and width w is

w

V

f

F1 F2

F1

F2

I

I

e

A tunnel barrier between
two metals F 1 and F 2,
separated by an insulator,
I, with bias voltage V .

T = a exp(−bwφ1/2), (8.11)

where a and b are constants. As bias is applied, the barrier becomes asym-
metric, and the resistance decreases. The response at low bias is ohmic, but
the characteristic signature of tunelling is an additional V 3 term in the I :V
characteristic, which shows little temperature dependence

I = GV + γV 3. (8.12)

Since the resistance depends exponentially on barrier thickness, the tunnelling
conductance tends to be dominated by hot spots, where the barrier is thinnest.

Simmons’s treatment of the quantum-mechanical tunnelling of electrons
across a symmetric barrier at low voltage leads to a formula which allows the
determination of φ and w from G and γ :

G = (3e2/2w�
2)(2meφ)1/2 exp{−(4πw/�)(2meφ)1/2}, (8.13)

γ = πm/3φ(ew/�)2. (8.14)

The electrodes in magnetic tunnel junctions are ferromagnetic metals, prefer-
ably strong ferromagnets or half-metallic ferromagnets with a high degree of
spin polarization. Half-metals show big effects at low temperature, but large
TMR persists at room temperature only for certain Heusler alloys with high
Curie points. Magnetic tunnel junctions with strong ferromagnetic cobalt or
cobalt–iron-based electrodes give good results at room temperature. A TMR
spin valve is produced by pinning one of the ferromagnetic layers by exchange
bias with an adjacent antiferromagnetic layer, just as in a GMR spin valve.

Room-temperature TMR was first obtained with amorphous AlOx barriers,
Fig. 8.21. The quality of these devices improved steadily, but a breakthrough
came in 2004 when crystalline MgO barriers were used instead where electrons
of specific symmetry tunnel coherently across the insulator. When the MgO
is grown epitaxially on bcc Fe–Co, the majority-spin electrons, which have
 1, s-like symmetry, are attenuated much less rapidly in the barrier than
the minority-spin electrons, which have  5, d-like symmetry, Fig. 8.22.
Crystalline MgO therefore acts as a near-perfect spin filter, and huge TMR
values in excess of 200% are achieved at room temperature, see Fig. 14.24.

The parallel and antiparallel configurations are usually the low- and high-
resistance states of a tunnel junction. Jullière made a simple calculation of the
tunnel magnetoresistance in terms of the spin polarizations P1 and P2 of the
two ferromagnetic electrodes at the Fermi level. His result is

MRmax = 2P1P2

(1 + P1P2)
. (8.15)
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Resistance of a magnetic
tunnel junction composed
of a CoFe and a Co film
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amorphous AlOx. The
device is a pseudo spin
valve as the two layers
have different coercivities,
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Attenuation of the density
of states of the ↑ and ↓
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epitaxial MgO tunnel
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symmetry. (W. H. Butler,
Phys Rev B 63 054416
(2001).)

For identical electrodes, this reduces to

 G

Gap
= 2P 2

(1 + P 2)
. (8.16)

The result is based on the supposition that the transmission probability of
electrons across the barrier is simply proportional to the product of the ini-
tial and final densities of states of the appropriate spin. No account is taken
of spin filtering due to different symmetry of the ↑ and ↓ electrons, which
may be a fair assumption for polycrystalline electrodes and amorphous bar-
riers. Hence, if G is the conductance, and N1 and N2 are the densities of
states:

Gp ∝ N1↑N2↑ + N1↓N2↓, (8.17)

Gap ∝ N1↑N2↓ + N1↓N2↑. (8.18)
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Progress in room
temperature TMR of planar
tunnel junctions.
Characteristcs of
exchange-biased AlOx , Alq3

and MgO magnetic tunnel
junctions are shown.

Figure 8.24

Tunelling probability
depends on the ↑ and ↓
Fermi surface cross
sections.

Setting MRmax = (Gp −Gap)/Gap and P = (N↑ − N↓)/(N↑ + N↓), where
N↑,↓ are the densities of states at the Fermi level, gives the Jullière formula
(8.15) (Exercise 8.3). As the bias across the tunnel barrier is increased, the
tunelling probability should reflect the changing density of states on either side
of the barrier. It may even change sign at high bias.

Although widely used to derive values of P , the Jullière formula is a drastic
approximation. Coherent tunelling in moderately correlated electronic systems
does not depend on the density of states at the Fermi level, but rather on the
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Bias dependence of the
magnetroresistance of an
MgO magnetic tunnel
junction. The maximum
voltage that can be
generated in this case is
400 mV. (Data courtesy of
Kaan Oguz.)

convolution of the Fermi surfaces of the electrons on either side of the barrier,
which are quite different for ↑ and ↓ electrons (Fig. 5.15). From Fig. 8.24 it can
be seen thatGp ∝ S↑ + S↓,Gap ∝ 2S↓, where S is the cross sectional area of
the Fermi surface. Hence

 G

G
= S↑ − S↓

2S↓
. (8.19)

Besides coherent tunnelling, the density of interfacial states, metal–
insulator bonding, carrier mobility and band symmetry may all play a
role.

The TMR falls off with increasing bias due to excitation of magnons and
phonons, which tend to randomize the spin polarization. An applied bias
of 0.5 V may be enough to reduce the TMR by half, Fig. 8.25. This can
be a problem, because it limits the voltage signal V = V ( R/R) that can be
generated by the resistance change of the device.

w

Dex
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M2

F

I

Fav

F

e
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A spin filter. The
ferromagnetic insulating
layer, F, presents different
barrier heights for ↑ and ↓
electrons from electrodes
M1 and M2. In EuO, the
difference is 0.54 eV.
Electrons tunelling from the
unpolarized electrode, M1,
emerge predominantly
with ↑.

Ferromagnetic spin filter A related thin-film tunelling structure is a spin
filter, which uses a ferromagnetic insulator as the tunnel barrier sandwiched
between two nonmagnetic metal electrodes. The barrier heights for ↑ and
↓ electrons differ by about 0.3 eV due to spin splitting of the unoccupied
conduction band of the insulator by s − d interaction. As a result of the
exponential dependence of tunnelling on φ1/2, substantial spin polarization
can be achieved. First demonstrated for the low-temperature 4f ferromag-
net EuS as the tunnel barrier (§11.5.1), the effect has been observed at room
temperature using a ferrimagnetic oxide such as NiFe2O4 or CoFe2O4. Note
that the spin filter is not a spin amplifier. It does not increase the product
of incident intensity and spin polarization of the incident current, but it just
removes the ↓ electrons from the transmitted beam, by reflecting them at the
interface.



292 Nanoscale magnetism

0

(a) (b) (c)

1 3 0 1 3 0 1

1 2 3 4

3
eV/D eV/D V

Al
 − V

Fe
 (mV)

-V +V
-V +V

-V +V

(d
I/d

V
)

f’(
e)

Figure 8.26

(a) Top Ns(ε), middle f ′(ε)
and bottom dI /dV for a
superconductor–normal
metal junction, (b) the
same in an applied field
and (c) a superconductor–
ferromagnet junction. The
degree of spin polarization
may be deduced from the
heights of the maxima of
the last curve. (P. M.
Tedrow and R. Meservey,
Phys. Rev. Lett. 26,
192(1971))

Metal–insulator–superconductor junctions Tunelling between a thin-film
superconductor and a ferromagnet in a magnetic field was investigated in
the elegant Tedrow–Meservey experiment. A layer of aluminium was used as
the superconducting electrode, and it was partly oxidized to form the tunnel
barrier. The ferromagnetic film was deposited on top. A magnetic field was
applied during the measurement. The advantage of using a thin aluminium
film was that it has a higher critical temperature, and a much higher critical
field than bulk material, so it was possible to use an external field of several
teslas to resolve the positions of the peaks marked 1–4 in the joint density of
states.

In the case of strongly correlated metallic electrodes, such as supercon-
ductors, the tunnelling current between two metallic electrodes depends on a
convolution of their densities of states, and the difference in their Fermi ener-
gies, as well as the barrier characteristics and the voltage bias V across the
junction. In general

I (V ) ≈
∫ ∞

−∞
N1(ε − eV )N2(ε)[f (ε − eV ) − f (ε)]dε,

where f (ε) is the Fermi function.
In normal metals, the bias is small compared to the Fermi energy, and Nn(ε)

may be taken as constant. The effective density of states of the superconductor
Ns(ε) has a gap 2 s at the Fermi energy:

I (V ) ≈ Nn(εF )
∫ ∞

−∞
Ns(ε)[f (ε − eV ) − f (ε)]dε.

The voltage derivative dI/dV gives the conductance:

G ≈ Nn(εF )
∫ ∞

−∞
Ns(ε)[f ′(ε − eV )]dε.

The quantities Ns(ε), f ′(ε + eV ) and their convolution are shown in Fig. 8.26.
The interest of this is that the degree of spin polarization of the electrons near
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the Fermi level can be deduced from the amplitudesGi of the four peaks in the
dI/dV versus V curve. The spin polarization of the ferromagnet is

P = (G4 −G2) − (G1 −G3)

(G4 −G2) + (G1 −G3)
. (8.20)

Other methods of determining spin polarization are presented in §14.1.2.

Electrodeposited Co
nanowires in a porous
Al2O3 membrane. The
cathode is at the bottom,
and the wires have grown
to fill about 4µm of the
pores.

8.4 Wires and needles

Magnetic nanowires can be patterned from thin films by lithographic tech-
niques. Another way to make them is by electrodeposition into a porous tem-
plate, such as an aluminium oxide membrane. In some cases, like Co–Cu, a
single electrochemical bath can be used to produce segmented nanowires by
toggling between two different potentials (§15.2.1).

The magnetization of ferromagnetic nanowires and acicular (needle-shaped)
nanoparticles normally lies along the long axis. There is no incentive to form
domains because the demagnetizing energy is already zero in the single-domain
case, where the demagnetizing factorN = 0. It is possible, however, to nucleate
a reverse domain at one end of a wire, and then measure the domain-wall veloc-
ity as a function of applied field by timing the propagation of the reversal down
the wire. Time-dependent changes of magnetization are detected with pick-up
coils, by the magneto-optic Kerr effect or by making use of the anomalous Hall
effect in wires with perpendicular magnetization. Domain-wall velocities can
be high, ≈100 m s−1, in thin-film nanowires.

Acicular magnetic particles exhibit coercivity associated with shape
anisotropy provided their dimensions are of order the coherence radius
Rcoh (Table 8.1). Acicular particles of CrO2 and γFe2O3 used in partic-
ulate magnetic recording media (tapes and floppy discs) had an aspect
ratio of 5−10 (N < 0.1). Dimensions are typically 30 × 30 × 300 nm.
In the Stoner–Wohlfarth model, the effective anisotropy due to shape is
Ksh = [(1 − 3N )/4]µ0M

2
s (§7.4.1), so the limiting value for a long wire,

N = 0, gives Ksh = 1
4µ0M

2
s . The corresponding limit on the coercivity is

the anisotropy field 2Kd/µ0Ms , which isMs/2. This limit is never realized in
practice. For example, particles of CrO2 withMs = 0.5 MA m−1 andN = 0.05
haveKsh = 67 kJ m−3 and an anisotropy field of 213 kA m−1. Typical coercivi-
ties for commercial powders are 50 kA m−1. Reversal is an incoherent process in
real acicular crystallites, proceeding by curling, or growth of a reversed nucleus.

Alnico magnets developed during the period 1930–1970 were the world’s
first artificial magnetic nanostructures. They are still manufactured in lim-
ited quantities as general-purpose magnets, and for special applications. Alni-
cos are obtained by spinodal decomposition of a quarternary cubic alloy,
which leads to growth of needle-like nanoscale regions of ferromagnetic
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A schematic Fe–Co/Ni–Al
phase diagram showing
the solid-solution region (I)
and the two-phase region
(II). Metastability occurs
between the solubility line
(solid) and the spinodal
line (dashed). A
magnetically oriented
spinodal nanostructure of
alnico is illustrated, where
Fe–Co needles are
embedded in a Ni–Al
matrix.

Fe–Co in a matrix of nonmagnetic Ni–Al – a nanoscale composite, Fig. 8.27.
By conducting the heat treatment in a magnetic field, it is possible to align
the long dimensions of the ferromagnetic regions in the direction of the field.
The best alnicos offer quite high remanence, but limited coercivity. Generally,
a permanent magnet needs a coercivity of at least half the remanence if it is
to perform efficiently. A true permanent magnet is one that can be made into
any desired shape, henceHc must be greater thanMs . The upper limit ofMs/2
offered by shape anisotropy, even in an ideal nanostructure, is never enough.

w

A domain wall confined by
a geometric potential.

The domain walls in nanowires patterned from thin films of a soft ferro-
magnet such as permalloy differ greatly from the Bloch walls found in bulk
material. The magnetization is constrained to lie in the plane of the film by
shape anisotropy and the magnetization in the domains must lie along the axis
of the wire. Head-to-head (or tail-to-tail) domains form, and the walls are of
two main types. One is a Bloch or Néel wall, where the magnetization at the
centre lies transverse to the axis of the strip, the other is a vortex wall. They
are illustrated in Fig. 8.28. Depending on dimensions, other types may form
such as a wall with two vortices of opposite chirality. If the wire has width
w and thickness t, the nature of the wall depends on the dimensionless ratio
r =wt/l2ex ; transverse walls are favoured when r � 100.

The striking feature of geometrically constrained walls is that they can be
very narrow. The wall width δw is determined, not by the ratio of exchange to
anisotropy as in (7.16), but by the width of the wire:

δw = cw,

where c≈ 1 for the transverse wall and c≈ 3π/4 for the vortex wall. The walls
can be driven by magnetic fields or by spin-polarized currents flowing in the
wires. Schemes have been proposed for magnetic memory and logic based on
moving the walls around permalloy tracks (Chapter 14). The walls will tend to
be pinned at notches or protruberances.



295 8.5 Small particles

x

y

z

(a) (b)

Figure 8.28

Domain walls in soft
magnetic strips: (a) the
head-to-head transverse
wall and (b) the vortex
wall.

The energy per unit area of the confined wall is just due to exchange. It is

γ w = cAw.
Geometrically confined domain walls can have different configurations,

which may be degenerate or lie close in energy. For example, an isthmus
constriction could trap a wall which is Bloch- or Néel-like, with either possi-
ble chirality. Spontaneous thermal fluctuations among these configurations can
occur at ambient temperature.

Vortex configuration
of thin-film permalloy
elements.

8.5 Small particles

Small ferrimagnetic particles appear naturally in igneous rocks, and ferromag-
netic and ferrimagnetic particles can be synthesized by a variety of chemical
methods. The smallest magnetic particles exhibit superparamagnetism, behav-
ing like paramagnetic macrospins. Larger ones adopt magnetic configurations
which are governed by the balance of anisotropy, exchange and magnetic dipole
interactions. Submicrometre spots of magnetic materials can be patterned from
thin films. When magnetocrystalline anisotropy is negligible, the small ele-
ments tend to adopt configurations where the magnetization is oriented as
far as possible parallel to the surface (§7.1.6). They can do this because the
exchange length, which is the length scale over which the direction of magne-
tization of a ferromagnet can adapt to dipolar fields, is only 2–5 nanometres
(Table 8.1). Vortex configurations are found in thin-film spots of soft magnetic
material of order 100 nm in size, as well as theC and S configurations (§7.3.2).

Surface anisotropy can also influence the magnetic configurations of ferro-
magnetic nanoparticles, when the exchange is not too strong. Some examples
are shown in Fig. 8.29. These effects are unimportant in nanoparticles of 3d
metals and alloys with Curie points above room temperature, but they may be
significant for rare-earth alloys with low Curie points, or actinide ferromagnets
like US, where the single-ion anisotropy is exceptionally strong.
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(a) (b)

(c) (d)

Figure 8.29

Some magnetic
configurations in
ferromagnetic
nanoparticles with: (a) no
surface anisortopy, (b) and
(c) perpendicular surface
anisotropy of increasing
strength and (d) in-plane
surface anisotropy
(L. Berger et al., Phys Rev
B. 377 104431 (2008).)

The spin configurations shown in Fig. 8.29 were determined numerically, by
atomic scale Monte-Carlo simulations with simulated annealing from above the
Curie point in order to find the lowest-energy state. The spin configurations have
names: (b) is a throttled or flower state, (c) is a hedgehog and (d) is an artichoke.

8.5.1 Superparamagnetism

Tiny ferromagnetic particles of radius R � 10 nm become unstable when the
energy barrier to magnetic reversal is comparable to kBT . The energy barrier
 becomes asymmetric in an applied field ± =⇒  ± µ0mH cos θ 0 , where
θ 0 is the angle between the moment and the applied field direction.

0

1.0

2.0

0

E (eV)

p
q (rad)

Energy barrier to magnetic
reversal of a
superparamagnetic particle
in an applied field.

Néel proposed that the relaxation time for a spin flip is determined by
the product of an attempt frequency τ−1

0 and the Boltzman probability
exp(− /kBT ) that the particle has the thermal energy necessary to surmount
the barrier. The inverse spin-flip frequency is the relaxation time:

τ = τ 0 exp( /kBT ), (8.21)

where τ−1
0 is of order 1 GHz, which is the ferromagnetic resonance frequency in

the demagnetizing field. There is progressive, but exponentially rapid slowing
down of the magnetic relaxation around some blocking temperature Tb < TC .

Blocking is not a phase transition, but a continuous, albeit very rapid variation
of τ (T ), Fig. 8.30. A commonly used criterion for blocking

 /kBT = 25, (8.22)
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Table 8.5. Superparamagnetic relaxation
times for cobalt particles

Radius (mm) Temperature (K) Relaxation time

3.5 260 332 s
3.5 300 10 s
3.5 340 0.6 s
3.5 380 76 ms
3.0 300 1.9 ms
4.0 300 223 h
5.0 300 L ×1012 y

T
b

T
C

Blocked Superparamagnet Paramagnet

T0

Figure 8.30

Temperature scale for the
behaviour of a small
ferromagnet particle
Neither TC nor Tb is a
perfectly sharp transition
and the latter depends on
the time scale of the
measurement which is
used to decide whether or
not the particles are
blocked.

corresponds to τ ≈ 100 s which is about the time needed for a magnetic mea-
surement. The barrier  ∼1 eV. The origin of  may be magnetocrystalline
anisotropyK1V , shape anisotropyKshV , or surface anisotropyKsA. To appre-
ciate the power of the exponential, consider cobalt particles of different radii at
different temperatures shown in Table 8.5.

In the superparamagnetic region Tb < T < TC , the particle behaves like a
Langevin paramagnet with a giant, classical moment m (4.20). The macrospin
moment of a cobalt particle of radius 3.5 nm is about 3 × 104µB . The suscep-
tibility is then

χ = µ0nm
2/3kBT , (4.22)

where n is the number of particles per cubic metre. The practical test for
superparamagnetism is the superposition of anhysteretic reduced magnetization
curves as a function of H/T over a wide range of temperature between Tb
and TC .

When an assembly of superparamagnetic particles is cooled in a field H ,
there is a slight bias in the direction of magnetization of the blocked particles
belowTb. The particles are more likely to be trapped in the minimum where their
magnetization lies along the easy axis, in a direction more or less parallel to the
magnetic field, than in the opposite direction. This leads to the thermoremanent

magnetization (TRM)Mtr :

Mtr = χH = µ0nHm
2/3kBTb. (8.23)

The famous example provided by cooling of basalt in the Earth’s magnetic field
He. is discussed in §15.5.4.

The ground state of an ensemble of superparamagnetic particles is one
with no net magnetization, but the particles exhibit a time-dependent magnetic
response to a change of applied magnetic field. The time dependence is given by
(7.39), which is valid for times which are neither very short, nor extremely long.
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Nanoparticles, which are not quite small enough to be thermally excited over
the energy barrier, can nevertheless exhibit spontaneous coherent fluctuations
of their magnetic moment around the energy mimimum. These excitations take
the place of long-wavelength spin waves, which cannot be excited because the
particle size fixes a maximum possible wavelength. SettingKuV sin2 θ = kBT ,
it follows that the average angle of deviation of the magnetization is θ ≈
(kBT /KuV )1/2. The magnetization of the particle isMs cos θ ≈ Ms(1 − θ2/2).
Hence there is a linear decline of the magnetization with temperature due to
these collective excitations:

M ≈ Ms

(
1 − kBT

2KuV

)
. (8.24)

The Mn12 molecular
magnet. The Mn ions are
the large spheres, with ↑
Mn3+ around the outside
and ↓ Mn4+ in the middle.

More generally, thermally excited fluctuations between degenerate modes of
opposite chirality are to be expected in particles larger than about 10 nm with
ferromagnetic exchange, where the collinear ferromagnetic configuration is no
longer the one with lowest energy. Normal spin waves cannot be excited at
low energy since the maximum wavelength cannot exceed twice the size of the
particle.

8.5.2 Quantum dots

The ultimate ‘zero-dimensional’ magnetic nanostructure is a dot so small that it
contains few electrons, or maybe even a single one. The capacitance of a sphere
of radius r is C = 4πε0r . The potential of a single electron on the sphere is
V = e/C; for example, if r = 14.4 nm, V = 100 mV. This Coulomb barrier to
adding charge to the nanodot capacitor is known as Coulomb blockade.

The electron content of the quantum box can be controlled by tunelling
electrons, one at a time, by adjusting the bias of the adjacent electrodes, which
may be ferromagnetic.

The quantum dot is really an artificial atom, with a square-well potential
rather than a Coulomb potential. At low temperature the unpaired spin moment
of the dot can form a Kondo singlet state with electrons in nonmagnetic elec-
trodes. Spin-polarized electron flow across it can be regulated by adjusting the
potential of a gate. This is a magnetic single-electron transistor. Pairs of these
magnetic quantum dots are candidate q-bits for a quantum computer.

8.5.3 Molecular clusters

Molecular magnets consist of several transition metal ions surrounded by
organic and inorganic ligands. Their dimensions are a few nanometres, The
best-known example is Mn12 acetate ([Mn12O12(CH3COO)16(H2O)4] which
is a cluster of twelve manganese ions. Eight are Mn3+ ions and four are
Mn4+ ions. The interaction between Mn3+ and Mn4+ is strongly antiferromag-
netic, so the net spin of the molecular cluster is S = [8 × 2 − 4 × (3/2)] = 10,
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Coercivity of a partially
recrystallized amorphous
Co–Nb–B alloy. (G. Herzer,
IEEE Trans. Magn. 26,
1397(1990)).

giving a moment of 20 µB per cluster. The overall symmetry of the molecule is
tetragonal, and there is strong uniaxial anisotropy due to the crystal field

H = B0
2 Ô

0
2 + B0

4 Ô
0
4 + B4

4 Ô
4
4,

which produces an overall crystal field splitting of about 300 K. The ±|10〉
doublet is the ground state, and if the material is magnetized at low temperature
(∼1 K), it remains in the −|10〉 state because relaxation to the +|10〉 state
is extremely slow. In a reverse field, however, it is possible for the molecule
to tunnel into an excited state, and a square, staircase hysteresis loop results.
Similar magnetization dynamics are observed for other molecular magnets, and
even for isolated rare earth ions with large J , the ultimate atomic nanomagnets.

8.6 Bulk nanostructures

Nanostructured magnets composed of one or more ferromagnetic phases may
be obtained directly from the melt by rapid quenching, or by annealing an
amorphous precursor produced by melt quenching or hydrogen treatment,
Fig. 8.31. These nanostructured materials may exhibit magnetic properties
that are quite different to those of bulk material.

(b)

(a)

(a) single- and (b)
two-phase magnetic
nanostructures. The easy
axis in the harder phase is
marked. The crystallites are
exchange coupled across
the grain boundaries.

8.6.1 Single-phase nanostructures

In a single-phase nanostructure, the bulk anisotropy can be greatly reduced by
exchange coupling of nanocrystallites with different anisotropy axes. Exchange
averaging of anisotropy arises when:

(1) crystallites are single-domain, with a crystallite size D much less than the
domain wall width δw;

(2) there is exchange coupling across the grain boundaries (decoupled crystal-
lites would be superparamagnetic).
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Coercivity versus grain size
for a range of soft
magnetic materials.

Exchange averaging is effective over the length scale δw. A volume δ3
w

includes N = (δw/D)3 crystallites. The total anisotropy of this volume,
obtained by adding N randomly oriented contributions of K1D

3 is
√
NK1D

3,
hence

〈K〉 = K1(D/δw)3/2, (8.25)

but we must use this value for 〈K〉 consistently in (7.16) for δw , δw =
π

√
A/〈K〉. This gives δw = π4A2/K2

1D
3. From (8.25) the effective anisotropy

is

〈K〉 = K4
1D

6/π6A3. (8.26)

The sixth-power law represents a very rapid variation of 〈K〉 with D. The
coercivity is expected to scale with 〈K〉, and it will be less than the effective
anisotropy field 2〈K〉/Ms . Hence Hc can be made vanishingly small, and
the permeability can be very large in systems with randomly oriented exchange-
coupled nanocrystals.

Figure 8.32 shows the variation of coercivity with crystallite size for many
soft magnets. Above the critical single-domain size, the coercivity falls off
as 1/D, whereas in the submicrometre region it varies as D6, as predicted by
(8.26).

The remanence of a randomly oriented collection of decoupled hard magnetic
crystallites is 〈Mr〉 = ∫ π/20 Ms cos θP (θ )dθ

/∫ π/2
0 P (θ )dθ , where P (θ ) =sin θ

for random orientation. Hence

〈Mr〉 = 1
2Ms. (8.27)

Exchange coupling of hard nanocrystallites leads to remanence enhancement

whereMr is greater thanMs/2. For example, optimally quenched Nd14Fe80B6
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Recrystallization of
amorphous Fe–Cu–Nb–Si–B
to obtain a two-phase
crystalline–amorphous soft
nanocomposite. R. C.
O’Handley et al., J. Appl.
Phys. 57, 3563 (1985)).

(Magnequench), which consists of exchange-coupled crystallites with D ≈
50 nm shows a slightly enhanced remanence µ0Mr = 0.85 T for a material
with µ0Ms = 1.61 T.

8.6.2 Two-phase nanostructures

Two-phase amorphous–crystalline structures may be obtained by partial recrys-
tallization of an amorphous precursor, Fig. 8.33. If υc is the volume fraction
of the crystalline phase which has anisotropy K1 and the amorphous phase is
assumed to have no anisotropy, then it follows from the argument leading to
(8.26) that

〈K〉 = v2
cK

4
1D

6/π6A3.

The great interest of these two-phase soft nanostructures is that the two
phases may have opposite sign of magnetostriction, λs . The composition is
chosen so that volume fractions of the two phases make 〈λs〉 = 0 as required for
a good soft material. The crystalline fraction may have a larger magnetization
than the amorphous one, so zero magnetostriction can be combined with high
magnetization. An example is ‘Finemet’, Fe73.5Cu1Nb3Si15.5B7.

Exchange-coupled hard–soft nanocomposites are another possibility. Here
δw is too small to average the effective anisotropy to zero (Table 8.1), but by
exchange coupling to a soft phase with higher magnetization than the hard
phase, it is possible to augment the remanence, achieving greater isotropic
remanence than would be possible from the hard phase alone (µ0Ms for
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H = 0

Figure 8.34

Kneller and Hawig’s idea of
exchange coupling hard
and soft regions in a
two-phase spring magnet.
The hard phase is
represented by the black
arrows, the soft phase by
grey arrows. (E. F. Kneller
and R. Hawig, IEEE Trans.
Mag. 27, 3588 (1991))
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Exchange spring
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(c) (d)

Figure 8.35

Hysteresis behaviour of a
spring magnet
(a) optimized two-phase
nanostructure,
(b) overcoupled
nanostructure, (c) hard
phase alone and
(d) constricted loop due to
two independent phases
(after E. F. Kneller and
R. Hawig, IEEE, Trans. Mag.
27, 3588 (1991).)
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Figure 8.36

Coercivity and remanence
as a function of
composition in a two-phase
nanocomposite of
Sm2Fe17N3/Fe. The
crystallite size is about
20 nm.

Nd2Fe14B, Fe and Fe70Co30 is 1.61, 2.15 and 2.45 T, respectively). In two-
phase hard–soft nanostructures, exchange stiffening leads to ‘spring magnet’
behaviour, illustrated in Fig 8.34. The hysteresis is illustrated in Fig. 8.35.

In any such two-phase nanocomposite there is an inevitable trade-off between
remanence and coercivity. This is illustrated for the hard–soft Sm2Fe17N3–Fe
nanocomposite in Fig. 8.36.
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EXERCISES

8.1 Estimate the magnetization of an antiferromagnetic thin film 10 nm thick, which
grows with its c axis perpendicular to a single-crystal substrate. Assume the
antiferromagnetic structure consists of a series of oppositely aligned ferromag-
netic c-planes.

8.2 By considering a bilayer of 100 nm YCo2 and 100 nm of GdCo2 estimate the
field that must be applied to create a domain wall 10 nm wide at the interface.
Take A as 10−11 J m−1.
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8.3 Obtain an expression for the coupling energy Js in mJ m−3 which results from
pinholes in the structure of two ferromagnetic layers separated by a spacer layer
of thickness t if the pinholes cover a fraction f of the interface area. Evaluate
Js for a material with A = 2 × 10−11 J m−1, if t = 2 nm and f =1%.

8.4 Estimate the magnetic field created at a distance z from a ferromagnetic surface
if the surface is rough on a scale λ, with relief of depth δλ when the ferromagnet
is magnetized in-plane.

8.5 Why should the curve for µ↓ have zero slope at the interface in Fig. 8.19(b)?
8.6 Work out the expression (8.10) for the spin accumulation voltage. Calculate its

value for a Co–Cu interface, where j = 1010 A m−2.
8.7 Work out the Jullière expression for TMR (8.15).
8.8 The resistance ratioRap/Rp of a tunnel juction with identical electrodes is 400%.

Use the Jullière formula to deduce the spin polarization P of the ferromagnet.
What is the magnetoresistance? What will be the magnetoresistance if one of
the electrodes is replaced by cobalt? (P (Co) = 45%).

8.9 Estimate the thermoremanent magnetization of a basalt containing 1 vol% of
magnetite (Fe3O4) in the form of particles 50 nm in diameter, for which the
blocking temperature is 600 K. TakeMs for the magnetite as 400 kA m−1.

8.10 Calculate the domain-wall width and the effective anisotropy constant 〈K〉 in
an assembly of exchange-coupled grains with D = 20 nm having K1 = 104,
A = 10 pJ m−1 and Ms = 1 MA m−1. Give an upper limit to the expected
coercivity.

8.11 What is the spin-wave gap for a cobalt particle of radius 10 nm? By how much
is the magnetization reduced by coherent fluctuations of the magnetization at a
temperature equivalent to the spin-wave gap?
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Resonance arises when the energy levels of a quantized system of electronic or
nuclear moments are Zeeman split by a uniform magnetic field and the system
absorbs energy from an oscillating magnetic field at sharply defined frequencies,
which correspond to transitions between the levels. Classically, resonance occurs
when a transverse AC field is applied at the Larmor frequency. Resonance methods
are valuable for investigating the structure and magnetic properties of solids, and
they are used for imaging and other applications. The resonant moment may be
an isolated ionic spin or free radical, as in electron paramagnetic resonance (EPR),
or a nuclear spin as in nuclear magnetic resonance (NMR). Otherwise it can be
the ordered magnetization as in ferromagnetic resonance (FMR). Resonant effects
are also associated with spin waves, and domain walls. The related techniques of
Mössbauer spectroscopy and muon spin resonance provide further information on
hyperfine interactions in solids.

A magnetic system placed in a uniform magnetic field B0 may absorb elec-
tromagnetic radiation at a precisely defined frequency ν0 = ω0/2π which
falls in the radio-frequency or microwave range. The phenomenon is related
to the Larmor precession of the magnetic moment, introduced in §3.2.2. In
order to observe the resonance, an experimental geometry with crossed mag-
netic fields is needed. The steady uniform field defines the z-direction, while
a high-frequency AC field bx = 2b1 cosωt is applied in the perpendicular
plane. It is helpful to think of bx as the sum of two counter-rotating fields
2b1 cosωt = b1(eiωt + e−iωt ). Resonance occurs when the precession is syn-
chronized with the clockwise or anticlockwise component. No resonance occurs
when b1 is parallel to B0.

+wt x

y

An AC field is decomposed
into two counter-rotating
fields.

2b
1
coswt B0

z

x

A typical magnetic
resonance experiment.

There is a vast literature on magnetic resonance. It formed the basis of the fifth
age of magnetism, which flowed from understanding the quantum mechanics
of angular momentum, and the development of microwaves for radar in the
Second World War. The resonant system is an ensemble of free radicals or
ions with unpaired electron spins in electron paramagnetic resonance (EPR) –
also known as electron spin resonance (ESR). The entire coupled magnetic
moment may resonate in ferromagnetic resonance (FMR), or else it can be the
sublattice moments which precess in antiferromagnetic resonance (AFMR).
The nuclei carry tiny moments that resonate at relatively low frequencies in
nuclear magnetic resonance (NMR). Other resonances are related to spin waves,
domain walls and conduction electrons. In magnetically ordered material, it may
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be possible to observe the resonance without recourse to an external field B0,
making use of the internal demagnetizing or hyperfine fields.

These are all remarkable physical phenomena in their own right, but from
our viewpoint magnetic resonance is interesting for the insight it provides into
the magnetism of solids, and for applications such as high-frequency switching
of magnetization and magnetic resonance imaging (MRI).

The resonant magnetic systems are usually small quantum objects – ions or
electrons or nuclei with unpaired spin – so it is natural to adopt a picture of res-
onant transitions between quantized, Zeeman split energy levels. Nevertheless,
the classical picture of excitation at the natural Larmor precession frequency,
which is needed for macroscopic magnets, provides invaluable insights for the
quantum systems too.

Think of the simplest case of an ion with magnetic moment m which is
associated with an electronic angular momentum �S. The constant of propor-
tionality is the gyromagnetic ratio γ :

m = γ�S, (9.1)

where γ has units of s−1 T−1 (hertz per tesla) and S is dimensionless. Both m

and S are vector operators. The equation, which reads like a classical vector
equation, really means that all of the corresponding matrix elements of m and S
are proportional. The Zeeman interaction m · B0 in the steady field B0 applied
along Oz is represented by the Hamiltonian

HZ = −m· B0 = −γ�B0Sz. (9.2)

Eigenvalues are a set of equally spaced energy levels at

εi = −γ�B0Ms ; Ms = S, S − 1, . . . ,−S. (9.3)

The level spacing is ε = γ�B0. Magnetic dipole transitions between adjacent
levels can be expected for radiation of angular frequency ω0, where ε = �ω0.
Hence the resonance condition

ω0 = γB0 (9.4)

does not depend on Planck’s constant, which suggests it should be possible to
deduce the same result by a classical argument. Note that γ for electrons is
negative on account of their negative charge so theMs = −S level is lowest.

Ms

1

0
∆ε

−1

Zeeman split enegy levels
for an electronic system
with S = 1.

The torque on the magnetic moment m in a field B0 is � = m × B0. This
is equated to the rate of change of angular momentum d(�S)/dt . Hence the
equation of motion is1

dm

dt
= γm × B0. (9.5)

1 This and similar equations appear with a negative sign, if the convention is adopted that e, rather
than −e, is the charge on the electron.
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Now dm, the change of m in a short time interval dt, is a vector perpendicular
to both m and B0, hence the moment precesses around the field, at angular
frequency

ω0 = γB0.

This is the classical Larmor precession and resonance occurs when the field b1

turns at the Larmor frequency.

B

Precession of a magnetic
moment in an applied field.

The requirement that b1 be applied perpendicular to B0 for resonant absorp-
tion also follows from quantum mechanics. The Zeeman Hamiltonian (9.2) in
matrix notation is diagonal with eigenstates |MS〉. Adding an extra field in the
z-direction merely changes the eigenvalues, but does not induce any transi-
tion between the states, because the off-diagonal matrix elements which mix
different states are all zero. However, if b1 is applied in the x-direction, the
Hamiltonian becomes

H = −γ�(B0 Sz + b1 Sx). (9.6)

The matrix representing Sx (§3.1.4) has non-zero off-diagonal elements
[n, n± 1]. It can be expressed in terms of the ladder operators S+ and S−

so it mixes states with  Ms = ±1. At resonance, the AC magnetic field pro-
vokes transitions between the states which differ by Ms = ±1. This is known
as the dipole selection rule.

9.1 Electron paramagnetic resonance

The Larmor precession frequency for electron spin is fL = ωL/2π =
(ge/4πme)B. Since g = 2.0023, the value of γ for free electrons, −(ge/2me),
is 176.1 × 109 s−1 T−1 and fL is 28.02 GHz T−1. Resonance occurs in the
microwave range for fields produced by laboratory electromagnets. X-band
(∼9 GHz) microwaves with wavelength � = c/ν = 33 mm are commonly
employed, so the resonance is at about 300 mT. Sometimes Q-band (∼40 GHz)
radiation is used and the resonance field is correspondingly bigger. The sample
is placed in a resonant cavity at the end of a waveguide, in a steady field. The
cavity, operates in a TM100 mode and delivers the requisite transverse magnetic
field b1.

Zeeman splitting of the energy levels for an isolated electron is γ�B0 =
gµBB0, an energy that is small compared with kBT when B0 = 300 mT.
(µB/kB = 0.673 K T−1) so the equilibrium population difference between the
MS = ± 1

2 sublevels is tiny. The spin polarization (N↑ −N↓)/(N↑ +N↓) is

P = (1 − e−gµBB/kBT )/(1 + e−gµBB/kBT ).
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Figure 9.1

(a) An EPR trace showing
the derivative of the
microwave absorption
obtained when sweeping
the DC field at a constant
rate. (b) The absorption
line obtained by
integration.

Conventionally the ↑ states are always those with their moments parallel to the
applied field; they are those with MS = − 1

2 in this case.2 The value of P ≈
gµBB0/2kBT in 300 mT at room temperature is only 7 × 10−4, so a sensitive
detection method is needed to observe the resonance. It is often more convenient
to sweep the magnetic field rather than the microwave frequency. Sensitivity is
increased by using field modulation coils and detecting the absorbed power at
the modulation frequency with a lock-in amplifier. The measured trace is the
derivative of the absorption as a function of field (Fig. 9.1). The absorption line
is the integral of this signal.

M

tT

M = 1− exp (−T/T1)

1

Spin-lattice relaxation of
the magnetization towards
its equilibrium value after
saturating the resonance.

Measured parameters in EPR are the intensity of the resonance, its position
B0 which is normally expressed as an effective g-factor geff = �ω0/µBB0,
where ω0 is the resonance frequency, and the linewidth  B (full width at half
maximum). The cavity resonance is very sharp, so the linewidth is determined
by the sample.

Absorption of radiation is a dynamic process, which tends to equalize the
Boltzmann populations of the levels. This tendency is counter-balanced by the
desire of the spin system to regain its thermal equilibrium. The temperature
T of the system is defined by the crystal lattice, so the exchange of energy
between the spins and the lattice which is involved in thermalization is known
as spin-lattice relaxation. The linewidth B is inversely proportional to the spin-
lattice relaxation time T1. If T1 is very short, the line becomes too broad to
observe, whereas if T1 is very long, the line is sharp, but its intensity becomes
vanishingly small because the populations of the ↑ and ↓ states remain equal;
there is no dissipation of energy. The order of magnitude of T1 is provided by the

2 The ↑ and ↓ states are referred to as ‘spin up’ and ‘spin down’ or more correctly as ‘majority
spin’ and ‘minority spin’. The meaning is that the moments of the ↑ electrons are aligned with
the applied field, but their spin angular momentum is in the opposite direction, because of the
negative charge of the electron.
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The rate of absorption of
electromagnetic energy in
a continuous-wave
magnetic resonance
experiment. The quantity w
is proportional to the
microwave power.

uncertainty relation ε t ≈ �, so if B = 1 mT, ε = gµB B ≈ 2 × 10−26

J, T1 ≈ 5 × 10−9 s.
The probability w of transitions between the ± 1

2 levels stimulated by the
microwave field is a quantity which is proportional to microwave power and
identical for transitions in either sense. The rates of change of populations
are

dN↑
dt

= w(N↓ −N↑) and
dN↓
dt

= w(N↑ −N↓). (9.7)

Subtracting these equations, and setting N = N↑ −N↓, we find dN/dt =
−2wN, which gives N (t) = N (0)e−2wt . The populations tend to equalize at
long times. The energy ε of the system is N↓�ω0, so dε/dt = −�ω0wN(t).
The rate of change of energy tends to zero at long times.

However, when we switch off the microwave power, the populations can be
expected to relax to thermal equilibrium with longitudinal time constant T1, so
thatN (t) = N0(1 − e−t/T1 ), whereN0 is the equilibrium population difference.
Taking relaxation into account, the rate of change of population imbalance
becomes

dN (t)

dt
= −2wN(t) + N0 −N (t)

T1
. (9.8)

There is a similar equation for the magnetization, since M = NµB/V. In
equilibrium, dN (t)/dt = 0, so N (t) = N0/(1 + 2wT1). The rate of absorption
of electromagnetic energy N (t)�ωw is then

dε

dt
= N0�ω0w

1 + 2wT1
, (9.9)

which is plotted in Fig. 9.2. At low power, the rate of absorption is proportional
to w, but at high power it saturates at a value proportional to 1/T1.

Spin-orbit interaction is the mechanism by which the spin system couples
to the lattice phonon bath. Good EPR spectra are obtained with ions where the
orbital moment is quenched or absent. The latter are S-state ions with half-
filled shells, such as free radicals (2S1/2), Mn2+ or Fe3+ (6S5/2) and Eu2+ or
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Energy levels of the Ce3+

ion split by a uniaxial
crystal field. The MJ = ± 5

2
Kramers doublet ground
state looks like a ± 1

2
doublet with a large
effective g-factor in EPR.

Gd3+ (8S7/2).Moreover, the resonant ions should be dilute in the crystal lattice
to minimize dipolar and exchange interactions between them, which broaden
the resonance linewidth and lead to dephasing of the spins.

The outer electrons of an ion interact strongly with the surrounding ions –
the crystal-field interaction was discussed in §4.4. A crystal field of second
order may include a term A2

2 which mixes states whereMS (or, more generally,
MJ ) differs by 2. The fourth- or sixth-order crystal field may mix states where
MS differs by up to 4 or 6. These interactions are effective when J > 1

2 , J >
3
2

and J > 5
2 , respectively. Although it is the ground state that is involved in EPR,

the effect of the crystal field is to create a zero-field splitting of the energy levels
which modifies the effective g-factor of the lowest energy level, and makes
it anisotropic with respect to the crystal axes. The example of Ce3+, a 4f 1

Kramers ion with J = 5
2 , is shown in Fig. 9.3.

It is common practice in EPR to replace the Hamiltonian of the system
by an effective spin Hamiltonian which describes how the ground-state energy
level splits in a magnetic field. An effective spin S is chosen, so that the
magnetic degeneracy is 2S + 1. Terms in the spin Hamiltonian reflect the
crystal symmetry of the resonant ion. Examples of terms to add to the Zeeman
term in order to build the spin Hamiltonian are:

DS2
z for uniaxial symmetry;

E(S2
x − S2

y ) for an orthorhombic distortion;
Dc(S4

x + S4
y + S4

z ) for cubic symmetry.

Consider, for instance, the case of an ion with S = 1 in a site having uniaxial
symmetry, with the fieldB0 applied along the crystal axis. The spin Hamiltonian
is

Hspin = DS2
z − geffµBB0Sz. (9.10)

The effect of the crystal field is to create fine structure in the EPR spectrum as
shown in Fig. 9.4.

There is another interaction, of order 0.1 K at most, which modifies the
splitting of the electronic ground state. This is the hyperfine interaction with
the nucleus. The nucleus may possess quantized angular momentum �I when
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Energy levels and EPR
absorption for an ion with
S = 1: (a) without and (b)
with a crystal field
interaction D > 0.

the nuclear spin quantum number I �= 0. The corresponding magnetic moment
mn = gnµNI is about a thousand times smaller than the electronic moment; gn
is the nuclear g-factor, a number of order 1, and µN is the nuclear magneton:

µN = e�/2mp = 5.0508 × 10−27 A m2, (9.11)

wheremp is the proton mass. A magnetic field separates the 2I + 1 degenerate
nuclear energy levels withMI = I, I − 1, . . . ,−I.

The unpaired electrons of a magnetic ion create a magnetic field at the
nucleus, known as the hyperfine field. This ranges up to about 50 T in 3d ions,
and it can be ten times larger for some rare-earths because of the 4f orbital
contribution. These are huge magnetic fields, albeit in a very small volume.
Hyperfine interactions are therefore of order 10−1–10−3 K. They dominate
the specific heat below 1 K and they give rise to hyperfine structure in EPR,
NMR and Mössbauer spectra. The interactions are represented by the term
AI · S in the spin Hamiltonian, with the hyperfine constant A having units of
energy. Each degenerate MS level splits into (2I + 1) sublevels with energy
gµBB0MS + AMIMS.Microwave transitions only occur between levels obey-
ing the dipole selection rule  MS = ±1 or  MI = 0, since the frequen-
cies required to induce transitions between the nuclear levels lie in the radio-
frequency range – MHz rather than GHz. The resonances therefore occur at

�ω = [gµBB0(MS + 1) + AMI (MS + 1)] − [gµBB0MS + AMIMS]

= gµBB0 + AMI . (9.12)

Each EPR line therefore splits into 2I + 1 hyperfine lines, as shown in Fig. 9.5.
EPR is normally applied to magnetic ions in insulators. However, it is

possible to obtain a signal known as conduction electron spin resonance (CESR)
from the free electrons in metals and semiconductors, provided the relaxation
time is not too short.
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(a) EPR transitions in the
presence of hyperfine
interactions, for an ion with
S = 5

2 and nuclear spin
I = 5

2 . (b) EPR spectrum of
Mn2+ impurities in Ga2O3,
showing the hyperfine
structure. (V. J. Folen, Phys.
Rev. B 139, A1961 (1965).)
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9.2 Ferromagnetic resonance

Resonance is also observed in the microwave frequency range when a ferro-
magnet is subject to a uniform field B0 and a transverse high-frequency field
b1. The system will be treated classically, like a giant spin, or macrospin. The
magnetization of the sample is first assumed to remain uniform.

In the absence of damping the equation of motion is

dM/dt = γ (M × B′
0). (9.13)

The magnetization precesses around the z axis at the Larmor frequency fL =
ω0/2π , whereω0 = γB0. Since the magnetization of the ferromagnet is largely
due to the spin moments of the electrons, γ ≈ −(e/me), resonant frequencies
for FMR are similar to those for EPR. The same apparatus is used for both.

If the precession is to be detected by resonant absorption of microwaves,
high-frequency radiation has to be able to penetrate the specimen. This poses
no difficulty for insulators such as ferrimagnetic oxides, but the skin depth of
metallic iron at 10 GHz, for example, is only of order a micron so thin films or
fine powder samples have to be used for metallic materials (12.2).

Furthermore, in ferromagnets we have to distinguish clearly the external
field H ′ = B′/µ0 and the internal field H = H ′ + Hd present inside the
ferromagnet. The demagnetizing field Hd = −N M, where the demagnetizing
tensor is assumed to be diagonal:

N =

Nx 0 0

0 Ny 0
0 0 Nz


 .

Provided b1 � B0, the magnetization is M ≈ Msez + m(t), where m(t) =
m0eiωt is the small in-plane component. The demagnetizing field is therefore

Hd = −µ0[Nxmxex + Nymyey + Nz(mz +Ms)ez]. (9.14)

The oscillating components of magnetization m = m0eiωt in the xy-plane are

dmx
dt

= µ0γ (myHz −MHy) = µ0γ [H ′
0 + (Ny − Nz)M]my, (9.15)

dmy
dt

= µ0γ (−mxHz +MHx) = −µ0γ [H ′
0 + (Nx − Nz)M]mx, (9.16)

where Mz = M . The external field B ′
0 =µ0H

′
0 is applied in the z-direction.

Solutions of these equations exist when∣∣∣∣ iω γµ0[H ′
0 + (Ny − Nz)M]

−µ0γ [H ′
0 + (Nx − Nz)M] iω

∣∣∣∣ = 0,

which leads to the Kittel equation for the resonance frequency:

ω2
0 = µ2

0γ
2[H ′

0 + (Nx − Nz)M][H ′
0 + (Ny − Nz)M]. (9.17)
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Table 9.1. g-factors for
metallic ferromagnets

Fe 2.08
Co 2.17
Ni 2.18
Gd 1.95

Special cases are:

� a sphere, Nx = Ny = Nz = 1
3 , ω0 = γµ0H

′
0;

� a thin film withH ′
0 perpendicular to the plane Nx = Ny = 0,Nz = 1; ω0 =

γµ0(H ′
0 −M);

� a thin film with H ′
0 in plane Ny = Nz = 0, Nx = 1; ω0 = γµ0[H ′

0(H ′
0 +

M)]
1
2 .

Magnetocrystalline anisotropy also influences the ferromagnetic resonance fre-
quency, so to the demagnetizing field in the above expressions may be added
the anisotropy field, Ha = 2K1/Ms. A sphere, for example, with the z axis
as the easy anisotropy axis and Nx = Ny = Nz = 1

3 has resonance frequency
ω0 = γµ0(H0 + 2K1/Ms). It is possible to observe ferromagnetic resonance in
zero external field for a single-domain particle, or a crystal of high-anisotropy
material magnetized along Oz.

For a spherical sample with cubic anisotropy (§5.5.2), when H ′
0 is applied

along [100], (9.17) applies with K1 = K1c.When H ′
0 is applied along [111]

ω0 = γµ0(H ′
0 − 4K1c/3Ms − 4K2c/9Ms), (9.18)

whereas if H0 is applied along [110]

ω0 = γµ0[(H ′
0 − 2K1c/Ms)(H

′
0 +K1c/Ms +K2c/2Ms)]

1
2 . (9.19)

In the case of a thin film with an easy axis perpendicular to the plane of the
film, the expression for the resonance frequency is

ω0 = γµ0(H ′
0 + 2K1/Ms −Ms). (9.20)

Ferromagnetic resonance can therefore provide a measurement of Ms and Ki
as well as γ .An advantage of the method is that the magnetization, or magnetic
moment per cubic metre, is determined with no need to know the sample
volume. The gyromagnetic ratio is related to the g-factor; γ = −gµB/�.Values
of g for the metallic ferromagnets are given in Table 9.1. The ratio of orbital
moment to spin moment is 1

2 (g − 2).
The instantaneous field in the sample is uniform in an FMR experiment

provided the wavelength of the microwaves is much greater than the sample size.
At 10 GHz, λ = 3 cm, so the condition is satisfied for millimetre-size samples.
However, the giant-spin assumption of uniform magnetization throughout the
sample is not generally valid. Nonlinear magnetostatic modes may be excited.
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Spin-wave resonance
spectrum of permalloy
(R. Weber and
P. Tannenwald, IEEE Trans.
Maps. 4, 28 (1968)).

An example is the standing spin waves excited in thin ferromagnetic films when
the steady field B0 is applied normal to the film surface, Fig. 9.6. The in-plane
radio-frequency field can excite modes with an odd number of half-wavelengths.
Those with an even number do not couple with the field. Ferromagnetic spin
waves follow the dispersion relation (5.56) �ωq = Dswq2, where q = nπ/t; n
is an integer and t is the film thickness. Equation (9.17) becomes

ωq = γµ0(H ′
0 −M) +Dsw(nπ/t)2/�.

The spin-wave stiffness can be determined in this way.

qA

qB

MA1

MB1

MA

MB

qA

qB

MA1

MB1

MA

MB

Precession mode for
antiferromagnetic
resonance.

9.2.1 Antiferromagnetic resonance

An antiferromagnet is composed of two equal and opposite sublattices, each
of which is subject to an anisotropy field and an exchange field. The exchange
field on the ‘A’ sublattice, for example, is HexA = −nABMB (6.1), where nAB
is the molecular field coefficient. Solving the equations of motion for mx,my
for the two sublattices leads to the solution

ω0 = γµ0[Ha(Ha + 2Hex)]
1
2 . (9.21)

Molecular field coefficients may take values of up to 100 T in antiferromagnets,
so the resonance frequencies are very high, often in the 102–103 GHz range.

9.2.2 Damping

Free precession of the magnetization in the internal field at frequency ω0 =
γµ0H cannot go on for ever. Eventually, the magnetization must align with
the field. In EPR and NMR, this process involves spin-lattice relaxation of



316 Magnetic resonance

the quantum spin system. A way to represent the process for the macroscopic
magnetization is to add a phenomenological damping term to the equation
of motion. Two suggested forms, due to Landau and Lifschitz and Gilbert
respectively, are:

dM

dt
= γM × B0 − γ λ

M
M × M × B0; (9.22)

dM

dt
= γM × B0 − α

M
M × dM

dt
. (9.23)

When α � 1, the two forms are equivalent, with λ = α. A typical value
of the Gilbert damping is α = 0.01. The effect of damping is to make
the precessing magnetization spiral in towards the direction of the applied
field B0.

H

M

Precession of the
magnetization in a field
showing the effect of
damping.

In the absence of damping, the equation of motion in component form is(
dMx

dt
,

dMy

dt

)
= γµ0H (My,−Mx). (9.24)

Differentiating with respect to time,(
d2Mx

dt2
,

d2My

dt2

)
= γµ0H

(
dMy

dt
,−dMx

dt

)
= γ 2µ2

0H
2(−Mx,My).

(9.25)
Hence

d2Mx

dt2
= −ω2

0Mx ;
d2My

dt2
= ω2

0My ;
d2Mz

dt2
= 0. (9.26)

The solution is a uniform precession

Mx = Ms sin θ exp iω0t ; My = Ms sin θ exp(iω0t + π/2); Mz = Ms cos θ.
(9.27)

where the real parts represent the physical components of the magnetization.
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When Gilbert damping is taken into account, the equations of motion reduce to

dMx

dt
= ω′

0

[
My + αMyMz

Ms

]
, (9.28)

dMy

dt
= ω′

0

[
−Mx + αMxMz

Ms

]
, (9.29)

dMz

dt
= ω′

0

[
−Ms + αM

2
z

Ms

]
, (9.30)

where ω′
0 = ω0/(1 + α2). These are spiralling solutions with ω �= ω0 and θ =

θ (t). Differentiating the expression (9.27) forMx,

dMx
dt

= iωMs sin θ exp iωt +Ms dθ

dt
cos θ exp iωt (9.31)

dMx
dt

= ωMy + MyMz

sin θMs

dθ

dt
. (9.32)

Hence ω = ω′
0 and dθ/dt = ω′

0α sin θ.
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Switching of the
magnetization of a
thin-film element. The
switching makes use of the
precession of the
magnetization in the
demagnetizing field when
the magnetization acquires
an out-of-plane component
as it begins to process
around H ′.

When α � 1, the motion is lightly damped, and many precessions take place
before alignment is achieved. When α � 1, the motion is overdamped. Critical
damping is when α = 1. Then if a reverse field is applied, switching takes a
time t ≈ 2/γµ0H. Switching is rapid. For example, a moment with θ = 20◦

in a reverse field takes four precessions to reach θ = 170◦. If µ0H = 10 mT,
t = 1 ns when g = 2 (γ = 1.76 × 1011 s−1 T−1). For switching the films it
is possible to make use of the demagnetizing field, Fig. 9.7. Rapid switching
of the magnetization of ferromagnetic thin film elements is important for spin
electronics (§14.4).

9.2.3 Domain wall dynamics

Consider a 180◦ Bloch wall separating two domains with magnetization up or
down along an anisotropy axis taken as the z axis. The magnetization turns in
the yz-plane, making an angle θ with Oz, as shown in Fig. 7.6. From (7.15)

d2θ

dx2
= π2

δ2
w

sin θ cos θ, (9.33)

where δw = π√
A/K1 is the domain-wall width. The solutions are of the form

dθ/dx = π sin θ/δw. Suppose now that a field H is applied along the positive
z axis. This tends to drive the wall along Ox, exerting a pressure 2µ0HMs on
it. If the field is applied for a time t , the wall acquires a velocity vw, which we
now calculate.

A consequence of H is to exert a torque on the spins in the wall. They precess
aroundOzwith angular velocity ωz = µ0γH.After a short time, they all make
a small angle φ with the z-plane. The magnetization of the wall acquires a
component along) Ox , Mx ≈ Msφ sin θ. The sheet of magnetization in turn
creates a demagnetizing field Hx = −Mx, and it is this field that produces
the torque needed to move the wall. The magnetization in the wall precesses
around Ox with angular velocity ωx = dθ/dt = µ0γHx = −µ0γMsφ sin θ.
The effect is to move the entire wall along Ox with velocity vw. The angle φ
accumulated in the time needed to damp the oscillation remains constant after
H is switched off. In the moving wall, θ is a function of x ′ = x − vwt. Hence

dθ

dx ′ = − 1

vw

dθ

dt
= 1

vw
µ0γMsφ sin θ. (9.34)
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Since dθ/dx = π sin θ/δw and φ = µ0γHt0, it follows that vw =
2µ2

0γ
2HMsδw/w0α.The ratio of impulse per unit area to velocity is an effective

domain-wall mass per unit area:

mw = 2π

µ0γ
2δw

(9.35)

This is known as the Döring mass. From data in Table 7.1, values of mw for
Fe and Nd2Fe14B are 4 × 10−9 kg m−2 and 4 × 10−8 kg m−2, respectively.
Domain-wall dynamics is determined by this mass.

At low fields, the wall velocity vw is proportional to the driving field
beyond the depinning field Hp, with a constant of proportionality ηw known
as the domain-wall mobility (7.31). In thin films, the mobility is limited
by the Gilbert damping parameter α, so that ηw = µ0γ δw/α at high driv-
ing fields. The velocity of the wall collapses as the precession frequency
of the spins approaches the ferromagnetic resonance frequency γB0/2π .
The spins in the moving wall precess at a frequency vw/δw; Walker break-
down occurs when this frequency hits the ferromagnetic resonance frequency,
Fig. 9.8.

9.3 Nuclear magnetic resonance

The nucleus is the collection of protons and neutrons at the heart of every
atom, which constitutes 99.98% of the mass of solids, liquids and gases.
The magnetic properties of these and other elementary particles are listed in
Table 9.2.

I = 

+ 
+  

MI

+  
+  

Splitting of nuclear energy
levels of 59Co (I = 7

2 ) in
the hyperfine field.

While the proton and the neutron possess the same spin angular momentum as
the electron, �/2, their magnetic moments are far smaller because of their much
greater mass. The magnetic moments associated with the spin angular momen-
tum can be written as mn = gnµNI , where the nuclear g-factors are gn = 5.586
and gp = −3.826 for the proton and neutron, respectively. The nuclear magne-
ton µN is e�/2mp, 5.051 × 10−27 A m2. The interacting protons and neutrons
in the nucleus form an entity with angular momentum I�, having 2I + 1
degenerate states labelled with a magnetic quantum number MI , analagous
to the many-electron states of an atom. Whereas the excited states of the
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Table 9.2. Magnetism of some elementary particles

Charge m/me τ 1/2 I (�) m fL(Hz T−1)

Proton p e 1836 Stable 1
2 2.793 µN 42.58 × 106

Neutron n 1836 10.3 m 1
2 −1.913 µN 29.17 × 106

Electron e −e 1 Stable 1
2 −1.001 µB 27.99 × 109

Positron e+ e 1 Stablea 1
2 1.001 µB 27.99 × 109

Muon µ+ e 206.7 2.2 µs 1
2 0.00484 µB 135.5 × 106

Muon µ− −e 206.7 2.2 µs 1
2 −0.00484 µB 135.5 × 106

Photon φ Stable 1

a Positrons combine with electrons in condensed matter to produce two γ photons, each of energy 0.511 MeV.

many-electron atom lie 1–100 eV above the atomic ground state, the excited
states of the many-nucleon nucleus lie 10 keV–10 MeV above the nuclear
ground state. We rarely need to consider any but the nuclear ground state.
Unlike electronic moments, which are usually negative (oppositely directed
to the angular momentum on account of the negative electronic charge) the
nuclear moments are usually positive.

On applying an external magnetic field, B0 in the Oz-direction, the 2I + 1
magnetic levels are Zeeman split which leads to the establishment of the Boltz-
mann populations. A small net magnetization is induced in the direction of the
field, given by Curie’s law. In a field of 1 T, the energy splitting for the proton
gpµNB is 2.8 × 10−26 J or 2 mK. The difference in population of the two levels
is therefore less than 1 part in 105 at room temperature.

As for EPR, resonant transitions between the energy levels require an AC
field to be applied in the xy-plane, perpendicular to the uniform field. The
frequencies required for NMR are in the radio-frequency range (Table 9.3)
rather than the microwave range, so the samples can be excited in a resonant
coil with a few turns, rather than a waveguide.

The nucleus is surrounded by the electron shells of its atom, and by the
other atoms in the sample, which have the effect of creating or modifying
the electric and magnetic fields acting at the nucleus. NMR is very widely
used in organic chemistry as a fingerprint spectroscopy for nonconducting
organic compounds in the liquid state. The diamagnetic susceptibility of the
inner electron shells tends to shield the nucleus slightly from the applied field,
leading to a chemical shift of the resonance to slightly higher frequency ω0.

Chemical shifts are measured in parts per million, but the resonance linewidth
may be a hundred times less, so a rich fund of molecule- and bond-specific
chemical information is available. Modern high-resolution spectrometers use
superconducting magnets which deliver B0 in the range 12–20 T, and operate
in the 500–800 MHz range.

In metals, the paramagnetic susceptibility of the conduction electrons shifts
the resonance in the opposite direction. This is the Knight shift, discussed below.
It is an effect of order 1%.
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Table 9.3. Some nuclei of interest for magnetic resonance

Nucleus Iparity (%) m (µN ) fL(MHz T−1) Q (10−28 m2)

1H 1/2+ 99.9885 2.793 42.58
2H 1+ 0.0115 0.857 6.54 0.0029
13C 1/2+ 1.07 0.702 10.71
14N 1+ 99.632 0.404 3.08 0.0204
17O 5/2− 0.038 −1.893 5.77 −0.0256
19F 1/2+ 100 2.627 40.05
23Na 3/2+ 100 2.217 11.26 0.104
27Al 5/2+ 100 3.641 11.09 0.14
29Si 1/2− 4.6832 −0.555 8.46
31P 1/2+ 100 1.132 17.24
33S 3/2+ 0.76 0.643 3.27 −0.0678
53Cr 3/2− 9.501 −0.474 2.41 −0.150
55Mn 5/2+ 100 3.468 10.54 0.330
57Fe 1/2+ 2.19 0.091 1.38
59Co 7/2+ 100 4.616 10.10 0.420
61Ni 3/2− 1.14 −0.750 3.81 0.162
63Cu 3/2+ 69.17 2.226 11.29 −0.220
87Rb 3/2w+ 27.835 2.750 13.93 0.134
89Y 1/2− 100 −0.137 2.09
105Pd 5/2− 22.33 −0.639 1.95 0.660
143Nd 7/2− 12.81 −1.063 2.32 −0.630
147Sm 7/2− 15.0 −0.813 1.76 −0.259
157Gd 3/2− 15.65 −0.339 2.03 1.350
159Tb 3/2+ 100 2.008 9.66 1.432
163Dy 5/2+ 24.9 0.676 1.95 2.648

9.3.1 Hyperfine interactions

The atomic nucleus is a point probe of electric and magnetic fields at the
very heart of the atom. Atoms in different crystallographic sites may be dis-
tinguished by their hyperfine interactions, which result from coupling of the
electric and magnetic moments of the nucleus with these fields. Nuclei with I
�= 0 have a magnetic moment gnµNI , and the Zeeman splitting of the (2I + 1)
magnetic levels denoted by the nuclear magnetic quantum number MI = I ,
I − 1, . . . ,−I results from the action of the hyperfine field Bhf at the nucleus.

The complete Hamiltonian is

Hhf = −gnµN I · Bhf −eQVzz{[3I 2
z −I (I + 1)] + η(I 2

x−I 2
y )}/[4I (2I − 1)],

(9.36)

where the first term is the magnetic hyperfine interaction and the second term
represents the interaction of the electric quadrupole moment of the nucleus with
the electric field gradient Vzz. Higher-order moments of the nuclear charge are
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negligible. There are several contributions to the hyperfine field Bhf ; one is the
Fermi contact interaction of the nucleus with the unpaired electron density at its
site. Unpaired electrons are largely in 3d and 4f shells which have no electron
density at the nucleus, but they polarize the 1s, 2s and 3s core shells which do
have some charge density there. The core polarization contribution is largest
for 3d elements; it is about −11 T µ−1

B in iron and cobalt, and 4 T µ−1
B in the

rare-earths. A further contribution comes from the spin-polarized 4s or 6s con-
duction electrons. For non-S state ions there are also orbital and dipolar contri-
butions,Borb = −2µ0µB〈r−3〉〈L〉/h andBdip = −2µ0µB〈r−3〉〈S〉〈3 cos2 θ −
1〉/h, produced by the unquenched orbital angular momentum and the non-
spherical atomic spin distribution, respectively. In non-S-state rare-earths, these
contributions reach values of several hundred teslas. At lattice sites which do
not have cubic symmetry, there may also be a dipolar contribution from the
moments of the atoms on the rest of the lattice, which is of order 1 T.

Normally, no magnetic hyperfine splitting is observed in the paramagnetic
state. The reason is that the fluctuations of the atomic moment in a paramagnet
are much faster than the nuclear Larmor precession frequency in the hyperfine
field fL ≈ 109 Hz. Dilute paramagnetic salts of non-S-state rare-earth ions may
be an exception. There the Larmor precession frequency is several gigahertz
on account of the orbital and dipolar contributions, and if the crystal field
stabilizes a ±MJ ground state withMJ > 3 the fluctuation time can be slow at
low temperature because theMJ → −MJ transitions are suppressed on account
of the large change of orbital angular momentum  MJ = 2J involved.

The magnetic hyperfine field in magnetically ordered material faithfully
follows the ordered moment, and it falls to zero at the Curie or Néel temperature.
Accurate values of the critical exponent β are obtained in this way, which is
especially valuable for antiferromagnets, Fig. 9.9.

The second term in (9.36) represents the electrostatic coupling of the nuclear
quadrupole moment Q with the electric field gradient at the nucleus Vij =
d2V/dxidxj .Any nucleus with I ≥ 3

2 has a quadrupole moment, and the electric
quadrupole interaction, represented by the second term in (9.36), has the effect



322 Magnetic resonance

Table 9.4. Some values
of the Knight shift

K (%)

22Na 0.11
23Al 0.16
53Cr 0.69
63Cu 0.24
105Pd −3.00

of separating the pairs of levels with different |MI |. The electric field gradient
at the nucleus can be diagonalized by a suitable choice of axes; only two of the
three components (Vxx, Vyy ,Vzz) are independent. Conventionally, the biggest is
labelled Vzz and the asymmetry parameter is defined as η = (Vxx − Vyy)/Vzz.
These quantities in S-state ions are related to the second-order crystal field
acting on the electronic shell: Vzz ≈ A0

2, η ≈ A2
2. The inner electron shells

greatly amplify the electric field gradient produced by the lattice (Vzz)latt, and
they shield the atomic charge (Vzz)val contribution.

Vzz = (1 − γ∞)(Vzz)latt + (1 − R)(Vzz)val, (9.37)

modifying the field gradient at the nucleus. The factors γ∞and R are the
Sternheimer antishielding and shielding factors, respectively. For example, values
for 57Fe are γ∞ = −9.14 and R = 0.32.

The absorption of radio-frequency radiation by nuclei such as 14N which
are subject to an electric field gradient is nuclear quadrupole resonance. As for
zero field splitting in epr, no applied magnetic field is required. The order
of magnitude of the magnetic and electric hyperfine interactions is 10−6 eV
(10 mK). Some nuclei of interest for nuclear quadrupole resonance are included
in Table 9.3.

I = 
± 

± 

M
I

Quadrupole splitting of the
energy levels of a nucleus
with I = 3

2 .

I = 

– 

– 

+ 

+  

MI

A nucleus with I = 3
2

subject to magnetic and
electric hyperfine
interactions, and the
corresponding hyperfine
spectrum.

The Knight shift of a paramagnetic metal is related to the magnetically induced
hyperfine field, which may be expressed in terms of the hyperfine coupling con-
stant A and the susceptibility. The energy of the nucleus in an applied field B0 is

ε = (−γ n�B0 + A〈sz〉)MI . (9.38)

The first term is the Zeeman interaction of the nucleus with the applied field,
and the second is the interaction with the electrons in the spin-polarized
conduction band. The nuclear gyromagnetic ratio is γ n = gne/2mp. Now
M = ngµB〈sz〉 = χPB0/µ0, where nc is the conduction electron density,
g is the electronic g-factor and χP is the Pauli susceptibility. Hence ε =
−γ n�B0(1 + K)MI , where

K = −AχP /ncgµBγ n� (9.39)

is the Knight shift. Some values of K are given in Table 9.4.
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9.3.2 Relaxation

Consider the magnetization Mn of a system of nuclei: Mn = n〈mn〉, where n
is the number of nuclei per unit volume. When the system is perturbed, it tends
to return to its equilibrium state where Mn

0 is along Oz with a characteristic
relaxation time in a similar way to the magnetization of a system of electrons
discussed in §9.1. However, the nuclei are weakly coupled to the lattice, so
the longitudinal, spin-lattice relaxation time T1 is much longer than it was for
electrons:Mn

z (t) = Mn
z (0) + [Mn

0 −Mn
z (0)][1 − exp(−t/T1)]. Thus

dMn
z (t)

dt
= Mn

0 −Mn
z (t)

T1
. (9.40)

The torque acting on a nuclear moment mn is mn × B, which is equal to the
rate of change of angular momentum d(�I )/dt. Hence dmn/dt = γ nmn × B.
The nuclear magnetization for an ensemble of nuclei Mn is 〈mn〉. The z
component of the equation of motion in the absence of irradiation is

dMn
z

dt
= γ n(Mn × B)z + Mn

0 −Mn
z

T1
. (9.41)

In other words, the nuclear magnetization precesses aroundOz, while relaxing
towards the equilibrium value Mn

0 . The values of T1 for protons range from
milliseconds, up to about 1 s in pure water.

Spin-lattice relaxation in metals mostly involves the conduction electrons.
The inverse relaxation time 1/T1 is proportional to temperature, and to the
Knight shift, a result known as the Korringa relation:

1

T1
= K

(
γ n

γ

)2 4πkBT

�
. (9.42)

The equations of motion for the x and y components are different from
(9.41). There is no nonzero equilibrium value for these components, and they
decay with a relaxation time known as the transverse or spin–spin relaxation
time T2. Hence

dMn
x

dt
= γ n(Mn × B)x − Mn

x

T2
,

(9.43)
dMn

y

dt
= γ n(Mn × B)y − Mn

y

T2
.

T2 is a measure of the time for which the moments contributing to Mn
x and Mn

y

precess in phase with each other. It is the spin dephasing time, due to the fact
that nuclear moments in different parts of the sample all experience slightly
different magnetic fields, and therefore precess at different rates. If we consider
that the local field fluctuations are due to the dipole fields of nearby nuclei,
Hdip ≈ mn/4πr3. Taking r ≈ 0.2 nm and mn = µN gives µ0Hdip ≈ 60 µT.
The dephasing time T2 is the time taken to precess through a radian in the
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random field, at an angular frequency ω = γ nµ0Hdip. Hence T2 ≈
�/µ0µNHdip ≈ 30 µs.

Inhomogeneity of the applied field B0 may also contribute to T2. The com-
bined time constant T ∗

2 is given by

1

T ∗
2

= 1

T2
+ 1

T inho
2

. (9.44)

Unlike the relaxation of the longitudinal componentMn
z , there is no exchange

of energy with the surroundings associated with the transverse componentsMn
x

and Mn
y . Equations (9.41) and (9.43) are known as the Bloch equations. They

are phenomenological relations, first proposed by Felix Bloch in 1946. The
longitudinal and transverse relaxation effects are illustrated in Fig. 9.10.

Adding in the AC field, of which we consider only the clockwise-rotating
component b1(t) = b1(ex cosωt + ey sinωt) which can excite the resonance,
Bloch’s equations become

dMn
x

dt
= γ n

(
Mn
yB0 −Mn

z b1 sinωt
)− Mn

x

T2
, (9.45)

dMn
y

dt
= γ n

(
Mn
z b1 cosωt −Mn

xB0
)− Mn

y

T2
,

dMn
z

dt
= γ nb1

(
Mn
x sinωt −Mn

y cosωt
)+ Mn

0 −Mn
z

T1
.
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Rotating frame It is helpful to think of resonance experiments in a set of
axes x′, y ′, z′ that rotate at an angular velocity � relative to the laboratory frame
x, y, z. The time derivatives of the unit vectors ei , i = x, y, z in the rotating
frame are d′ei/dt = � × ei . The time derivative of a general vector A in the
rotating frame is related to its derivative in the stationary frame by

d′ A
dt

= dA

dt
+ � × A.

We are interested in the magnetization M, subject to a uniform field B0 along
Oz. The z axis is common to the laboratory and rotating frames. Thus

d′ M
dt

= γ nM × B0 + � × M = γ nM ×
(

B0 − �

γ n

)
.

It is as if the magnetization in the rotating field were subject to an effective
magnetic field B′

0 = (B0 − �/γ n). When� = γ nB0 is the Larmor precession
frequency ω0, there is no effective field and the magnetization appears to be
stationary in the rotating frame.

The in-plane rotating field b1(t) becomes a static field b1 directed along Ox
in a frame rotating with angular velocity ω. Rewriting the Bloch equations in
the rotating frame with z′ = z, we find

dMn
x ′

dt
= γ nMn

yB
′
0 − Mn

x′

T2
,

dMn
y ′

dt
= γ n

(
Mn
z′b1 −Mn

x ′B
′
0

)− Mn
y ′

T2
, (9.46)

dMn
z′

dt
= −γ nMn

y ′b1 + Mn
0 −Mn

z′

T1
,

where B ′
0 = (ω0 − ω)/γ n. These equations can be solved to give expressions

for Mx ′ ,My′ ,Mz′ in the steady state, when the time derivatives are zero. Fur-
thermore, provided we stay in the limit of low excitation field b1, far from
saturation (γ b1 � T1, T2), the resonance is independent of T1:

Mn
x ′ = γ nb

′
1(ω0 − ω)T 2

2

1 + (ω0 − ω)2T 2
2

Mn,

Mn
y ′ = γ nb1T2

1 + (ω0 − ω)2T 2
2

Mn, (9.47)

Mn
z′ = Mn,

whereMn = χnB0/µ0. The in-phase component of the magnetizationMx ′ and
the out-of-phase componentMy ′ are plotted in Fig. 9.11.

Written in terms of susceptibility, the magnetization of the system subject to
an in-plane oscillating field of amplitude 2b1 in the laboratory frame is

Mx = 2b1(χ ′ cosωt + χ ′′ sinωt).
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The components of the magnetization in the rotating frame Mx ′ and My ′ are
then proportional to χ ′ and χ ′′, the components of the complex susceptibility
χ = χ ′ − iχ ′′. The power absorbed per unit volume of the system is P =
ωχ ′′b2

1/µ0.

The longitudinal relaxation time in the rotating frame is T1ρ. It reflects
molecular motion in macromolecules.

Equations (9.41) and (9.43) are also applicable to EPR and FMR where they
are known as the Bloch–Bloembergen equations. T1 and T2 are then the spin-
lattice and spin–spin relaxation times for the electronic system The resonance
linewidth is given by  B = 2/(γ T2): it is also related to the Gilbert damping
parameter α by  B = 2αω0/γ .

9.3.3 Pulsed NMR

Most modern NMR spectrometers apply the radio-frequency field in precisely
timed bursts, rather than continuously. b1(t) is stationary in the rotating-axis
frame at resonance, so it is possible to precess the magnetization of the sam-
ple Mn around Ox ′ through any desired angle in the y ′z′-plane by choosing
the length of the pulse. A π pulse, for example, reverses the magnetization,
whereas a π/2 pulse causes precession through a quarter turn, and brings the
magnetization into the xy-plane. The pulse lengths are generally shorter than
the relaxation times T1 and T2.

A single π/2 pulse is especially useful, as it flips the magnetization from the
z axis to the xy-plane, where it continues to precess at the Larmor frequency;
Larmor precession does not depend on the angle between the magnetization and
the field B0.As the magnetization precesses, it induces a radio-frequency signal
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(a) A free induction decay
for a sample with protons
present in several different
environments. (b) The
Fourier transform shows
the spectrum of component
frequencies in the free
induction decay. The
horizontal axis shows the
chemical shift of the
resonance frequency in
parts per million. (Data
courtesy of V. J. McBrierty.)

in the coil that was used to create the pulse, which is damped by the progressive
dephasing of the contributions of individual nuclei which see slightly different
magnetic fields. This signal is known as the free induction decay, Fig. 9.12. It
allows T2 to be measured directly. A fast Fourier transform of the free induction
decay gives the frequency spectrum, and the chemical shifts of the constituent
nuclei can be identified.

Spin echo The benefits of high resolution might seem to depend on our
ability to build a magnet capable of producing a perfectly uniform magnetic
fieldB0 over the whole volume of the sample. Luckily, that is not true, thanks to
an ingeneous pulse sequence invented by Erwin Hahn in 1950. The spin-echo
method uses two pulses. First a π/2 pulse switches the magnetization into the
plane along Oy and a free induction decay is measured which reflects both the
inherent field fluctuations in the sample, as well as any inhomogeneities in field
produced by the magnet. Then after a time τ a π pulse is applied, which flips
the spins around Ox and reverses their order as they continue to precess, as
shown in Fig. 9.13. The spins which were precessing faster now find themselves
lagging behind their slower counterparts, but they catch up the delay, and all
spins find themselves coming together along the y-direction after a time 2τ ,
producing the ‘spin echo’.
T1 can be measured by first applying a π pulse to flip the magnetization,

and then using a π/2 pulse after a variable time delay τ to determine the
magnitude of the magnetization measured in the free induction decay M(τ ).
A curious feature of the nonequilibrium population distributions that can be
achieved with spin systems is spin temperature. This is the fictitious temperature
T ∗ at which the population distribution measured at some instant would be in
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The spin-echo
measurement.
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Recovery of the
magnetization in the
direction of the uniform
field B0 following a π pulse
at room temperature.
Some spin temperatures
are circled.

equilibrium. The population of the MI sublevels is described by a Boltzmann
distribution with the temperature equal to T ∗ rather than T . The spins can
equilibrate with each other at a temperature quite different from the lattice
temperature when T2 � T1. After inverting the magnetiztion with a π pulse
at 300 K, for example, the spin temperature flips to −300 K. It then becomes
increasingly negative, diverging to −∞ as the moment crosses the xy-plane,
and it eventually reaches 300 K again when t � T1, as shown on Fig. 9.14.

Spin locking of the moments in the rotating frame is achieved with a π/2
pulse along Ox′, followed by a π/2 phase shift of the radio-frequency field,
so that it lies along Oy ′. This alignsM0 and b1 in the rotating frame, allowing
measurement of T1ρ. The tendency for the magnetization to dephase is sup-
pressed, and the large population imbalance in relation to the field produces a
low effective spin temperature T ∗ = T (b1/b0). For example, if B0 = 1 T and
b1 = 1 mT, the spin temperature is 300 mK.

Many other pulse sequences devised by practitioners of NMR are described
in specialist texts.
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Finally, we return to the concept of motional narrowing. When some com-
ponent of the hyperfine field acting on a nucleus is fluctuating because of
temperature or diffusive motion, motional averaging affects the spectrum pro-
vided the fluctuation frequency is comparable to or greater than the spectral
width arising from the interactions. For magnetic hyperfine interactions, the
fluctuation frequency is the Larmor precession frequency. We have seen how
paramagnetic fluctuations of the magnetization are averaged out when their
frequency exceeds the Larmor frequency in the hyperfine field. Similarly, line
broadening associated with dipole fields created by neighbouring nuclei in
liquids, for example, averages out when the diffusion frequency exceeds the
frequency associated with the dipole field. This permits the observation of very
narrow resonance lines in liquids, with relative linewidths of 10−8. A simi-
lar effect is achieved in solids by the technique of magic angle spinning, where
anisotropic interactions such as dipole coupling and quadrupole coupling which
vary as (3 cos2 θ − 1) are averaged out by spinning the sample around an axis
inclined at an angle of cos−1(1/

√
3) = 54.7◦ with Oz.

9.4 Other methods

9.4.1 Mössbauer effect

Mössbauer spectroscopy is based on the 1958 discovery by Rudolf Mössbauer
that it is possible for a nucleus of 191Ir to decay without recoil from its first
excited state to its ground state by γ -ray emission, whenever the nucleus belongs
to an atom bound in a solid. Momentum has to be conserved on average, but
lattice momentum must be taken up by the creation of phonons. In quantum
mechanics, zero-phonon, one-phonon, two-phonon, . . . , events all have finite
probabilities. The recoilless fraction fM is the fraction of decays where γ -rays
are emitted without recoil in a zero-phonon process:

fM = e(−εγ 〈x2〉/�2), (9.48)

where 〈x2〉 is the mean-square thermal displacement of the nucleus and εγ is
the energy of the γ -ray. A similar Debye–Waller factor governs the intensity of
elastic X-ray and neutron scattering in solids. The Mössbauer effect is simply
due to these zero-phonon events having a finite probability.

Mössbauer spectroscopy is based on the γ -rays emitted or absorbed in zero-
phonon processes in transitions between the nuclear excited state and the ground
state. Like optical spectroscopy, it requires a source, an absorber and a means
of modulating the emitted photon energy. The source is a solid containing
a radioactive isotope which decays with a half-life τ 1/2 to populate a low-
lying nuclear excited state, which in turn decays rapidly by emitting an unsplit
gamma line. The conditions are stringent. The excited state must be at no more
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Table 9.5. Some suitable isotopes for Mössbauer spectroscopy

Abundance t 1
2
γ t 1

2

Isotope (%) source τ 1
2

(keV) (ns) gn I parity Q ge I parity
e Qe

57Fe 2.12 57Co (ec) 270d 14.4 98.0 0.0906 1/2− – −0.155 3/2− 0.16
61Ni 1.2 61Co (β−) 99m 67.4 5.3 −0.750 3/2− 0.162 0.47 5/2− −0.30
119Sn 8.6 119mSn (IT) 293d 23.9 18.0 3.359 1/2+ – 2.35 3/2+ −0.13
149Sm 13.8 149Eu (ec) 90d 22.5 7.3 −0.672 7/2− 0.075 −0.620 5/2− 0.40
151Eu 47.8 151Sm (β−) 90y 21.6 9.6 3.465 5/2+ 0.903 2.587 7/2+ 1.51
155Gd 14.8 155Eu (β−) 4.8y 86.5 6.5 −0.259 3/2− 1.270 −0.515 5/2+ 0.16
161Dy 18.9 161Tb (β−) 6.9d 25.7 29.1 −0.481 5/2− 2.507 0.59 5/2+ 1.36
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Figure 9.15

Nuclear decay scheme of
57Co which undergoes
(n,γ ) decay, populating the
14.1 keV excited state of
57Fe. These γ -rays are
resonantly absorbed in an
absorber containing 57Fe.
Hyperfine structure in the
absorption spectrum is
revealed by modulating
the energy of the source by
moving it with constant
acceleration with an
electromagnetic
transducer. A six-level
hyperfine spectrum of a
ferromagnetic αFe
absorber is illustrated.

than about 30 keV, or else the recoilless fraction at room temperature becomes
vanishingly small. Nature must provide a convenient radioactive precursor, if
we are to avoid recourse to a synchrotron source. Some useful nuclei, and their
radioactive precursors are listed in Table 9.5. Luckily for magnetism, the best
example is an iron isotope, 57Fe. Details are featured in Fig. 9.15. The source is
57Co, which has a half-life τ 1/2 of 270 days, and the energy εγ of the transition
from the excited state to the ground state is 14.4 keV. Mössbauer spectroscopy
is usually measured in transmission; a single-line source is energy-modulated
by moving it with velocity v (≈ cm s−1) so that it undergoes a Doppler shift
 ε = εγ v/c. The absorption of γ -rays is measured as a function of velocity.
The absorption linewidth determined by the lifetime t1/2 of the nuclear excited
state is 0.19 mm s−1 for the 98 ns I =3/2 excited state of 57Fe.
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Both magnetic hyperfine splitting and electric quadrupole interactions are
observed, for 57Fe on account of the quadrupole moment of the excited state.
The corresponding energy splittings are shown in Fig. 9.15. In addition, there is
another interaction, unmeasurable in NMR, known as the isomer shift. It arises
because the nucleus is a slightly different size in its excited state, and there
is a shift of the resonance line due to the Coulomb interaction, depending on
the difference in electron density at the nucleus in the source and absorber.
Different absorbers have different isomer shifts δIS relative to a source, and it
is possible to infer the charge state of the absorber ion, for example, Fe2+ or
Fe3+. Further details are provided in §10.2.3.

9.4.2 Muon spin rotation

Muons are unstable spin- 1
2 particles with charge ±e which have a mass mµ =

206.7 me. Their half-life is τµ = 2.2 µs. The positive muon is quite useful
as a probe of magnetic solids because it occupies an interstitial site where it
experiences the local magnetic field. Negative muons are like heavy electrons
and they bind closely to atomic nuclei, which is useful for cold fusion. Muon
beams are produced in accelerators, where high-energy protons collide with a
target producing pions, which decay into muons 26 ns later:

π+ −→ µ+ + νµ.
Remarkably, the muons produced are fully spin polarized; this is because

the pion has no spin and the muon neutrino νµ has its spin antiparallel to its
momentum and so the muon also has its spin antiparallel to its momentum.

The muons are created with energy in the MeV range, but they are rapidly
thermalized on entering a solid specimen without loss of spin polarization. The
final resting place of the muon in the sample is an interstitial site far from the
track of radiation damage produced in the early stages of thermalization. After
a time t there is a probability proportional to 1 − e−t/τµ that the muon will
have decayed into a positron and two neutrinos:

µ+ −→ e+ + νe + ν̄µ.
The positron emerges in a direction related to the spin direction of the parent
muon. If a magnetic field is applied in the perpendicular direction, the muon
precesses around this field at its Larmor frequency of 135 MHz T−1 before
decaying to emit the positron.

There might only be a single muon in the sample at a given instant, but by
averaging over many events, curves showing the intensity oscillations of the
positron flux in fixed detectors can be recorded and the precession frequency of
the muon is determined. The muon precesses equally well around the internal
magnetic field present at its interstitial site and the main use of muon spin
rotation (µSR) in solids is to study these local fields, which are in the range
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10−4–1 T. The spin depolarization of the muon can be used to probe spin
dynamics both above and below the Curie temperature of a ferromagnet.
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EXERCISES

9.1 Sketch the EPR spectrum of an Fe3+ ion (S = 5
2 ) in a site with crystal field

parameter D = −0.05 K. Assume a microwave frequency of 9.0 GHz.
9.2 Why does the entire, instantaneous hyperfine field split the electronic energy levels

in an EPR experiment, while only its thermal average is effective for splitting the
nuclear energy levels in an NMR experiment?

9.3 Estimate the Walker breakdown field for a single-crystal film of Nd2Fe14B, which
has its c axis perpendicular to the plane of the film. Assume a damping factor
α = 0.1.

9.4 Sketch the Mössbauer spectrum for 155Gd at 4K. The hyperfine field is 35 T.
9.5 Discuss the possibility of measuring the gravitational acceleration of photons

using the Mössbauer effect.
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Why think? Why not try the experiment?
John Hunter 1728–1793

Central to most magnetic measurements is the generation and detection of mag-
netic fields. Atomic-scale magnetic structure is best probed by neutron diffraction,
while other atomic-scale element-specific information is provided by spectroscopic
methods. Domain-scale magnetization measurements are made by magneto-optic
methods or magnetic force microscopy, whereas macroscopic measurements of
magnetization are made in open or closed circuit by a variety of methods. Spin-wave
and other excitations are best explored by inelastic neutron scattering. Numerical
methods of investigation are of growing importance for understanding the static
and dynamic behaviour of real magnetic materials and magnetic systems.

Magnetism is an experimental science. Experiments serve to inspire and refine
physical theory, besides providing all the quantitative information on which the
applications depend. The traditional image of apparatus on a laboratory bench
does not tell the whole story; some magnetic measurements are now conducted
at national or multinational institutes built around large-scale facilities for gen-
erating high magnetic fields, neutron beams or intense streams of synchrotron
radiation. Computers have evolved in the opposite sense, from central facilities
to benchtop instruments for data acquisition, display and modelling. Numeri-
cal computations and simulations may be regarded as an experimental tool for
investigating a model reality, where complex magnetic behaviour at the atomic,
micromagnetic or system level can be investigated with the aid of a computer
workstation.

10.1 Materials growth

Materials are the foundation of experimental magnetism; practical applications
depend on the nature and form of the material, whether it is a few micrograms of
permalloy in a thin-film sensor or a ton of Nd2Fe14B in a large permanent magnet
for resonance imaging. Although naturally occuring magnetic materials are
always interesting, the great majority of specimens examined in the laboratory
are synthetic, and they are often products of a complex fabrication process. It
is appropriate to provide a brief account of how magnetic materials are made.
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10.1.1 Bulk material

Rather different approaches are taken for metallic and nonmetallic materials.
Metallic alloys and intermetallic compounds are usually melted first in an
arc furnace, where a DC argon arc is struck between a tungsten or graphite
electrode and the sample, which lies in a hollow in a water-cooled conducting
hearth, or in a radio-frequency induction furnace, where the sample is placed
in a few-turns, water-cooled coil and heated by the eddy currents producd
by some kilowatts of 150 kHz power. Subsequent heat treatments to produce
atomically ordered or phase-segregated microstructures are usually carried out
in a resistance furnace, where the temperature and atmosphere can be precisely
controlled. When single-crystal samples are required, they may be grown from
a seed crystallite in the melt, using the Bridgeman or Czochralzki methods.
Crystallization from the melt is a two-step process: initially one or more tiny
crystalline nuclei form as a result of a random fluctuation of the atomic positions
in the supercooled liquid, then the nuclei grow at a rate dependent on the degree
of undercooling and quickly consume the melt.

Te
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Bridgeman method: the
crucible is lowered slowly
through a thermal gradient
spanning the melting
point. A nucleus forms at
the cool pointed tip of the
crucible and grows to
consume the melt.

Seed

Liquid

Crystal

Melt

The Czochralski method: a
seed is dipped into a
slightly supercooled liquid,
and slowly rotated while it
is extracted to pull a crystal
from the melt.

Melt spinning: a metallic
glass is produced by
quenching the melt on a
rapidly rotating copper
wheel.

Amorphous metals demand a different approach. A multicomponent melt is
rapidly quenched on a spinning copper wheel, for example, which leaves little
time for the nuclei to grow. The surface velocity is of order 50 m s−1. Melt
spinning works well at a deep eutectic in the compositional phase diagram,
where the melt can be quenched almost instantaneously to a temperature below
the glass transition, which is the point where long-range diffusive motion of
the atoms is frozen out. An amorphous metal produced in this way is known as
a metallic glass. Mechanical alloying of constituent elements in a high-energy
ball mill is an alternative means of producing a highly disordered bulk metal.

Nonmetals, especially oxides, are freqently prepared by ceramic methods.
Mixtures of powders of appropriate precursors with the correct cation ratio,
for example Fe2O3 and CoO to make CoFe2O4, are repeatedly ground and
sintered to achieve dense, uniform material by solid-state diffusion. Precursors
like carbonates or acetates which have a low decomposition temperature can
be used to produce finely divided oxide as a first stage, or else solid solutions
can be formed directly as precipitates (gels) from ionic solution.

Ceramics are usually refractory, with high melting points. Crystals may be
grown from the melt in an image furnace where infrared radiation is focussed
onto a small section of a sintered polycrystalline rod by two parabolic mirrors
and the molten zone moves along the rod. Other crystal growth methods include
chemical vapour transport, and the flux method, where a mixture of oxides is
melted with a flux such as PbF2 which has no solid solubility in the required
crystal. On slow cooling, oxide crystals nucleate and grow throughout the melt.
They are extracted by dissolving the flux.

Single crystals are indispensable for complete characterization of the
anisotropic magnetic properties. Certain techniques like neutron diffrac-
tion or measurements of elastic constants require quite large crystals,
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Methods for preparing thin
films by a vapour or plasma
condensing on a substrate:
(a) thermal evaporation,
(b) e-beam evaporation,
(c) pulsed-laser deposition,
(d) sputtering.

(1 mm)3–(10 mm)3. Crystal growth is something of an art; its practitioners
are star supporting actors in the author lists of numerous publications.

10.1.2 Thin films

Magnetic thin films are commonly prepared by a physical vapour deposition
method, where the source of material is separated by a distance dss from the
substrate on which it is deposited, which is often heated in the range 400–
1000◦C to facilitate the growth process. The deposition chamber is evacuated
to a pressure P . At low pressure, the atomic species from the source arrive
at the substrate without collision, but at higher pressure they are thermalized
by collision with gas atoms in the chamber. The mean free path of the atomic
species in thermal equilibrium is determined by the pressure. The kinetic theory
of gases leads to a handy numerical relation λ � 6/P at room temperature,
where λ is the mean free path of the atom in millimetres, and P is the pressure
in pascals.1

Some preparation methods are summarized in Fig. 10.1. The simplest is
thermal evaporation from a source of molten metal in a resistively heated boat.
The method is restricted to materials with moderately low melting points to
avoid contamination by the boat, usually made of graphite, molybdenum or
tungsten. Electron-beam evaporation overcomes this problem by using a focussed
beam of energetic electrons, typically 10 kV, 10 mA, to melt a small pool in a
block of source material which is held in a water-cooled crucible. Contamination
is avoided because the molten pool is effectively contained in a solid crucible of
the same material. For alloys and multilayers, multiple sources with individual
power supplies are required. The source–substrate distance is usually at least
300 mm.

1 1 pascal (abbreviation Pa) is 1 N m−2. In vacuum systems, the unit mbar is often used (1 mbar =
100 Pa). An older unit based on the density of Hg is the torr (1 torr =136 Pa =1.36 m bar).
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Another way of producing a directed source of material is pulsed-laser depo-

sition (PLD – the first of many acronyms attached to thin-film production and
analysis methods). Here material is ablated from the target by nanosecond
pulses from an excimer or frequency-doubled Nd-YAG2 ultraviolet laser. A
typical energy density on the target is 1 J cm−2, and the repetition rate is
∼10 Hz. The rapid melting and associated shock wave creates a highly directed
plasma plume normal to the surface, and the substrate is positioned to collect the
ablated material. To ensure uniformity of the deposit, some rotation or rastering
of the beam over the target is required. The deposition is highly directional,
varying as cos11θ. PLD is a versatile research method, equally well suited to
prepare small thin-film samples of a range of different metals or insulators.
Deposition rates are of order 1 nm s−1. A drawback of PLD is the tendency
for micrometre-size droplets ejected from the target to litter the growing film.
These can be controlled by working at an energy density close to the ablation
threshold, by using fully dense targets and by setting the substrate parallel to
the plasma plume in an off-axis deposition geometry. A pulsed electron source
is an alternative to the pulsed laser.

High-quality epitaxial films need to be grown very slowly, monolayer by
monolayer. Deposition rates are less than 1 nm s−1. This demands ultrahigh
vacuum (UHV), in the range 10−7–10−9 Pa, to avoid contamination of the
growing film by residual gas in the chamber. The time taken for a monolayer to
accumulate can be estimated from the kinetic theory of gases. The density of
molecules is P/kBT , where P is their partial pressure. The root-mean-square
velocity is given by 〈v〉 = (3kBT /m)1/2, where m is mass of the molecule.
Those reaching the substrate of area A within a time δt are contained in a
volume 〈v〉Aδt. Of these, 1

6 are moving in the right direction, towards the
substrate, so the time taken for a monolayer of a species with lattice parameter
a to form is

δt = (12kBTm)1/2/Pa2. (10.1)

Oxygen, for example, has a � 0.2 nm, and the time taken to collect a monolayer
at 10−5 Pa is about a minute, hence the need for UHV to avoid any trace of
contamination.

The well-controlled growth of epitaxial films in UHV,P < 10−8 Pa, is known
as molecular-beam epitaxy (MBE). The pressure of the evaporating species is
10−6–10−4 Pa, so the mean free path of the atoms emitted from the evaporation
source, given by the (6/P ) relation, is much greater than the size of the chamber;
they travel without being scattered to the substrate where they are rapidly ther-
malized at the substrate temperature. High temperature promotes the mobility
of the adatoms on the surface and favours the layer-by-layer growth needed
for epitaxy (Franck–van der Merwe growth). At lower substrate temperatures,

2 YAG is yttrium aluminium garnet, the nonmagnetic analogue of YIG, yttrium iron garnet dis-
cussed in §11.6.6.
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system.

an island-like growth mode (Volmer–Weber growth) is commonly found. An
intermediate mode starts with a continuous monolayer, followed by island-like
growth (Stransky–Krastanov growth).

MBE is the method of choice for growing the highest-quality, defect-free
semiconductor or metal films. Thermal or electron-beam evaporation sources
may be used, or else special effusion cells which create a molecular beam by
breaking down gaseous precursors – trimethyl gallium and arsine are used for
GaAs, for example. MBE is a tool for depositing magnetic materials found
in research laboratories, rather than an industrial production method. A typi-
cal research system (see Fig. 10.2) is equipped to monitor the growth and to
analyse the films without removing them from the vacuum. Techniques include
reflection high-energy electron diffraction (RHEED) to monitor the growth
mode and lattice parameter of the growing film, low-energy electron diffraction
(LEED) to show the crystallographic structure of the growth planes and Auger
electron spectroscopy (AES) to provide chemical analysis of the top nanome-
tre or two of the film. Facilities for point-probe analysis by techniques such
as atomic-force microscopy (AFM) or scanning tunelling microscopy (STM)
and high-energy electron spectroscopy for chemical analysis (ESCA) may be
built into the vacuum chamber. Other forms of analysis such as transmission-
electron microscopy (TEM) for atomic imaging of cross sections, wide-angle
X-ray scattering (XRD) for precise structural information and transport or
magnetic measurements generally have to be conducted after the film has been
removed from the vacuum chamber. It is often protected by a thin capping
layer.

Cap

Film

Substrate/
Seed
layer

A magnetic thin film stack.

The most widely used method for making magnetic thin films is sputtering.
Unlike evaporation methods, sputtering involves nonthermal transport based
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on momentum transfer from energetic ions to remove material from the target.
The ions are usually Ar+.

The simplest technique is DC sputtering, where a metallic target is set at
a negative potential of a few hundred volts. Argon gas is introduced into the
chamber, and Ar+ ions are accelerated towards the target, creating more argon
ions on the way, by collision with neutral atoms. A plasma glow discharge is
formed. On hitting the target, the energetic argon knocks out ions and larger
fragments which are collected on the substrate. The pressure in the chamber is
adjusted so that the sputtered ions undergo a few collisions before they arrive
at the substrate. If they were unscattered, they would tend to resputter material
from the growing film, but if they arrive with too little energy they cannot move
across the surface and the film will be rough. Target–substrate distances are
∼100 mm and pressures for DC sputtering are 0.05–1 Pa.

In order to improve the efficiency of ionization, a magnetic field is often cre-
ated near the target surface by means of an arrangement of permanent magnets
known as a magnetron. Electrons follow helical trajectories in the field, thereby
increasing their probability of collision with the argon. Enhanced growth rates
of order 10 nm s−1 are thereby achieved. If the target is ferromagnetic it must
be thin enough to be easily saturated by the flux available from the magnetron,
so that a stray field will still be present near its surface. Reactive sputtering is
carried out by mixing a gas such as O2 or N2 with the Ar in order to produce thin
films of oxides or nitrides from metal targets. More control over the sputtering
process is achieved by ion-beam deposition, where an ionized argon beam is
generated separately, and focussed onto the target.

To make oxide or other insulating films directly, the method of radio-
frequency sputtering is employed. The power supplies commonly operate at
13.56 MHz. For part of the cycle, Ar ions bombard the target; for the rest of
the cycle, electrons neutralize the build-up of positive charge. Electrons also
ionize the argon to create the plasma. An argon pressure of 0.02 Pa is sufficient
to maintain a radio-frequency discharge.

Sputtering is a well-controlled method of thin-film growth. By fixing the
gas flow rate, power and substrate bias it is possible to reproduce the growth
conditions. The method is as well suited for industrial production as it is for
laboratory research. Large targets or planetary motion of the substrate are
required to achieve uniform deposits over wafers 150–300 mm in diameter.
A typical system for making metallic thin-film stacks has six different metal
targets, automatic wafer handling and the possibility of in-situ sputter cleaning
of the substrates (Fig. 10.3). If oxide layers are required, a separate chamber
designed for radio-frequency or reactive DC sputtering can be connected to the
metals chamber.

Of the chemical methods of producing magnetic thin films, electrodeposition

is widely used. It is discused in §15.2. Metallic films can be plated from aqueous
solutions of metal ions which are not too electronegative. Relatively thick films
of permalloy (Ni78Fe22) can be prepared for magnetic shields, but monolayers
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Figure 10.3

A six-target sputtering tool
with automatic wafer
loading.

can also be grown, or removed by reversing the voltage. A current density of
1 µA mm−2 deposits a monolayer in about 5 s; 1 mA mm−2 gives a deposition
rate of about 50 nm s−1.

Other chemical methods use vapours of organometallic precursors, which are
introduced into a chamber where they are decomposed thermally, or with ultra-
violet light. These methods are variants of chemical vapour deposition (CVD).

Once the magnetic thin films or thin-film stacks have been produced, they
normally have to be patterned into small device structures. Lithographic tech-
niques have been borrowed from the semiconductor industry. Optical lithogra-

phy, with ultraviolet light is good for producing structures larger than about
0.5 µm in the laboratory, although much smaller structures can be produced by
this method in industry. Electron-beam lithography, often in a scanning electron
microscope, is used to prepare submicrometre structures down to about 30 nm.
Both techniques involve transferring the pattern to a layer of polymer resist and
using ion-milling or lift-off in a solvent to produce the structure. It is important
to make uniform magnetic structures with smooth edges to ensure controllable
switching and avoid unwanted nucleation or pinning centres. When special one-
off structures are required, a focussed ion beam, usually of Ga+ ions, can be used
to mill structures down to about 10 nm in size. The centre of gravity of mag-
netic research is shifting from bulk materials to microscopic thin-film devices.
Methods of preparing them are becoming more widespread in universities and
research centres world-wide.

Nanoparticles are usually produced by wet chemical methods. Particle size
can be controlled from a few nanometres up to many micrometres, spanning
the superparamagnetic, single-domain and multidomain regions. Monodisperse
few-atom clusters are best created in UHV, with mass selection by a mass
spectrometer.
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Special processes have been optimized over the years to create specific
magnetic self-assembled nanostructures. Good examples are alnico magnets,
Sm2Co17 magnets and thin-film recording media.

10.2 Magnetic fields

10.2.1 Generation

All methods of generating static or low-frequency magnetic fields are based
on either electric currents or permanent magnets. Soft iron can be used to
concentrate or direct the flux. Some schemes for producing uniform magnetic
fields were introduced in Chapter 2. Here we discuss the practicalities. Mag-
netic fields used in measurements on ferromagnetic materials must overcome
the demagnetizing field and comfortably exceed the coercivity, which can be
1 MA m−1 or more in a rare-earth magnet. The field needed to magnetize a hard
material to saturation is typically three times the coercivity. Larger fields, of
order 10 MA m−1, may be required to study high-field magnetization processes
along the hard axes and to determine anisotropy constants from magnetization
curves.

6 MA m−1 superconducting
solenoid with
variable-temperature insert
in the bore for immersion
in a liquid helium bath.

The principle of generating magnetic fields from electric currents is the
Biot–Savart law (2.5), which gives the field due to a current element Idl. For a
single-turn coil of radius a carrying current I , the field on the axis at a distance
z from the centre is thereforeH = a2I/2(a2 + z2)3/2. When z � a, the coil is
equivalent to a dipole of moment m = πa2I . Integration gives the field on the
axis of short solenoid:

H = nI (cos θ1 − cos θ2)/2, (10.2)

where θ1 and θ2 are the angles subtended at each end and n is the number of
turns per unit length. For a long solenoid, θ1 = π, θ2 = −π, and we recover
(2.20) H = nI .

The units of H, A m−1, carry a sense of what is needed to generate the
field. The free-space flux density B0 corresponding to 1 MA m−1 is 106µ0 =
1.26 T. Air-cored resistive solenoids can produce continuous fields of up to
100 kA m−1 without cooling. Much larger fields are available from supercon-
ducting solenoids cooled with liquid helium or by a closed-cycle refrigerator.
The solenoids are wound with multifilamentary NbTi or Nb3Ge wire and the
maximum fields of 10–15 MA m−1 are limited by the critical current of the
type II superconductor. Higher continuous fields are available from Bitter mag-
nets made from perforated copper pancake segments which constitute a large
helical coil with n ≈ 103 m−1, cooled by a continuous flow of water at high
pressure. These magnets exist in only a few special institutes such as the
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high-magnet-field laboratories in Talahassee and Grenoble. Typically they dis-
sipate 15 MW to generate a field of 20 MA m−1 using a current of 20 kA.
Hybrid magnets composed of a Bitter coil inset in the bore of a large super-
conducting coil hold the record for continuous fields, which is 36 MA m−1

(45 T).
Copper 
 plate

Insulator

Cooling 
 water Current

A segment of the coil for a
water-cooled Bitter
magnet.

An electromagnet with
tapered pole pieces
capable of generating
1.8 MA m−1.

Still higher fields can be achieved provided their duration is limited to a
fraction of a second. The coil is then energized by discharging a multimegajoule
capacitor bank. The chief limitation is the yield strength of the wire under the
pressure of the confined magnetic field. Reusable coils can generate fields of
up to 70 MAm−1 lasting for tens or hundreds of milliseconds, but to achieve
fields in excess of 100 MA m−1 it is necessary to sacrifice a coil with every
shot, which lasts a matter of microseconds. The highest fields, of order 1 GA
m−1, are generated by momentary flux compression with high explosives. They
are not much use for physical measurements!

Another approach to creating ultrashort-pulse fields is to use a bunch of
high-energy electrons from a particle accelerator.

High-frequency magnetic fields are associated with electromagnetic radia-
tion, as we have seen in Chapter 9. The root-mean-square H -field in ambient
daylight is only 10 A m−1, but intense, ultrashort laser pulses can deliver fields
as high as 1 MA m−1.

Returning to the laboratory or industrial scale, pulsed fields of 3–5 MA m−1

lasting tens of milliseconds are able to magnetize rare-earth permanent mag-
nets. Short pulse magnets are also useful for determining anisotropy fields
by the singular-point method where an anomaly in the time derivative of the
magnetization marks the anisotropy field. But the workhorse for most magne-
tization measurements remains the venerable electromagnet. Flux generated by
large water-cooled coils is confined by a yoke of soft iron and concentrated in
an airgap using tapered iron or cobalt–iron pole pieces. The technology reached
its apogee in 1928 with a 120 ton electromagnet at Bellevue, near Paris, which
produced fields in excess of 4 MA m−1.

Competition for the electromagnet comes from compact permanent-magnet
flux sources, Fig. 13.14, which achieve comparable field levels without any
need for a power supply or cooling water. It is relevant to remark that the
magnetization of Nd2Fe14B, for example, is 1.3 MA m−1, which is the value
of the equivalent surface current. Permanent magnets are always the better
solution in small spaces.

A summary of the different magnetic flux sources is provided in Table 10.1,
together with the airgap flux densityB0 =µ0H in teslas. Two reasons for quoting
fields from now on in teslas rather than MA m−1 are firstly that magnetic circuits
are conveniently discussed in terms of flux which is conserved, and secondly
that the field H is always multiplied by µ0 when it interacts with matter.

Costs are of order e25k for an electromagnet or permanent magnet flux
source, e50k for a superconducting solenoid, e200k for a pulsed-field instal-
lation and >e1M for a Bitter magnet with a 15 MW power supply.
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Table 10.1. Production of high magnetic fields

Method Duration Maximum field (T)

Air-core solenoid Steady 0.2
Permanent magnet Steady 0.1–2
Electromagnet Steady 0.5–2.5
Superconducting solenoid Steady 2–23
Bitter magnet Steady 15–35
Hybrid magnet Steady 40–45
Discharge coil 100 ms 25–80
Discharge coil 10 µs 50–100
Expendible coil 1 µs >100
Implosive flux compression < 1 µs 1000
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Some methods of
measuring magnetic fields:
(a) search coil, (b) rotating
coil fluxmeter, (c) Hall
probe and
(d) nuclear magnetic
resonance probe.

10.2.2 Measurement

Next we must consider how magnetic field is measured. Field-measuring
instruments are known as ‘gaussmeters’ (104 gauss =1 tesla). The magnitude
and direction of a uniform, steady field can be determined absolutely using
a search coil or a rotating-coil fluxmeter (Fig. 10.4). The principle is that a
transient or alternating emf E is induced according to Faraday’s law, which
follows from (2.48)

E = −Nd�/dt, (10.3)

where N is the number of turns on the coil of area A. The flux density in
air B0 = �/A is deduced by integrating the emf, B0 = (1/NA)

∫
Edt as the

search coil is removed from the uniform field to a region where the field is zero.
When measuring a pulsed field, there is no need to move the coil. Likewise,
a coil rotating about an axis perpendicular to B0 generates an alternating emf
E =−NAωB0sinωt. These measurements are absolute, but inconvenient.
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In practice, a Hall effect or magnetoresistance sensor is generally used to
measure magnetic field. The active area of the semiconducting Hall probe is
of order 1 mm2, and it generates a voltage VH = B0I/ncet, where I is the
sensing current, t is the thickness of the semiconductor and nc is the carrier
density. The probe needs to be calibrated, and possibly corrected for temperature
fluctuations, but the Hall voltage is linear in magnetic field. Accuracy is about
1%. Magnetoresistance sensors, discussed in §14.3, can be based, for example,
on spin valves with crossed anisotropy. Like fluxgate sensors, which depend on
the asymmetric saturation of soft magnetic wires or thin-films elements (§12.4),
they are good for fields below 100 A m−1 but they have the advantage of a high
bandwidth.

Much greater accuracy and precision is possible by measuring the NMR
frequency of rubidium vapour, for example, which is ν =13.93 MHz T−1 for
the 77Rb nucleus, or even water, where the resonance frequency is 42.58 MHz
T−1 for the 1H nucleus, better known as the proton.

10.2.3 Magnetic shielding

Shielding is necessary to create a magnetic-field-free environment for sensitive
instruments such as high-resolution electron microscopes. It is also needed for
measurements of very weak magnetic fields, such as those emanating from
the brain. Two strategies to eliminate static and low-frequency fields are pas-

sive shielding and active shielding. Passive shielding involves surrounding the
shielded volume by one or more boxes of high permeability material such as
permalloy, which diverts the flux (12.2). Superconducting shields, which allow
no change of flux in the enclosed volume, may be used for small spaces. Active
shielding uses a sensor to detect one component of the field, which is then com-
pensated by a current flowing in a pair of Helmholtz coils. Three orthogonal
pairs can cancel the magnetic field vector completely.

At high frequency (≥ 100 kHz) a simpler approach is to surround the shielded
volume by a continuous wire mesh known as a Faraday cage. Induced currents
in the conducting circuits tend to cancel the changes to which they are due.

10.3 Atomic-scale magnetism

10.3.1 Diffraction

The scaffold for magnetism in solids is the atomic-scale structure of the crystal.
The electronic structure of the atoms, together with the crystalline (or amor-
phous) structure of the solid determine the atomic moments, the exchange and
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Figure 10.5

Scattering of a beam of
radiation from a crystal:
(a) elastic scattering in the
Bragg geometry where
K ′ − K = κ = ghkl ;
(b) inelastic scattering in
the vicinity of a Bragg
peak, where κ = ghkl + q.

dipolar interactions and the crystal fields, which are the ingredients of collective
magnetic order (6.14).

The intrinsic magnetic properties are probed by diffraction and spectroscopy,
which are respectively the elastic and inelastic scattering by the solid of a beam
of particles or electromagnetic radiation. If the wavevector and energy of the
incident and scattered beams are (K , h�) and (K ′, h�′), complete information
about the solid is contained in the differential scattering cross section:

σ diff = d2σ (κωT )

dκdω
, (10.4)

where σ is the total scattering cross section and κ = K ′ − K , ω = �′ −�
(Fig. 10.5). Commonly used particle beams are neutrons and electrons. Polar-
ization is another relevant variable, especially with electromagnetic radiation,
such as X-rays. Sometimes it is possible to detect the wavevector q and energy
�ωq for the excited species directly by measuring the ejected electron, in pho-
toelectron spectroscopy for example. The spins of the incident and scattered
or excited particles can be analysed. Different methods probe different aspects
of the generalized susceptibility. Together, they provide a rich description of
the crystal and magnetic structure, the electronic structure and the distribution
of spin and orbital moments, as well as the excitation spectra from which, for
example, elastic constants, interatomic exchange and crystal field parameters
can be determined.

Diffraction methods are used to study both crystal structures and magnetic
structures of solids. A beam of radiation is needed whose wavelength is com-
parable to the interatomic spacing (≈ 0.2 nm). The radiation is scattered by
the atomic electrons or nuclei, and in the case of neutrons, by the magnetic
moments of the electrons. Interference of the scattered waves gives rise to a
number of diffracted beams in precisely defined directions relative to the crys-
tal axes. The directions of these Bragg reflections are determined by the lattice
parameters, according to Bragg’s famous law

2dhkl sin θ = n�, (10.5)

where dhkl is the spacing of a set of reflecting planes whose Miller indices
are (h, k, l). Both incident and diffracted beams make an angle θ with the hkl
planes. The scattering is elastic so that |K | = |K ′| and the scattering vector
κ is perpendicular to the reflecting planes. The wavelength of the radiation �
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Sources of X-rays: (a) a
sealed X-ray tube, (b) a
synchrotron source. The
intensity from the
synchrotron is more than
four orders of magnitude
greater than the peak
intensity from the X-ray
tube.

is 2π/K and the integer n is known as the order of the reflection. The Bragg
condition is equivalent to the requirement that the scattering vector κ be a
reciprocal lattice vector ghkl , where |ghkl | =2π/dhkl .

Powder diffraction
pattern of bcc αFe

h k l d(pm) I /Imax

1 1 0 202.7 100
2 0 0 143.3 20
2 1 1 117.0 30
2 2 0 101.3 10
3 1 0 90.6 12
2 2 2 82.8 6

Powder diffraction
pattern of fcc γ Ni

h k l d(pm) I /Imax

1 1 1 203.4 100
2 0 0 176.2 42
2 2 0 124.6 21
3 1 1 106.2 20
2 2 2 101.7 7
4 0 0 88.1 4
3 3 1 80.8 14
4 2 0 78.8 15

Intensities of the Bragg reflections depend on the strength of the atomic scat-
tering and the arrangement of atoms within the unit cell. They are proportional
to the square of the complex structure factor:

Fhkl =
∑
i

fie
iκ·ri =

∑
i

fie
[−2π i(hxi+kyi+lzi )] (10.6)

where the sum is over the i atoms at positions r i = xia + yib + zic in the
unit cell. fi is the atomic scattering factor, which has dimensions of length and
generally depends on κ or θ.

X-ray diffraction (XRD) is the standard method of crystal structure analysis.
The energy ε = �� = hc/� of electromagnetic radiation associated with a
wavelength of 200 pm is 6.20 keV, which is close to the K absorption edge
for Cr. The K edge corresponds to the energy needed to ionize an atom by
creating a 1s hole, the L edges correspond to 2s or 2p holes etc. In a laboratory
X-ray set, a target of a suitable metal in a vacuum tube is bombarded with
energetic electrons. Characteristic X-ray radiation is emitted as electrons from
outer shells de-excite to fill holes created in the inner shells (Fig. 10.6(a)).
The flux from a sealed tube is typically 1016 photons s−1. The K edge for the
commonly used copper target, for example, is at 8.98 keV, and monochromatic
Kα radiation with ε =8.04 keV and � =154.2 pm is produced when holes in
the 1s shell are filled by 2p electrons. Kβ radiation is produced when the 1s
holes are filled by 3p electrons.

X-rays are scattered by the charge of the atomic electrons, and the appro-
priate atomic scattering function in (10.6) is proportional to the Fourier
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X-ray powder diffraction
patterns from: (a) a SmCo5

powder and (b) a sintered
SmCo5 magnet with c || κ .

transform of the atomic charge distribution ρ(r); f (κ) =
re
∫
ρ(r)exp(−iκ · r)d3r = ZrefX(κ). Here Z is the atomic number,

fX(0) = 1, and re is the scattering length of an electron, known as the classical
electron radius, µ0e

2/4πme. Its value is 2.818 fm.

Powder diffraction
pattern of hcp εCo

h k l d(pm) I /Imax

1 0 0 217.0 27
0 0 2 203.5 28
1 0 1 191.5 100
1 0 2 148.4 11
1 1 0 125.3 10
1 0 3 115.0 10
2 0 0 108.5 1
1 1 2 106.7 9
2 0 1 104.8 6
0 0 4 101.7 1
2 0 2 95.8 1
1 0 4 92.1 1
2 0 3 84.7 3
2 1 0 82.0 1
2 1 1 80.4 5

Samples for investigation by X-ray or neutron diffraction are often in
powder form. Randomly oriented crystalline powder scatters an incident
monochromatic beam in a series of cones centred on the incident beam
axis; each cone corresponds to a Bragg reflection from a set of randomly
oriented crystallites. A point detector or linear multidetector is then used to
measure the diffracted intensity as a function of 2θ in the scattering plane. A
typical diffraction pattern for SmCo5 powder is shown in Fig. 10.7(a). Particle
alignment restricts the diffracted beams to certain directions in the cones. For
example, if the c axis is well aligned parallel to κ as in the sintered SmCo5

magnet of Fig 10.7(b), then the Bragg reflections from the {001} family of
planes dominate the powder pattern.

Far more intense fluxes of X-ray and UV radiation are available at syn-
chrotron sources, where a beam of electrons or positrons is accelerated to a
velocity close to that of light, and then constrained by a magnetic field B � 1 T
to travel around a storage ring which may be tens or hundreds of metres in diam-
eter. The electron energy is typically 5 GeV, or γmec2 with γ ≈ 104. As they
race around their track, the electrons emit a narrow beam of white radiation of
width 1/γ radians which is linearly polarized (> 90%) in the plane of the orbit.
The cutoff wavelength is 4πr/3γ 3 =0.00714/Bγ 2me, where r is the radius of
the electron orbit. Elliptically polarized radiation can be obtained by placing a
slit to collect radiation emitted just above or just below the plane of their orbit.
Otherwise, circularly polarized radiation may be obtained by means of a wig-
gler or undulator insertion device of the type described in §13.3.2. The energy
of the X-rays is selected using X-ray mirrors and single-crystal monochro-
mators. The huge photon fluxes, ≈1017 photons s−1 in a tightly collimated
beam, with a 0.1% energy bandwidth and high degree of polarization, make
synchrotron radiation very suitable for both absorption and photoelectron spec-
troscopy over an extremely wide range of wavelength, from far infra-red to hard
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Table 10.2. Some nuclear (b) and magnetic (p) neutron scattering
lengths in fm (10−15 m) and absorption cross sections (σ a) in barns

(10−28 m2). The rare earth magnetic scattering lengths are for 3+ cations.
Ti–Fe are for spin-only 3+ ions and Co–Cu are for spin-only 2+ ions.

b p(0) σ a b p(0) σ a b σ a

Ti −3.4 2.7 6.1 Y 7.8 1.3 B 5.3 767
V −0.4 5.4 5.1 Pr 4.6 8.6 11.5 C 6.6 0.004
Cr 3.6 8.1 3.1 Nd 7.2 8.8 51.2 N 9.3 1.9
Mn −3.7 10.8 13.3 Sm 0.0 1.9 5670 O 5.8 0.0002
Fe 9.5 13.5 2.6 Gd 9.5 18.9 29400 Al 3.4 0.2
Co 2.5 8.1 37.2 Tb 7.4 24.3 23 Si 4.1 0.2
Ni 10.3 5.4 4.5 Dy 16.9 27.0 940 Sr 7.0 1.3
Cu 7.7 2.7 3.8 Ho 8.0 27.0 65 Ba 5.1 1.2

X-rays. Chemical and orbital selectivity is achieved by tuning the radiation to
the appropriate atomic absorption edge.

Magnetic scattering of X-rays is typically smaller than charge scattering
by a factor of 106, making it impracticable to observe magnetic structures
using sealed X-ray tubes. However, in the vicinity of an absorption edge the
magnetic effect may amount to 1% of the charge scattering, which allows
tunable synchrotron sources to be used for magnetic structure determination.
Magnetic X-ray diffraction is most appropriate for rare-earths like Sm and Gd
where neutron diffraction is hampered by their enormous neutron capture cross
sections (Table 10.2), or for micrometre-size single crystals.

Neutron diffraction is the standard method for magnetic structure analysis.
Beams of neutrons are produced in specially optimized nuclear reactors or
in spallation sources where pulses of GeV protons from a linear accelerator
produce bursts of neutrons as they impinge on a heavy-metal target. There
are only a handful of these wonderful facilities in the world but they have
contributed enormously to the knowledge of magnetism.

The neutron is an uncharged particle with spin, which carries a magnetic
moment of −1.91 µN . The neutron energy for a de Broglie wavelength � of
0.20 nm is h2/2mn�2 = 0.0204 eV, which is comparable to kBT at ambient
temperature. The neutrons from a reactor are thermalized in a moderator and a
narrow slice is selected from the Maxwellian energy distribution by Bragg
reflection from a single-crystal monochromator. Typical reactor fluxes are
1019 m−2 s−1, which have to be collimated and are then reduced by 2–3 orders
of magnitude by the monochromator. Monochromatic neutron beams from a
high-flux reactor are roughly 1000 times less intense than monochromatic X-ray
beams from a laboratory X-ray generator.

This, and the relatively weak scattering of neutrons in solids mean that large
samples, of order 1 cm3, are needed for neutron diffraction.

The scattering of thermal neutrons by an atomic nucleus is isotropic because
nuclear interactions are very short-range; for an incident neutron plane wave
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eiK ·x , the scattered spherical waveletψ is −(b/r)eiK ′·r, where b is the scattering

length of the nucleus. In fact b is different for every isotope, so the values quoted
for an element in Table 10.2 are isotopic averages. The scattering cross section,
σ s , is 4πb2. Unlike X-ray scattering, where the scattering length increases with
Z, the number of atomic electrons, b, varies erratically across the periodic table
and can even change sign, which makes it possible often to distinguish elements
which are close in atomic number.

e
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The magnetic interaction
vector µ = em − κ

(κ · em )/κ2.
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i

Comparison of the
normalized nuclear (b) and
magnetic (p) scattering
factors for neutrons and
the atomic scattering factor
for X-rays ( fi ).

The neutron is also scattered by the unpaired spin density of the atomic
electrons. A magnetic scattering length p is defined as (1.91re)SfS for a spin-
only moment. The quantity in brackets is 5.38 fm. When both spin and orbital
moments are present, p = (1.91re)(SfS + 1

2LfL), where fS, fL are given by
{J (J + 1) ± [S(S + 1) − L(L+ 1)]}/[2(J + 1)]. The form factors fS and fL
are normalized to unity at θ =0. A magnetic interaction vector µ is defined as
em − κ(κ · em)/κ2, where em is a unit vector in the direction of the magnetic
moment. For unpolarized neutrons, the intensities of the magnetic and nuclear
scattering add, so

|Fhkl |2 =
∣∣∣∑
i

bie
(−iκ·r i )

∣∣∣2 +
∣∣∣∑
i

piµie
(−iκ·r i )

∣∣∣2, (10.7)

whereas if the neutron beam is polarized with magnetic moment in a direction

, the intensity is

|Fhkl|2 =
∣∣∣∑
i

{bi + (
 · µi)pi}e(−iκ · r i )
∣∣∣2. (10.8)

Since magnetic scattering depends on the orientation of the moments relative to
the scattering vector, the complete magnetic structure (magnitudes and direc-
tions of the moments in a unit cell) can in principle be determined from the
positions and intensities of the magnetic Bragg reflections. Note that there is
no magnetic intensity when em || κ .

A typical neutron powder diffraction pattern is shown in Fig. 10.8, together
with the least-squares fit, the Rietveld profile based on the unit cell parameters.
With large unit cells containing N atoms there can be as many as 6(N + 1)
structural and magnetic parameters to refine. Powder data may be inadequate
for structures more complex than that of Nd2Fe14B, for example, because of
the limited number of Bragg reflections, and one then has to resort to single
crystals and polarized neutrons.

10.3.2 Spectroscopy

Many spectroscopic techniques are available to probe the energy levels and
excitations of magnetic solids. Inelastic neutron scattering, where the energy
and K-vector of an inelastically scattered beam are analysed in a triple-axis
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Figure 10.8

Neutron powder diffraction
pattern of CrO2. Magnetic
reflections are shaded.
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A triple-axis neutron
spectrometer. The angles
θ M , θ s and θ A refer to the
orientations of the
monochromator, the source
and the analyser,
respectively.

spectrometer (Fig. 10.9), is the most general method because the changes both in
energy and momentum of the neutron due to thermal excitations are appreciable.
The spin-wave dispersion relations ω(q) are measured in this way by scanning
the instrument near a Bragg peak to collect neutrons at constant energy or
constant momentum transfer. The exchange parameters Jij in the Heisenberg
Hamiltonian for different pairs of interacting neighbours are deduced by fitting
these dispersion curves. Dispersionless excitations such as the crystal field
excitations of the rare-earth atoms can also be investigated by inelastic neutron
scattering. This is useful for metals, where optical absorption spectroscopy may
be impracticable.

Another useful technique for probing the excitations in magnetic solids is
Brillouin light scattering. An optical photon, which has a wavevector K ≈ 0
(the wavelength of light is very much greater than the lattice spacing) may
excite or absorb a magnon or phonon near the centre of the Brillouin zone, in
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an ineleastic process. The range of possible K-vectors accessible by inelastic
light scattering is extended in two-magnon processes, where a pair of magnons
with wavevectors ±K are excited. The method is good for measuring spin-wave
gaps, and dispersion relations near the origin, K = 0.

K, Ω K, Ω

i        f i        f

e

Absorption and
photoemission processes
for a single photon.

X-ray absorption spectroscopy is a powerful tool for investigating the mag-
netic and structural properties of magnetic materials. With the construction of
purpose-built electron storage rings, monochromatic X-rays with a wide range
of energies have become readily available. The techniques are element- and
orbital-specific as the incident photon beam can be tuned to a desired absorp-
tion edge, and the core levels of different elements do not usually overlap. In
a generic experiment the sample is irradiated with monochromatic X-rays and
the transmitted beam, the ejected photoelectrons or the photons generated by
the interaction between the X-rays and matter are analysed. When the photo-
electrons arise from core levels, the process is the inverse of X-ray generation.
Photoemission is a surface-sensitive technique because the electrons can only
emerge unscathed from a surface layer ≈ 1 nm thick. Depending on the absorp-
tion edge studied and the detection scheme chosen, X-ray spectroscopy can
provide information on quantities such as local structure, magnetic properties
and the shape of the valence and conduction bands.

Two common techniques belonging to the X-ray absorption family of particu-
lar interest when working with magnetic materials are extended X-ray absorption

fine structure (EXAFS) and X-ray magnetic circular dichroism (XMCD). EXAFS
is a type of diffraction pattern produced by the interference of the outgoing and
backscattered electron waves. It gives information on the local environment
surrounding the absorbing atom, including nearest-neighbour positions and
distances as well as coordination number. EXAFS spectra are usually recorded
at the K-edge of the absorbing element. When compared to laboratory X-ray
diffraction, a notable feature of EXAFS is that there is no need for the sample
to display long-range crystalline order.

XMCD refers to the difference in the absorptive part of the refractive index
of a solid for left- and right-circularly polarized light passing through a sample
magnetized parallel to K . Thanks to spin-orbit coupling, the incident pho-
tons transfer their angular momentum to both the orbital and spin momentum
of the photoelectron as it is transferred to an unoccupied state just above
the Fermi level. Of particular interest in magnetism are 2p (L2,3-edges) and
3d (M4,5-edges). Core level spectroscopies probe unoccupied states in the
3d- and 4f -orbitals. The advantage of these methods is that, with the use
of the magneto-optical sum rules, it is one of the few ways to independently
determine the spin and orbital moment of the unpaired electrons in an atom.
For example, in BaFe12O19 it is possible not only to measure the average
moments on iron, but also to detect any moment on barium or oxygen. It is
also to some extent possible to distinguish between the different iron sites
due to their different symmetries. The XMCD spectrum of iron is shown in
Fig. 10.10.
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The absorption of left- or
right-circularly polarized
radiation in the vicinity of
the L -absorption edge of
iron. The difference is the
XMCD signal, from which
the spin and orbital
moments can be delivered.
The black line is µ+ and the
grey line is µ−.
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High flux neutron reactor
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Figure 10.11

An aerial view of Grenoble,
which includes the three
principal large-scale
facilities for magnetic
research.

New methods of X-ray spectroscopy exploit the ability to analyse the polar-
ization of the transmitted or generated photons or the spin of the ejected pho-
toelectrons. Angular-resolved ultraviolet photoemission can be used to image
a map of the spin-polarized density of states in the Brillouin zone. X-ray spec-
troscopy is best conducted at a synchrotron source. Large-scale facilities play
an important role in magnetism research. A unique cluster of them is found in
Genoble, Fig.10.11.

Hyperfine interactions The atomic nucleus is a point probe of magnetic and
electric fields at the very heart of the atom. Atoms in different crystallographic
sites may be distinguished by their hyperfine interactions. The degeneracy of
the (2I + 1) levels with MI = I, I − 1, . . . ,−I , associated with the nuclear
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Table 10.3. Relative intensities of Mössbauer absorption lines for 57Fe.
Here θ is the angle between K γ and Bhf

Lines Relative intensity Powder average Bhf ||Kγ Bhf⊥ Kγ
1,6 (±3/2 −→ ±1/2) 3(1 + cos2θ ) 3 3 3
2,5 (±1/2 −→ ±1/2) 2 sin2θ 2 0 4
3,4 (±1/2 −→ ±1/2) 1 + cos2θ 1 1 1

spin Ih is raised with Zeeman splitting in the hyperfine field Bhf . The electric
field gradient raises the degeneracy of levels with different values ofM2

I . These
hyperfine interactions were discussed in Chapter 9.

The principal spectroscopic techniques for measuring hyperfine interactions
are NMR and Mössbauer spectroscopy. Heat capacity below 1 K is also influ-
enced by hyperfine splitting.

Data on isotopes suitable for NMR and Mössbauer spectrosocpy were col-
lated in Tables 9.3 and 9.5. NMR involves resonant absorption of radio-
frequency radiation by the nucleus in its ground state. Mössbauer spectroscopy
involves a γ -ray transition from a nuclear excited state to the ground state,
where the excited state is populated by a radioactive precursor. The best-known
example, 57Fe, was featured in Fig. 9.15. The source is 57Co, which has a
convenient half-life τ 1

2
of 270 days, and the energy εγ of the transition from

the excited state to the ground state, 14.4 keV, is low enough to ensure a large
recoilless fraction (9.48). Mössbauer spectra are usually recorded by modu-
lating the energy of a single-line gamma source by moving it relative to the
absorber, which is the sample of interest. The Doppler shift of the energy of
the emitted line is  ε = εγ v/c.

Only  MI = 0,±1 transitions are allowed by the selection rule for dipole
radiation, and the relative intensities depend on Clebsch–Gordan coefficients
determined by the angle between K γ and the nuclear quantization axis. In the
case of 57Fe, there are six allowed transitions between Zeeman-split nuclear
levels (Fig. 9.15) and the  MI = 0 transitions are lines 2 and 5. The relative
intensities are listed in Table 10.3. For example, when K γ ||Bhf the intensity
of lines 2 and 5 is zero. Mössbauer spectroscopy is therefore quite useful
for determining the magnetization direction in single-crystals or magnetically
textured samples of iron compounds. Different crystallographic sites may be
distinguished by their hyperfine spectra. The example of BaFe12O19 is shown
in Fig. 10.12.

A variant, useful for thin films, is conversion electron Mössbauer spec-
troscopy. Nuclei in thin films which absorb the γ -ray may subsequently de-
excite by re-emitting the 14.4 kV γ -ray or else an electron produced by a
nuclear internal conversion process and an X-ray. The conversion electrons
have an average escape depth of about 50 nm. Depth selection is possible with
energy analysis.
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Figure 10.12

Mössbauer spectrum of
BaFe12O19. Each site gives
rise to a six-line hyperfine
pattern. An applied
magnetic field allows the
ferrimagnetic sublattices to
be resolved. (J. M. D. Coey
et al., Rev. Sci. Instrum. 43,
54 (1972).)

10.3.3 Electronic structure

The electron dispersion relations ε(k) of spin-polarized electrons are a complete
description of the electronic structure of a solid. Photoemission spectroscopy
gives partial information about the dispersion relations and the density of states
D(ε). The degree of spin polarization of electrons near the Fermi level may
be inferred from spin-polarized photoemission, or from tunnelling or point
contact experiments involving a ferromagnet and a superconductor, discussed
in Chapter 8. The results are surprising insofar as electrons from iron, cobalt
and nickel all exhibit a positive spin polarization of about 40%, whereas the
measured value for the half-metallic ferromagnet CrO2 is >95%. The strong
ferromagnets Co and Ni might be expected to show a negative polarization on
account of the 3d ↓ band at εF . Electrons emitted from the 3d metals may have
predominant 4s character.

However, the main technique for exploring the electronic structure of fer-
romagnets is computational. Electronic structure calculations were discussed
in §5.3.7 and some further examples are shown in Fig. 10.13. The local spin
density approximation (LSDA) has proved to be rather reliable for calculating
the zero-temperature spin-polarized density of states for 3d metals and 4f –3d
intermetallic compounds. By introducing spin-orbit coupling it is possible to
take into account the orbital moments and estimate the 3d band anisotropy,
although the anisotropic energy is only 10−6 of the band energy. The LSDA
method can also be used to calculate hyperfine interactions and 4f crystal-field
coefficients. Moments of different atoms in the structure are determined from
the local densities of states.

10.4 Domain-scale measurements

Techniques for visualizing domains and domain walls depend on sensing the
stray field H outside the magnetic material, or the magnetization M or flux
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Figure 10.13

Examples of electronic
structure calculations: (a) a
half-metal CrO2, (b) a
ferromagnetic intermetallic
compound SmCo5; the
solid lines are the 3d spin
density averaged over the
two Co sites and the
dashed line is the 5d spin
density of Sm – and (c) a
dilute alloy PdCo; pure Pd
is not magnetic, but doping
with 1.5% Co introduces a
giant moment of 18 µB per
cobalt atom. (Data courtesy
of Stefano Sanvito.)

density B within it. The specimen usually has to be prepared as a polished sur-
face, foil or thin film, which begs the question whether the domains observed
at the surface are actually representative of the bulk. Bulk domains can be
sensed using special methods such as neutron tomography or small-angle neu-
tron scattering. Nevertheless much useful information regarding the micro-
magnetic exchange and anisotropy parameters A and K1 can be obtained from
domain studies, and insight into coercivity mechanisms and magnetization
reversal is achieved by simultaneous observation of the domain structure and
microstructure. For thin films with in-plane magnetization, there is little dis-
tinction between surface and bulk. The domain structure is the one observed
on the surface.

10.4.1 Stray-field methods

The first method for visualizing domains was developed in the 1930s by Francis
Bitter. A magnetic colloid, normally a drop of oil- or water-based ferrofluid
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Figure 10.14

Stray-field methods of
domain observation:
(a) Bitter method, (b) MFM
and (c) SEM with type 1
contrast.

is spread over the polished surface of a specimen, and the tiny ferromagnetic
particles are drawn to the regions of maximum field gradient, thereby decorating
the domain walls (Fig. 10.14).

The modern method of measuring stray fields is a scanning probe technique
based in the same principle – magnetic force microscopy (MFM). A single
ferromagnetic particle is mounted on a tiny silicon cantilever, or the tip of
the cantilever is coated with a ferromagnetic film and it is rastered across the
surface of the sample. The force derivative registered by the deflection of the
cantilever or the change of its mechanical resonance frequency gives an image
of the stray field gradient at the surface. The resolution achievable with MFM is
about 20 nm. A problem arises when imaging soft magnetic materials, because
the stray field produced by the tip may perturb the domain structure of the
sample.

Reading magnetically recorded information from discs or tapes likewise
depends on sensing the stray field distribution of the domain pattern imposed
on the magnetic medium, using an inductive or magnetoresistive pick-up head.
Magnetic recording is discussed in Chapter 14.

Scanning electron microscopy (SEM) is a workhorse of materials science. It
involves rastering a sample surface with a finely focussed electron beam and
detecting the secondary electrons emitted from the surface. SEM is used to
image both microstructure and topology, and can provide chemical analysis on
a local scale because the energies of the secondary electrons and especially
those of the accompanying X-rays are characteristic of the chemical elements
present. Sensitivity is good for elements with 3s and deeper electronic shells
(Na and beyond). Lower-energy X-rays from light elements can be observed
with a special windowless detector. SEM can be adapted to provide magnetic
contrast by detecting the deflection of the secondary electrons in the stray
field produced near the surface of a multidomain sample. Alternatively, the
spin polarization of the secondary electrons can be monitored as the electron
beam is rastered across the surface, a technique known as scanning electron
microscopy with polarization analysis (SEMPA).
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Figure 10.15

Faraday effect spectrum for
BaFe12O19 at 20 K. The
inset shows a hysteresis
loop for the film obtained
with light of wavelength
633 nm (1.86 eV).

10.4.2 Magneto-optic and electron-optic methods

The principle of the second group of domain imaging techniques is that a
beam of radiation passing through a solid is influenced in some way by the
ferromagnetic order of the solid. In the case of electromagnetic radiation,
the magneto-optic effects depend on spin-orbit coupling, which scales with
the magnetization M(r). A steady magnetic field has no influence on electro-
magnetic waves in free space, but light in a medium does interact with the
magnetization of electrons in matter via the spin-orbit interaction. The effects
are weak, but tend to be more pronounced in heavy atoms (see Table 3.4). In
general, the magneto-optic effects are derived from the complex dielectric tensor

εij (5.86), defined by the relation Di = εijEj . If an electron beam is used in
transmission electron microscopy (TEM) the interaction depends on the Lorentz
force and the relevant quantity is the flux density in the material B(r).

Magneto-optic effects, which were discussed in §5.6.5, may be observed in
transmission or reflection. When plane-polarized light passes through a trans-
parent ferromagnetic medium with its wavevector K parallel to the direction
of magnetization, the plane of polarization is observed to rotate by an amount
proportional to the path length in the magnetic medium. This is the Faraday

effect, and its discovery was the first hint of a link between light and mag-
netism. Faraday rotation is useful for determining the spin polarization of the
conduction electrons in semiconductors and for observing domains in trans-
parent ferrimagnets. The Faraday spectrum for a film of BaFe12O19 is shown in
Fig. 10.15. The effect is greatest in the vicinity of transitions involving the Fe3+

magnetic ions, and it is enhanced near the absorption edge. Typical values of
the Verdet constant V = kV µ0Ms are 105 radians m−1. A useful figure of merit
is the product Vla , where la is the absorption length, the thickness of material
which will reduce the intensity of a transmitted beam by a factor e.

The Kerr effect can be used similarly to examine domains at the surface of
polished ferromagnetic metals. The polar Kerr effect is the analogue of the
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Figure 10.16

Image of the polished
surface of a Nd–Fe–B
sintered magnet in the Kerr
microscope. The magnet is
in the virgin state, and the
oriented Nd2Fe14B
crystallites are
unmagnetized
multidomains. The domain
contrast is due to Kerr
rotation observed between
crossed polarizers. (Photo
courtesy of H. Kronmüller.)

Faraday effect in reflection. A beam of plane-polarized light is reflected from
the surface of a ferromagnetic material with the plane of polarization rotated
through a small angle θK of order 0.1◦. The Kerr rotation for a metal is similar
in magnitude to the Faraday rotation on transmission through a film of the
metal thin enough to be transparent. In magneto-optic recording media, the
effect was optimized with dielectric coatings. Multiple reflections take place
from the top and bottom surface of the film. The Kerr microscope, a met-
allographic microscope modified to incorporate precise polarization analysis,
will give simultaneous images of the microstructure and the domain structure.
Figure 10.16 shows domains in the crystallites of an unmagnetized sintered
Nd–Fe–B magnet, where the crystallite size is less than 2Rsd .

Domains in thin foils
traversed by an electron
beam travelling along the z
axis. Only domains aligned
along the x axis produce a
net deflection of the beam.

Both Faraday and Kerr effects can also be used to investigate magnetization
processes. When the light beam is much larger than the domain size, the initial
magnetization curves and hysteresis loops reflect the net magnetization. The
techniques are very sensitive, and have been used to investigate films as little
as a monolayer thick. However, they do not give the absolute value of M , and
are difficult to calibrate. A Kerr spectrum on a two-atomic-monolayer cobalt
film is shown in Fig. 10.17.

In addition to the polar Kerr and Faraday effects, there exist a number
of other magneto-optic imaging techniques where the intensity or phase of
the polarized light is influenced by the magnetization. In the transverse Kerr
effect, for example, a difference in intensity in the reflected beams polarized
perpendicular and parallel to the magnetization is observed when M lies in the
plane of the sample (linear magnetic dichroism). The transverse Kerr effect is
useful for studying magnetization processes and domain structure in the plane
of a magnetic film.

By rastering a beam of X-rays over the surface of a sample, element-
specific magnetic images can be generated, which can be particularly useful for
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Figure 10.17

Magneto-optic Kerr
spectrum from a 0.4 nm
thick film of cobalt. (Data
courtesy of J. F. McGilp.)

multilayer structures. Photoemission electron microscopy (PEEM) detects the
spin polarization of emitted electrons and is sensitive to the projection of the
magnetization in the plane of the incident X-rays. The technique is surface-
sensitive, and has a resolution of order 100 nm. Magnetic circular dichroism
with X-rays or ultraviolet light can also be used for element-specific magnetic
imaging. The absorption coefficients, related to the imaginary parts of εij , for
left- and right-circularly polarized light are slightly different, which has the
effect of transforming the linearly polarized incident beam into an elliptically
polarized transmitted beam.

An important group of domain-observation techniques is based on TEM.
The electrons experience the Lorentz force ev × B as they pass through a
magnetized sample, and they suffer a net deflection from domains magnetized
with a component of magnetization in-plane. Two methods of obtaining mag-
netic contrast in Lorentz microscopy are the Fresnel scheme, and the Foucault

scheme, both sketched in Fig. 10.18. The former images the domain walls in
a defocussed geometry as bright or dark lines. The latter images the domains
themselves, with contrast that depends on the orientation of the aperture slit
relative to the magnetization. A problem is that there is usually a magnetic
field at the sample in a standard transmission electron microscope due to
the objective lens, and this field will obviously perturb the domain structure.
Instruments with special lenses have been developed to facilitate imaging of
domains in specimens that are subject to almost no magnetic field. A feature
of TEM is the very high spatial resolution obtainable. Figure 10.19 shows
domain walls on a nanometre scale in a nanocrystalline Nd–Fe–B alloy
prepared by melt spinning. A major drawback of transmission electron micro-
scopy is the tedious preparation process require to prepare samples in the
form of foils thin enough to be transparent to electrons with energies of
100–200 keV.
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Figure 10.18

Domain imaging schemes
in TEM: (a) Fresnel image
and (b) Foucault image.
The pictures are for a
specimen of Nd2Fe14B. The
scale bar is 100 nm. (Photo
courtesy of J. Fidler.)

TEM is capable of atomic-scale resolution, and images of the real-space
lattice can be obtained on suitably prepared thin specimens which is useful for
examining of specimens such as cross sections of the thin film stacks used in
spin electronics. Diffraction patterns and reciprocal-space images can also be
obtained on very small regions (Fig. 10.19), permitting phase identification. The
spots in the diffraction pattern do not appear doubled, because the deflection of
the electron beam due to the Lorentz force is much less than that due to Bragg
reflection. A problem with any ultrahigh resolution microscopy is to decide
whether the structure visible in any particular field of view is typical of the
sample, or exceptional.

Two other electron-beam methods offer more quantitative information and
higher resolution. One is differential phase-contrast microscopy, where the
electron beam in a scanning transmission electron microscope (STEM) is
rastered across the specimen and the deflection of the beam is detected with a
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(a) (b)

(c)

Figure 10.19

TEM image of a thin foil of
melt-spun Nd15 Fe79B6

showing domain walls
pinned at (a) the grain
boundaries (Fresnel image)
and (b) multigrain domains
(Foucault image). (c) The
diffraction pattern and
real-space image of the
atomic planes in the
Nd2Fe14B structure. (Photo
courtesy of G. Hadjipanayis.)

quadrant detector. The other method that can provide high-resolution magnetic
domain images of suitably polarized specimens is electron holography. There
is a significant phase difference φ between two convergent electron rays that
originate at the same point, and rejoin after following different paths through a
ferromagnetic specimen. This is known as the Aharonov–Bohm effect, and the
phase difference is e�, where� is the flux enclosed by two rays. Ferromagnetic
specimens act as pure phase objects in the electron beam.

An electron hologram of a
300 nm Co platelet,
showing a vortex-like
magnetization distribution.
A Tonumura, Rev. Mod.
Phys. 59, 639 (1987).)

Electron holography can also be used to obtain high-resolution magnetic
domain images of suitably polarized samples.

10.5 Bulk magnetization measurements

Methods for determining hysteresis loops and magnetization as a function
of applied field are classified as closed-circuit or open-circuit measurements
according to whether or not the sample forms part of a complete magnetic
circuit.
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10.5.1 Magnetization measurements: open circuit

Open-circuit measurements are easier to perform. Samples are usually small,
0.01–100 mg, but the method suffers the inconvenience that the externally
applied field H′ is different from the H-field in the sample, because of the
demagnetizing effects discussed in §2.2.4. The magnetic moment m is measured
and it is usually σ , the magnetic moment per unit mass, in A m2 kg−1, that is
deduced.M is obtained in A m−1 by multiplying by the density. For thin films,
it is usually the thickness rather than the mass that is known, soM is obtained
directly. The units J T−1 kg−1 and J T−1 m−3 are identical to A m−2 kg−1 and
A m−1, respectively. Conversion factors and cgs equivalents are discussed in
Appendix E and Table B. If M(H ) or B(H ) data are required as a function
of the local internal field H , a fully dense sample of well-defined shape must
be used so that a demagnetizing correction can be applied: H = H ′ − N M,
where N is the demagnetizing factor.

The open-circuit methods for measuring magnetization as a function of
applied field fall into two groups. In the first, the force on the sample is
measured, whereas in the second the change of flux in a circuit is sensed as the
sample is moved.

Force methods In the Faraday balance, the sample is subjected to a nonuni-
form horizontal field Bx which has a gradient dBx/dz in the (vertical) z-
direction. The force on a sample of moment m is given by (2.74)

fz = ∇(m · B0) = m(dBx/dz)ez, (10.9)

where B0 = µ0 H ′. Hence measurement of the force on a sample freely sus-
pended from a sensitive balance gives m(B0). When the field gradient is gener-
ated by an electromagnet with shaped pole pieces, the method is insensitive at
zero field since dBx/dz = cBx with the constant c determined by the shape of
the pole pieces. The Faraday balance in its basic form is useless for studying
permanent magnets because it cannot measure remanence, but this defect is
overcome if the field gradient is produced independently by a set of gradient
coils or a small permanent magnet array. The Faraday balance requires calibra-
tion with a standard sample and sensitivity of order 10−6 A m2 is typical. From
(10.9), this corresponds to the force in a field gradient of 1 T m−1 equivalent
to a mass of 0.1 mg.

Thermomagnetic analysis (TMA) involves a simple magnetic balance, where
the force on a sample in a field gradient produced by a permanent magnet is
recorded as temperature is ramped by means of a miniature furnace; TMA is
used to measure the Curie temperatures of any magnetic phases present.

The sensitivity of any physical measurement of a continuous analogue output
can be enhanced if the continuous signal is converted to an alternating signal
at a fixed frequency which is then sensed using a lock-in amplifier tuned to
that reference. The alternating gradient force magnetometer (AGFM) is an AC
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Figure 10.20

Force methods of
measuring a sample in the
horizontal field of an
electromagnet: (a) Faraday
method, (b) alternating
gradient force method,
(c) torque method.

version of the force magnetometer. An alternating field gradient is applied in
the horizontal direction at a frequency which may be chosen to coincide with
the resonant frequency of the sample support rod, a vertical vibrating reed. The
applied field is uniform and also horizontal (Fig. 10.20(b)). The sensitivity
of the measurement is thereby increased by some orders of magnitude to
10−10 A m2, which makes it possible to measure small pieces of ferromag-
netic films a few nanometres thick, deposited on a substrate.

B0
M

θφ

easy 
axis

Measurement in a torque
magnetometer.

In the torque magnetometer a disc-shaped, cylindrical or spherical specimen
of a single-crystal or oriented magnet is suspended perpendicular to an axis of
symmetry from a vertical fibre in a horizontal magnetic field (Fig. 10.20(c)).
The torque � on the specimen is measured as the field is rotated in a horizontal
plane. The instrument measures anisotropy, not magnetization. If the field is at
an angle φ to the easy axis, as shown Fig. 10.20(c), then the energy per unit
volume E = Ea−MB0V cos(φ − θ ), where the anisotropy energy Ea is given
by the usual expression Ea = K1 sin2 θ + · · · , for example. In equilibrium,
∂E/∂θ = 0 and ∂Ea/∂θ = −MB0V sin(φ − θ ). This term is identified with
the torque per unit volume needed to null the deflection, hence

�/V = −∂Ea/∂θ. (10.10)

The shape of the torque curve reflects the symmetry of the crystal. For
example, �/V = −K1 sin 2θ + · · · and K1 can be deduced from the mag-
nitude of the torque oscillations with this period. Sensitivity is typically 10−9

N m. For accuracy, the applied field should exceed the anisotropy field, and be
sufficient to saturate the sample, making (φ − θ ) a small angle. This is imprac-
tical for many hard magnets, and anisotropy constants are then better deduced
from the high-field magnetization curves.

Flux methods The simplest method of measuring magnetization based on
the change of flux through a coil is the extraction magnetometer in which a
sample positioned at the centre of a coil in the field is quickly removed to a
point far from the coil (Fig. 10.21(a)). The change of flux threading the coil
is obtained by integrating the induced emf, just as for the search coil. The
magnetic moment of the sample is proportional to the change of flux registered
on the fluxmeter. An improved pick-up coil is composed of two oppositely
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Flux methods of measuring
magnetization of a sample
in the vertical field of a
superconducting magnet:
(a) extraction, (b) VSM and
(c) SQUID magnetometer.

wound segments, so changes of applied field do not register. The sensitivity of
an extraction magnetometer is typically 10−6 A m2.

The AC version of the extraction magnetometer is the ever-popular vibrating-

sample magnetometer (VSM), also known as the Foner balance, after its
inventor. Here the sample is mounted on a vertical rod and vibrated vertically
about the centre of a set of pick-up coils (Fig. 10.21(b)). The coil arrangement
depends on whether the applied field is vertical, as with a superconducting
solenoid, or horizontal, as with an electromagnet. In either case, the upper and
lower coils (pairs of coils for the horizontal applied field) are oppositely wound
so that the emfs induced in them by the vibrating sample add. Two pairs of coils
are used in a quadrupole configuration for the horizontal applied field to create
a saddle point around which the sensitivity is independent of sample position.
The vibration frequency is typically in the range 10–100 Hz and the vibration
amplitude of a few tenths of a millimetre is controlled by a feedback loop.
The sensitivity of a well-designed VSM is better than 10−8 A m2. By using a
double set of pick-up coils at right angles to each other, the moment vector in
the horizontal plane can be recorded and resolved into components m|| and m⊥.
If the sample or the field is rotated, the quantity m⊥B0 can be deduced; this is
equal to the torque �, and yields ∂Ea/∂θ from (10.10).

V"

Superconductor

Tunnel barrier

I(a)

Superconductor

Weak link

Adjustment screw

(b)

(a) A DC SQUID with two
weak links (tunnel
junctions).
(b) An RF SQUID with a
single weak link (metallic
point contact).

A highly sensitive way of measuring the flux change through a pick-up
coil is with a superconducting quantum interference device (SQUID). The flux
threading a superconducting circuit is a constant, hence current flows in a
pick-up coil made of superconducting wire to compensate whatever flux
change occurs when the sample is extracted from it (Fig. 10.21(c)). Part of
the circuit acts as a transformer to couple some flux into the active area of
the SQUID. Great sensitivity is possible, 10−10 A m2 or better, because the
device can detect a 10−6 fraction of a flux quantum (�0 = 2.1 × 10−15 T m2),
but the measurement is time-consuming as it involves an extraction at each
point and changing the field in the superconducting magnet from one measur-
ing point to the next on the hysteresis loop, which is slow. Again, a further
increase of sensitivity to 10−12 A m2 is achieved by operating an AC mode.

Extreme instrumental sensitivity is important in measurements of thin films
and interfaces, where the induced diamagnetic moment of the substrate may
exceed that of the few micrograms of ferromagnetic film. A correction must
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Table 10.4. Comparison of methods for measuring magnetization and
hysteresis of magnetic materials

Method Open/closed circuit Typical sensitivity (A m2)

Faraday Open 10−6

Alternating gradient force Open 10−10

Extraction Open 10−6

Vibrating sample Open 10−9

SQUID Open 10−11

Hysteresigraph Closed 10−4
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Figure 10.22

Measurement of the
magnetization of a
ferromagnetic thin film in a
SQUID magnetometer:
(a) is the signal from a thin
film of Fe3O4 on a silicon
substrate, (b) is the signal
after correcting for the
substrate diamagnetism.
(Data courtesy of M.
Venkatesan.)

be made for the susceptibility of the substrate, as shown in Fig. 10.22. Values
of susceptibility for common substrate materials were included in Table 3.4.
Sometimes it is necessary to measure the magnetization of tiny crystallites
comparable in size to the critical single-domain size Rsd , where the sample
mass may be less than 1 ng. Micro-SQUIDs are appropriate for the smallest
specimens. Magnetic viscosity measurements, where small changes of magne-
tization in the second quadrant of the hysteresis loop are recorded as a function
of time, require great stability and sensitivity.

High sensitivity is unnecessary in magnetization measurements of bulk fer-
romagnets with magnetization ≈100 A m2 kg−1, where a 100 mg sample will
have a moment ≈10−2 A m2. More important is the ability to saturate the mag-
netization and measure a major hysteresis loop quickly. The VSM is then the
best choice. It can operate with an electromagnet or a permanent magnet flux
source for measurements on most ferromagnetic materials, but a superconduct-
ing magnet may be needed for measurements on rare-earth magnets with strong
anisotropy. The sensitivity of different methods for measuring magnetization
is compared in Table 10.4.

An example of a magnetization measurement on an oriented spherical crystal
of hexagonal YCo5 which has easy-axis anisotropy is shown in Fig. 10.23.
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Figure 10.23

Magnetization curves of a
crystal of YCo5 measured
parallel and perpendicular
to the c axis. The data are
plotted as a function of the
external field (solid lines)
or the internal field (dotted
lines) after correction for
the demagnetizing field.

Measurements are made for the field applied parallel and perpendicular to
the easy axis. In the parallel direction, an external field H ′ = Ms/3 equal
to the maximum demagnetizing field is required to achieve saturation. The
curves shown by dotted lines have been corrected for the demagnetizing effect,
and they are plotted as a function of H = H ′ − NM , where N= 1/3. The
perpendicular magnetization curve is practically linear for this compound, and
it reaches saturation when the internal field H reaches the anisotropy field
Ha = 2K1/µ0Ms , where K1 is the first anisotropy constant. There is no high-
field slope because YCo5, like cobalt, is a strong ferromagnet. These data may
be compared with Fig. 2.11.

When the second anisotropy constantK2 is nonnegligible, the perpendicular
magnetization curve is nonlinear. Both constants can be deduced from the
Sucksmith–Thompson plot of H/M versusM2 (Exercise 5.9).

A direct measurement of the saturation field HK can be made in a short-
pulse field using the singular-point detection (SPD) technique. The saturation
field HK is equal to Ha when K2 = K3 = 0. Otherwise HK is 2(K1 + 2K2 +
3K3)/µ0Ms . The SPD method involves differentiating the signal in a pick-
up coil around the sample so that d2M/dt2 is recorded during the pulse. The
derivative dB/dt is simultaneously recorded using a search coil so that the field
HK at which a singularity appears in the second derivative of the magnetization
curve can be determined. The method can be applied to powders or single
crystals.

Susceptibility Susceptibility may be deduced from the slope of the magne-
tization curve, generally measured in open circuit. When the sample mass is
known, it is convenient to deduce σ in A m2 kg−1 and the mass susceptibility
κ = σ /B0 = M/dB0, where d is the density. Units of the susceptibility defined
in this way are J T−2 kg−1. If the volume or density of the sample is known, the
dimensionless susceptibility χ defined by M = χH can be obtained directly.
Mass and volume susceptibilities for representative materials were given in
Table 3.4 and a plot for the elements was given in Fig. 3.4. Susceptibility
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conversions are listed in Table B. The high-field susceptibility in the ferro-
magnetic state χhf may be read from the slope of the magnetization curve
beyond technical saturation. Values for iron-based alloys are about 10−3. The
paramagnetic susceptibility above the Curie point may be used to deduce the
Curie constant C and paramagnetic Curie temperature θp if the data follow a
Curie–Weiss law χ = C/(T − θp). The effective local moment (4.16) is

meff = (3kBCmol/µ0NA)1/2. (10.11)

When NA is the number of atoms in a mole, Cmol is the molar Curie constant
which is related to the effective Bohr magneton number peff = meff /µB by
Cmol = 1.571 × 10−6 p2

eff .
A common magnetic measurement is of the initial susceptibility χi in a

small low-frequency alternating field ≈1–1000 A m−1. A pair of precisely
balanced concentric or coaxial pick-up coils is used together with a driving
coil to generate the field so that no net emf is induced in the absence of a
sample. High sensitivity is achieved by using a lock-in amplifier to detect the
signal induced in the coil containing the sample and to determine the real and
imaginary parts of the AC susceptibility χ = χ ′ + iχ ′′ from the components of
the signal in phase and in quadrature with the driving field H. In aligned uniaxial
magnets, χi is quite different when measured parallel or perpendicular to the
easy axis of the crystallites. The perpendicular susceptibility χ ′

⊥ = µ0M
2
s /2K1

is due to magnetization rotation, but the parallel susceptibility χ ′
‖ is governed

by reversible domain-wall motion, and it is different in the virgin and remanent
states. The lossy part of the susceptibility χ ′′ is dominated by irreversible wall
motion. AC susceptibility is often used to determine Curie temperatures and
find other magnetic phase transition temperatures.

As χ ′ diverges at TC , the maximum value of the external susceptibility is
limited to 1/N by the demagnetizing field. When measuring nonellipsoidal
samples with finite coils, N itself depends slightly on the susceptibility.

10.5.2 Magnetization measurements: closed circuit

For closed-circuit measurements, the material is usually in the form of a block
or cylinder with uniform cross section and parallel faces. It is clamped between
the poles of an electromagnet so that it forms part of a closed magnetic circuit.
There is no need for a demagnetizing correction, asH = H ′. The instrument in
Fig. 10.24, known as a hysteresigraph or permeameter, is designed to measure
B(H ) loops where H is the internal field in the sample. For materials which
cannot be saturated in the field of the electromagnet (≈2 T), the sample may
be first saturated along its axis in a pulsed field, and then transferred to the
hysteresigraph for measurement of the demagnetizing curve in the second
quadrant. Various arrangements of coils and sensors are available to measure
B,M (or J = µ0M) andH ;B can be measured by winding a coil ofN turns of
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Figure 10.24

Schematic illustration of a
hysteresigraph used for
measuring B or M as a
function of the internal
field H . Insets show: (a) a
compensated coil used to
measure M and (b) the
potential coil used to
measure H .

fine wire around the sample, and bringing the leads to a fluxmeter as a tightly
twisted pair. The fluxmeter is an integrating voltmeter. The cross section of
the coil is practically the same as that of the magnet, Am, and the fluxmeter
integrates −NAm(dE/dt). As shown in Fig. 10.24, H may be measured using
a small Hall probe placed in the airgap close to the sample, since the parallel
component H|| is continuous at the interface. Alternatively, a small search coil
may be located in the airgap and connected to a second fluxmeter. The field in
the electromagnet is swept, and B and H are recorded on a chart recorder or
on a computer.

An alternative coil arrangement is used to measure the magnetization M . It
consists of two concentric circular flat windings having areas A1 withN1 turns
andA2 withN2 turns. The induced emf is proportional toN1[(A1 − Am)µ0H +
AmB] −N2[(A2 − Am)µ0H + AmB]. If the dimensions of the two coils are
chosen so that N1A1 = N2A2, the emf is proportional to (N1 −N2)Am(B −
µ0H ) = (N1 −N2)Amµ0M. The induced emf can therefore be integrated on
the fluxmeter to give magnetization directly.

When the pole pieces of the electromagnet approach saturation, the H-field
is distorted in the vicinity of the sample. The measurement of H at a spot in
the airgap adjacent to the sample can then give erroneous readings. The field
may be deduced from the magnetic scalar potential difference ϕab = ∫ b

a
Hdl

between the two ends of the magnet determined using a device known as a
potential coil. This is a long flexible coil of small cross section area a, evenly
wound with n turns m−1 of fine wire. It is connected to a fluxmeter, with one
end fixed, and the change of flux is measured as the free end is moved from one
point to another (Fig. 10.24(b)). Applying Ampère’s law

∫
Hdl = 0 to a loop
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running down the centre of the coil with an arbitrary return path including no
current-carrying conductors,

∫ b
a
Hdl = (ϕa − ϕb), where a and b are points at

the ends of the coil.
Since the path of the first integral runs along the centre of the coil, it can be

related to the flux � = µ0naA
∫
Hdl linking the coil. Since

� = µ0nA(ϕa − ϕb), (10.12)

the coil measures ϕab between two points when it is connected to a fluxmeter
and brought up so that its ends are placed at the two points. The potential
coil may be split into two parts and the ends embedded in the poles of an
electromagnet, as shown in Fig. 10.24(b). The two ends of a potential coil
connected to the fluxmeter are analogous to the two voltage probes connected
to a voltmeter for normal electrical measurements. A magnet can be regarded
as a source of magnetomotive force, rather like a battery which is a source
of electromotive force. The analogy between magnetic and electric circuits,
though not exact, is quite useful. It is summarized in §13.1.
B(H ) measurements on thin films, which have N ≈ 0, are carried out

with a set of coils that measure the in-plane induction. The accuracy
of B(H ) measurements, with periodic calibration of the fluxmeter, is of
order 1%.

10.5.3 Magnetostriction

Magnetostriction is measured in large single crystals by means of strain gauges
glued to the crystal surface, which respond to the strain in a particular direction.
For thin films on a substrate of known thickness and elastic constants, the
magnetorestriction coefficient can be determined from the slight flexing of the
substrate when the film is magnetized, detected by long optical lever. Optical
interferometry is also used.

10.6 Excitations

10.6.1 Thermal analysis

The density of states at the Fermi level may be best deduced from the electronic
specific heat. At low temperatures (typically 1 < T < 10 K) the heat capacity
in J mol−1 K−1 of a nonmagnetic metal is found to vary as

C = γ elT + βT 3, (10.13)

where the linear term is due to electrons and the cubic term is due to phonons.
The coefficient γ el is related to the density of states of both spins at the Fermi
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Methods of thermal
analysis; the heating rate
dT/dt is constant, typically
10 K minute−1.

level N (εF ), γ el = 1
3π

2k2
BN (εF ): The linear term is absent in insulators. The

coefficient β is related to the characteristic temperature !D in the Debye
model, β = 1944/!D . Representative values for γ el and !D in 3d metals
are 5 mJ mol−1 K−2 and 250 K, respectively. Further contributions to the
low-temperature specific heat arise from spin-wave excitations. In general,
bosons with a dispersion relation ε = Dqn give rise to a term varying as
T 3/n. Since n = 2 for ferromagnets, a term αT 3/2 must then be added to
(10.5). The coefficient α is related to the exchange constant A or the exchange
integrals Ji .

Characteristic λ-anomalies are observed in heat capacity at magnetic phase
transitions, and there are broad Schottky anomalies associated with crystal-field
excitations.

In addition to the magnetic methods discussed in §10.4, there is a group
of thermal analysis techniques which are useful for detecting magnetic phase
transitions and examining gas–solid reactions. These are differential thermal
analysis (DTA), differential scanning calorimetry (DSC), thermogravimetric
analysis (TG) and thermopiezic analysis (TPA). In each case a uniform heating
rate (often 10 K minute−1) is imposed, and the temperature lag, heat flow,
weight change or pressure change, respectively, in a closed volume containing
the sample is detected (Fig. 10.25). Thermomagnetic analysis (TMA) is a
variant of TG in which the sample is placed in a magnetic field gradient, and
the apparent weight is monitored.

10.6.2 Spin waves

The method of choice for measuring spin-wave dispersion relations is inelastic
neutron scattering. The entire set ofω(q) curves can be mapped out with a triple-
axis spectrometer, as shown for Gd in Fig. 10.26 and Tb in Fig. 5.26. Other
methods give less complete information. Inelastic light scattering or standing
spin-wave resonance, for example, are restricted to the long-wavelength region
of small momentum transfer.
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Spin-wave dispersion
relations for Gd measured
by inelastic neutron
scattering. Since the
anisotropy is negligible,
the spin-wave dispersion
relation is quadratic near
q = 0 (Eq. (5.56)).

10.7 Numerical methods

10.7.1 Static fields

Numerical calculations of magnetic fields are based on solving second-order
differential equations for the potential, subject to appropriate boundary con-
ditions. When no conduction currents are present, Poisson’s equation for the
scalar potential (2.64) reads

∇2ϕm = ∇ · M. (10.14)

The scalar potential is most useful for calculating the fields and forces between
magnets represented by sheets of surface charge, either analytically or by
numerical integration over a surface. If conduction currents are present, the
vector potential must be used. In that case

∇2 A + µ0∇ × M = −µ0 j , (10.15)

which reduces to Poisson’s equation for the vector potential (2.60) ∇2 A =
−µ0 j if M is uniform. The nonzero divergence at the surface is then represented
by sheets of surface charge M · en. The drawback in using the vector potential
is that it is necessary to manipulate three vector components rather than just
one for the scalar potential. However, two-dimensional problems where B is
confined to the xy-plane can be expressed in terms of a single component
of A.

Numerical methods for solving the second-order differential equations
involving the potential for real magnetic systems fall into two broad categories,
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finite difference and finite element. The former provide approximate solutions
valid at an array of points throughout the region of interest, whereas the latter
provide approximate solutions which are valid everywhere by dividing space
into a mesh of three-dimensional cells. The numerical computations proceed
in three stages. First is a preprocessing stage where the geometry of the device
is defined and the materials properties are specified. Next comes the numerical
solution of the potential equations, and finally there is a postprocessing stage,
where the fields and forces of interest are extracted from the numerical results.

A0 A1

A2

A3

A4

m1

m2

m3

m4

dx

dy

x

y

An array of points for
finite-difference solution of
differential equations.

There are various ways of incorporating a field-dependent magnetization
into the equations. An isotropic paramagnet or soft ferromagnet has a single-
valued magnetization which can be written as M = χH far from saturation.
The magnetization of a hard magnet in its operating range can be approximated
as

M‖ = χ‖H‖ +Mr,

M⊥ = χ⊥H⊥,

where χ‖ ≈ 0 and χ⊥ ≈ µ0M
2
s /2K . If we set (1 + χ‖) = µ and χ⊥ = 0,

B = µ0(µH + Mr ), so that (10.15) becomes

∇(1/µ0µ) × B = j + ∇ × Mr/µ. (10.16)

The remanence can be assimilated as an effective current j r . The second-order
differential equation for A becomes

∇ × ∇ν × A = µ0( j + j r ), (10.17)

where the reluctivity ν equals 1/µ. In a two-dimensional problem only the
componentsAz and jz generate fields in the xy-plane, andBx = ∂Az/∂y, By =
∂Az/∂x. The equation for Az becomes

∂(ν∂Az/∂x)

∂x
+ ∂(ν∂Az/∂y)

∂y
= −µ0jz. (10.18)

For a numerical solution, the partial derivatives are expressed as difference
approximations. An array of points is set up in the xy-plane where values of A
and ν are defined. If the separation of the points is δ, then, for example,

n1(A1 − A0)δ − n3(A0 − A3)δ + n2(A2 − A0)δ − n4(A0 − A4)δ = −µ0j0.

(10.19)
Hence A0 = [

∑
νiAi+ δ2µ0j0]/

∑
νi , and similarly for all the other cells.

Taking a plausible set of Ai to begin with, the Ai values are refined by repeated
scanning over all the points on the network. Then B is calculated at any point
in the plane as ∇ × A. The finite difference method is slow, but there are
numerical techniques to accelerate convergence.

An alternative approach involves the scalar potential ϕm. Instead of taking
the curl of B = µ0(µH + Mr ) as in (10.16), we operate with div, yielding

∇ · µ∇ϕ + ∇ · Mr = 0. (10.20)
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This differential equation can likewise be solved by the finite difference method
to give ϕ. If Mr is uniform there is only a contribution from surface charges,
as discussed for (10.15). It is assumed that there are no currents.

a

b

c

j  = ∑ ζ j
a,b,c

m

A triangular mesh used for
finite-element calculations.

The finite-element method is increasingly used to model electromagnetic
devices. Space occupied by and surrounding the device is tesselated by a
suitably adapted triangular mesh for a two-dimensional problem and by a
tetrahedral mesh for a three-dimensional problem. Within each element, the
potential is described by its nodal values with appropriate weighting functions
ζ i . Taking the scalar potential in two dimensions, for example:

ϕm =∑i ζ iϕi . (10.21)

Next, an energy functionalF is defined which is an integral over�, the whole
space of interest. The functional for the two-dimensional problem involving
scalar potential is

F = ∫ f (x, y, ϕ, ∂ϕ/∂x, ∂ϕ/∂y)d�.

This integral is minimized when the Euler equations are satisfied:

∂f/∂ϕ − (d/dx)(∂f/∂ϕ) = 0. (10.22)

F is chosen so that these coincide with the differential equations which should
be satisfied by the potential. For example, the functional which yields (10.22)
is

F = −
∫

[ϕ∇ · µ∇ϕ − 2ϕ∇ · Mr ]d�. (10.23)

The energy functional is evaluated for each element in terms of the nodal
potentials by substituting (10.23) in (10.22) and the functional is minimized by
setting dF /dϕ =0 for each element, which gives a set of equations describing
the entire region that provide the potential distribition. Like the finite-difference
method, the procedure is iterative and it continues until the residuals are accept-
ably small. The required fields are obtained in the post-processing stage.

Finite-element software packages are available to model magnetic systems
in two and three dimensions. Adaptive meshes are generated automatically, and
the packages are a valuable design tool for the magnetic engineer.

10.7.2 Time dependence

For modelling domain structures and the dynamic response of a micromagnetic
system, it is appropriate to use software which implements algorithms based
on the Landau–Lifschitz–Gilbert equations (9.22) or (9.23).

A popular micromagnetics package is OOMMF, which may be downloaded
free of charge at http://math.nist.gov/oommf/.
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EXERCISES

10.1 Estimate the mass of material used to make a 100 nm thick film of iron
(a) by thermal evaporation and (b) by e-beam evaporation.

10.2 The average intensity of solar radiation at the Earth’s surface is 1.4 kW m−2.

Deduce the average magnetic field in the light. What energy density is required
to establish a field of 1 MA m−2?

10.3 Use the data in Table 5.11 to estimate the depth of penetration of light in Fe, Co
and Ni.

10.4 Calculate the angular deflection of a 100 keV electron beam after it passes
through 10 nm of permalloy (µ0Ms = 1.0 T). Compare it with the magnitude of
the angular deflection produced at a Bragg reflection.

10.5 Use Gauss’s theorem to show that only domains magnetized along x in the
marginal illustration on p. 357 produce a net deflection of an electron beam.



11 Magnetic materials

The keenest desire of matter is form

Almost all magnetically ordered materials involve 3d or 4 f elements. The late 3d
metals and their alloys, including interstitial alloys and intermetallic compounds,
are frequently ferromagnetic. Large magnetocrystalline anisotropy in 3d–4 f inter-
metallics, due mainly to the rare-earth, gives useful hard magnets. Conversely, the
anisotropy can be reduced practically to zero in certain 3d alloys and, when magne-
tostriction is also vanishingly small, perfect soft ferromagnetism results. Oxides and
other ionic compounds are usually insulators with localized electrons. There, anti-
ferromagnetic superexchange coupling leads to antiferromagnetic or ferrimagnetic
order. Some oxides, however, are metals, with the d-electrons forming a conduc-
tion band. Occasionally the 3d band is half-metallic. A few examples are included
of materials showing magnetic order which involves neither 3d nor 4 f electrons.

11.1 Introduction

This chapter is a catalogue of representative magnetically ordered materials.
The selection is biased towards materials that are practically useful, or illustrate
some interesting aspect of magnetic order. Included are the common iron-group
metals and alloys, the rare-earths, intermetallic and interstitial compounds, as
well as a range of oxides with ferromagnetic or antiferromagnetic interac-
tions. The catalogue covers insulators, semiconductors, semimetals and metals.
Ferromagnetic, antiferromagnetic, ferrimagnetic and noncollinear spin struc-
tures are encountred. Examples of noncrystalline metals and insulators are also
included. Table 11.1 collects information on the 38 representative materials.
Each is described more fully on a data sheet, where its properties and sig-
nificance are indicated, and related materials are presented. In this way, it is
possible to deal with about 200 magnetic materials in a fairly digestible manner.

A common format is followed on each sheet. There are two views of the crys-
tal structure, on one of two scales to facilitate comparisons. The Strukturbericht
symbols for the simpler structure-types, prototype structure, space group, lattice
parameters and site occupancy all follow standard crystallographic practice.
For rhombohedral structures, the corresponding hexagonal cell is shown.
Enough information is given to allow the reader to draw the structure using
crystallographic software such as Crystalmaker. Z is the number of formula
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Table 11.2. Magnetic parameters of some useful materials

Tc Js Ab K1 κ δw γ w
Material (K) (T) (pJ m−1) (kJ m −3) (nm) (mJ m−2)

Fe 1044 2.15 22 48 0.1 67 4.1
Co 1360 1.82 31 410 0.4 26 15
Ni 628 0.61 8 −5 0.1 140a 0.7a

Ni0.80Fe0.20 843 1.04 7 −2 ∼0 190a 0.5a

SmCo5 1020 1.07 12 17200 4.3 2.6 57
Sm2Co17 1190 1.25 16 4200 1.8 5.7 31
CoPt 840 0.99 10 4900 2.5 4.5 28
Nd2Fe14B 588 1.61 8 4900 1.5 4.0 25
Sm2Fe17N3 749 1.54 12 8600 2.1 3.7 41
CrO2 396 0.49 4 25 0.4 40 1.3
Fe3O4 860 0.60 7 −13 0.2 73 1.2
Y3Fe5O12 560 0.18 4 −50 0.3 28 1.8
BaFe12O19 740 0.48 6 330 1.3 13 5.6

a In very soft materials, the wall width and energy may be determined by geometric
constraints.
b There is uncertainty in these values.A is not measured directly, and different methods
of deriving it give different results.

units (fu) in the unit cell. The quantity d is the X-ray density; real densities
are a little less. All formulae represent the atomic composition, not the weight.
Intrinsic electrical and magnetic values given are for room temperature, except
where stated otherwise. The moment m is in Bohr magnetons per formula. In
view of its importance, the magnetization of the ferromagnets and ferrimagnets
is listed in three ways: as magnetic moment per unit mass (σ ), magnetic moment
per unit volume (Ms = σd ) and polarization (Js = µ0Ms). A subscript 0 on σ ,
M or J indicates a low-temperature value. Extrinsic magnetic properties such
as permeability, coercivity and remanence are not included here, since they
depend on the microstructure of the specimen. These matters are included in
the discussion of applications in Chapters 12 and 13. Resistivities � are indica-
tive, as they depend on sample purity. For insulators, the primary bandgap εg
is given instead. Magnetic parameters for a selection of useful materials are
summarized in Table 11.2.

A dense-packed hexagonal
layer.

Dense packed structures,
hcp (top) and fcc (bottom).

The atoms in metals frequently form close-packed arrays. Close packing in a
plane gives a layer of filled hexagons. The most common stacking sequences of
the hexagonal layers ABCABC . . . and ABABAB . . . are fcc and hcp, denoted
as A1 and A3 structures, respectively. Both close-packed structures have a
packing fraction f = π√

2/6 = 0.74, and the c/a ratio for the hcp structure is√
8/3 = 1.63. The bcc structure, denoted as A2, is not close-packed; it has the

lesser packing fraction f = π√
3/8 = 0.68.
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Table 11.3. Transition-metal alloy superstructures

Structure Superstructure Z Examples

bcc B2 2 FeCo
bcc DO3 16 Fe3Al, Fe3Si
fcc L10 4 FePt, CoPt
fcc L12 4 Ni3Fe, Pt3Co, Fe3Pt
fcc L21 16 Co2MnSi
fcc C1b 12 NiMnSb

A2 B2(L20) L10

L12

DO3

Figure 11.1

Ordered binary
superstructures of the bcc
and fcc crystal structures.

When metals of similar size form an alloy, either a solid solution or an
ordered superstructure is possible. Some common ordered structures are listed
in Table 11.3, and they are illustrated in Fig. 11.1. The ferromagnetic 3d metals
form a series of alloys with each other and with other metals. These alloys may
exist in both ordered and disordered forms. The degree of order is influenced
by thermal treatment.

If two elements of quite different size and electronegativity are involved, they
tend to form intermetallic compounds of well-defined composition. Atomic radii
of the late 3d elements are about 125 pm. The atomic radii of rare-earths are
around 180 pm. The 4f elements therefore occupy three times the volume of the
3d elements, and form intermetallic compounds, rather than solid solutions,
with them. Intermetallics are often line compounds with a precisely defined
composition, or else there is a very limited homogeneity range because they
can tolerate little disorder of the constituent atoms. Some atomic radii are listed
in Table 11.4, and the trends across the 3d, 4d, 5d, 4f and 5f are illustrated
in Fig. 11.2.
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Table 11.4. Metallic radii of 3d, 4 f and other elements (in pm)

Al 143 Mn 124 Zn 133 Nd 182 Dy 177 Pd 138 Pb 175
Sc 160 Fe 124 Y 181 Sm 180 Ho 177 Pt 138 Bi 155
Ti 145 Co 125 La 188 Eu 204 Er 176 Ag 160 Th 180
V 132 Ni 125 Ce 183 Gd 180 Yb 194 Au 159 U 139
Cr 125 Cu 128 Pr 183 Tb 178 Lu 173 Sn 141 Np 131

Yb

Y

Zr

Nb

Mo Tc
Ru

Rh
Pd

Ag

Lu

Hf

Ta W Re
Os Ir

Pt

Au

La

Ce Pr Nd Pm

Sm

Gd
Tb Dy Ho Cr

Tm
Lu
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4d
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Figure 11.2

Metallic radii of all the
transition-metal series.

Interstitial compounds form when a small atom with atomic radius
< 100 pm, − boron, carbon or nitrogen − enters an octahedral interstitial
site in a 3d metal or alloy. Hydrogen can also enter the structure of many rare-
earth elements and their compounds. At room temperature, the hydrogen forms
an interstitial lattice gas of protons (H+) at room temperature, and produces
a lattice dilation of approximately 7 × 106 pm3 per hydrogen atom. Dilation
produces striking changes of the magnetic properties of iron alloys, where the
exchange is particularly sensitive to interatomic spacing.

Another important class of magnetic materials are the ionic insulators. These
are often oxides, where electron transfer from the metal fills the oxygen 2p
shell, to create an O2− anion and leaves behind a positively charged metal
cation with a partially filled d or f shell. Most oxide structures are based on
dense-packed fcc or bcc oxygen arrays, with metallic cations occupying octa-
hedral, and sometimes also tetrahedral interstices. Taking rO2− = 140 pm, the
radii of the cations which will just fit in octahedral (six-fold) and tetrahedral
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Table 11.5. Ionic radii of 3dn and other ions in oxides. Low-spin state values are in brackets.
The number of 3d electrons is in italics. The O2− radius is taken as 140 pm

4-fold n pm 6-fold n pm 6-fold n pm 6-fold n pm 8-fold pm

Mg2+ 57 Mn2+ 5 83 Ti3+ 1 67 Ti4+ 0 75 Ca2+ 112
Zn2+ 74 Fe2+ 6 78(61) V3+ 2 64 V4+ 1 58 Sr2+ 126
Al3+ 54 Co2+ 7 75(65) Cr3+ 3 62 Cr4+ 2 55 Ba2+ 142

Ni2+ 8 69 Mn3+ 4 65 Mn4+ 3 53
Fe3+ 5 49 Cu2+ 9 73 Fe3+ 5 65 Y3+ 102

Co3+ 6 61(55) La3+ 116
Ni3+ 7 60(56) Gd3+ 105

Lu3+ 98

(four-fold) sites are (
√

2 − 1)rO2− = 58 pm and (
√

3
2 − 1)rO2− = 32 pm,

respectively. We see in Table 11.5 that most divalent and trivalent metal
cations are bigger than this, so they tend to distort the oxygen lattice.
Transition-metal fluorides are also ionic insulators, but the bonding in pnic-
tides (compounds with N, P, As or Sb) and chalcogenides (compounds with
S, Se and Te) is more covalent, which tends to raise the conductivity and
reduce the cation moment from its spin-only value, and may destroy it
entirely.

The d and f shells in ionic insulators have integral electron occupancy. The
electron orbitals form narrow bands,which have a width W of about 2 eV for
d shells and 0.2 eV for f shells. These bands are unable to conduct electricity,
even when they overlap and the bands are not all completely full or empty. The
point is that a conducting band has to include different instantaneous electronic
configurations of the atoms, such as 3dn±1 as well as 3dn. For this, an electron
must somewhere be transferred from one site to the neighbouring site, at an
energy cost equal to Udd , which is the difference in ionization energy and
electron affinity of the 3dn configuration in the solid. The value of Udd is a few
electron volts, which must be less than the total bandwidth if electron transfer
is to take place. Otherwise, when

Udd

W
> 1

the material is a Mott insulator, and the electrons stay put. The d–d electron
correlations turn a material which would otherwise be a metal into an insulator.
A competing charge transfer process in oxides is from the filled oxygen 2p
shell to the 3d shell. The electronic excitation is then 2p63dn → 2p53dn+1,
and the energy cost is εpd .WhenUdd > Upd > W , the oxide is a charge transfer

insulator. The Mott insulators tend to be found at the beginning of the 3d series,
where the 3d level lies high in the 2p(O)−4s(T) gap (T is a 3d transition
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The Zaanen–Sawatzky–
Allen diagram. U dd and U pd

are the charge-transfer
energies and t is the
hopping integral, which
determines the bandwidth.

metal), whereas the charge transfer insulators are found near the end of the
series, where the 3d level lies near the top of the 2p(O) band. Figure 11.3
delineates the regions where metals or insulators are found.

Oxides are rarely perfectly stoichiometric, yet, unlike doped semiconductors,
nonstoichiometric oxides remain insulating. Electrons in the dn±1 configura-
tions which form in response to oxygen excess or deficiency are immobile. They
create a local distortion of the ionic lattice, known as a polaron. For polarons
to hop from one site to the next, they must have the thermal energy necessary
to overcome the energy barrier associated with the redistribution of the local
lattice distortion.

Finally, there are a few materials whose magnetism does not fit the general
picture of more-or-less localized d or f atomic moments, with interatomic
Heisenberg exchange coupling. These include solid O2, which is a molecu-
lar antiferromagnet, some organic ferromagnets, and alloys like ZnZr2 whose
component elements bear no atomic moment. No homogeneous liquids are
known to order magnetically.

Magnetic order is a relatively low-temperature phenomenon. A histogram
plot of Curie and Neel temperatures from a bibliography of magnetic materials
(Fig. 1.8) shows that most order below room temperature. A Curie temperature
greater than 500 K, needed for room-temperature applications, occurs in no
more than about 20% of known magnetic materials. The record for a Curie
temperature, TC = 1388 K, is held by cobalt.

For solid solutions of alloys of magnetic and nonmagnetic atoms, (TxN1−x),
the Curie temperature in mean field theory (5.26) should scale as ZT = Zx ,
where ZT is the number of magnetic neighbours and Z is the coordination
number. However, ferromagnetic nearest-neighbour exchange interactions do
not produce long-range ferromagnetic order below the percolation thresh-
old xp. Weaker, longer-range interactions may lead to magnetic order at low
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temperature. Dilute alloys or compounds which contain less than 10% magnetic
atoms cannot be expected to order magnetically at room temperature, if at all.

11.1.1 Magnetic symmetry

A central result in crystal physics is Neumann’s principle, which states that
the symmetry of any physical property of a solid must include the symmetry
elements of the point group of the crystal. The physical property may be more
symmetric than the point group, but it cannot be less. The conductivity of a
cubic crystal, for example, is isotropic, with symmetry ∞∞m. The notation
means that there is a continuous axis of rotation ∞ lying in a mirror plane m,
with another, perpendicular, axis of rotation.

The 32 point groups provide a classification of crystal symmetry. Each is
a self-contained set of symmetry operations, present at every lattice point,
which transform the atomic positions in the crystal lattice into an identi-
cal set of atomic positions. The point symmetry operations are the inver-
sion centre 1̄, the mirror plane m, the rotation axes 2, 3, 4 and 6, and the
rotation-inversion axes 3̄, 4̄ and 6̄ (2̄ is equivalent to m). Here the integer
n indicates rotation through 2π /n. The identity operation 1 is trivial and
indicates no symmetry. By Neumann’s principle, the point group symmetry
should be reflected in the magnetic properties such as magnetocrystalline
anisotropy.

Conventionally, the highest rotation axis is placed first in the point group
symbol, then follows another in the perpendicular direction and/or a mirror
containing the axis. If the mirror is perpendicular to the axis, it is preceded
by a ‘/’. The seven crystal classes each have two or more point groups, as
follows: triclinic 1, 1̄; monoclinic 2, m; 2/m; orthorhombic 222, mm2, mmm;
trigonal 3, 3̄, 32, 3m, 3̄m; tetragonal 4, 4̄, 4/m, 422, 4mm, 4̄2m, 4/mmm;
hexagonal 6, 6̄, 6/m, 622, 6mm, 6̄m2, 6/mmm; cubic 23, m3, 432, 4̄3m,
m3m.

The eight most common point groups for inorganic crystals, namely 2/m,
1̄, mmm, m3m, 4/mmm, 222, mm2 and 6/mmm, account for more than
80% of the total. Ten polar point groups, which preserve the sense of a
polar vector, an arrow along the main symmetry axis, are the only ones
that can support ferroelectricity. They are 1, 2, m,mm2, 3, 3m, 4, 4mm, 6
and 6mm.

Textured polycrystalline materials have at least one continuous ∞–fold rota-
tion axis. Rotation by any angle θ about this axis transforms the structure
into itself. There are seven such continuous Curie groups ∞, ∞m, ∞2, ∞/m,
∞/mm, ∞∞ and ∞∞m. For example, a polycrystalline material with a uni-
axial texture has cylindrical symmetry ∞/mm. The groups ∞∞, ∞/m, ∞2
and ∞ may be composed of either right-handed or left-handed molecules. For
example, a poled polycrystalline ferroelectric belongs to ∞m.
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–1
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2

Figure 11.4

The effect of some
symmetry elements on the
components of a magnetic
moment.

m'

2'Figure 11.5

The magnetic symmetry
operations 2’ and m’. The ’
denotes time reversal.

Crystallography was created to account for the atomic positions in crys-
talline solids. Magnetism adds another dimension. As it is related to axial
vectors associated with current loops, an additional symmetry element – time

reversal – appears, which is entirely absent in atomic crystals. Components of
a magnetic moment subject to inversion, reflection or two-fold rotation can
change sign. A two-fold rotation preserves the component of magnetization
parallel to the axis, but reverses the perpendicular components, whereas a
mirror reverses the components of magnetization parallel to the mirror, but
preserves the perpendicular component, Fig. 11.4. Inversion preserves all the
components, whereas time reversal reverses them all. Since time reversal has
no influence on the atomic positions, the 32 crystallographic point groups may
be considered to include all their time-reversed symmetry elements. This could
be indicated by adding 1′ to the point group symbol, where a prime on any
symmetry element denotes time reversal. The symmetry operations 2′ and m′

in Fig. 11.5 are examples.
Any magnetically ordered crystal must be described by a magnetic point group

which cannot include 1′. The 90 such point groups are listed in Appendix I.
There are also 14 magnetic Curie groups. The symmetry of a polycrystalline
ferromagnet in its remanent state, for example, is ∞/mm′. The magnetic
structure and anisotropy are reflected in the magnetic point group. Thirty-one
of them are compatible with a spontaneous ferromagnetic moment. Not one
of these is cubic. Body-centered cubic (bcc) iron (crystallographic point group
m3m) has 〈100〉 anisotropy and the magnetic point group is 4/mm′m′, whereas
fcc nickel (crystallographic point groups m3m) has 〈111〉 anisotropy, and the
magnetic point group is 3̄m′.

The complete symmetry of a crystal, including the Bravais lattice and any
translational symmetry elements, is given by one of the 240 space groups. The
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magnetic equivalents, which include time-reversed symmetry elements, are the
1651 Shubnikov groups. This classification of magnetic symmetry works well for
commensurate structures, but it does not extend to magnetic structures which
are incommensurate with the crystal lattices.

11.1.2 Multiferroics

Our concern here is magnetism, but occasionally materials are found to exhibit
more than one order parameter at the same time. Besides magnetic order, and
its appropriate conjugate field, there are ferroelectrics, which exhibit electri-
cally switchable electric polarization, and ferroelastics, which exhibit stress-
switchable elastic strain. A multiferroic material exhibits at least two of these
order parameters, and is described by a complicated tensor susceptibility with
components of both fields. Ferromagnetism is rarely associated with ferroelec-
tricity, and no material is known for which both magnetic and electric Curie
points are above room temperature.

E

Hσ

M

P

Ferroelastic

Ferroelectic

Ferromagnetic

A diagram showing
possible multiferroic
combinations.

11.2 Iron group metals and alloys

αFe

Structure A2 bcc Im3̄m Z = 2 d = 7874 kg m−3

a0 = 286.6 pm
Fe in 2a (0, 0, 0)

The bcc structure of αFe transforms to fcc γFe at 1185 K and back to bcc
(δFe) between 1667 K and the melting point Tm = 1811 K. The αFe structure
is stabilized by ferromagnetic correlations, even above the Curie point.

Electronic properties Metal 3 d7.44s0.6 � ≈ 0.05 µ� m
Itinerant moments (weak ferromagnet)
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Magnetic properties Ferromagnetic TC =1044 K
Atomic moment m0 =2.22 µB atom−1 (spin 2.14 µB ; orbit 0.08 µB)

Exchange integral I = 0.93 eV
σ = 217 Am2 kg−1 Ms = 1.71 MA m−1 Js = 2.15 T
σ 0 = 221.7(1) Am2 kg−1 M0 = 1.76 MA m−1 Js = 2.22 T
A = 21 pJ m−1 K1c = 48 kJ m−3 K2c = −10 kJ m−3

κ = 0.12 λs = −7 × 10−6 λ100 = 15 × 10−6

λ111 = −21 × 10−6

Significance Iron is the most abundant element on Earth (crust, mantle and
core) and it is by far the most common magnetic element in the Earth’s crust,
where it accounts for 2.5% of the atoms (6 wt%). One atom in 40 in the crust
is iron, where it is 40 times as abundant as all the other magnetic elements
combined (Fig. 1.11). The base price is about $0.50 kg−1.

Related materials The fcc form of iron, γFe, can be stabilized at room temper-
ature by alloy additions or on an fcc substrate. Depending on lattice parameter,
it can be ferromagnetic, antiferromagnetic or nonmagnetic. Electrical sheet steel

is bcc Fe0.938Si0.062 (3.2 wt% Si steel). Both untextured and grain oriented,
it is the mainstay of the electromagnetic industry. Global production is about
5 megatonnes per year. Sendust is a brittle ternary Fe0.74Si0.16Al0.10 alloy which
exhibits zero anisotropy and zero magnetostriction.

Fe0.65 Co0.35

(Permendur)

Structure A2 bcc Im3̄m Z = 2 d = 8110 kg m−3

a0 = 285.6 pm
Fe/Co in 2a (0, 0, 0)

Random bcc (α) solid solution with some tendency to B2 (α′) CsCl-type of
order when annealed below 920 K.
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Electronic properties Metal 3d7.654s0.70 � ≈ 0.08 µ� m.
Itinerant moments (strong ferromagnet)

Magnetic properties Ferromagnet TC = 1210 K 〈m0〉 = 2.46µB
atom−1

Exchange integral I = 0.95 eV
σ = 240 A m2 kg−1 Ms = 1.95 MA m−1 Js = 2.45 T
K1 ≈ 20 kJ m−3 K2 ≈ −35 kJ m−3 κ = 0.06

Significance Permendur has the largest room-temperature magnetization of any
bulk material. It is used in place of Fe or Fe0.94Si0.06 when maximum flux
concentration is needed, especially in electromagnet pole pieces and airborne
electromagnetic drives. Magnetization and Curie temperature are almost con-
stant in FexCo1−x for 0.65> x > 0.50. Ordered α′FeCo has a lower anisotropy
and higher permeability, and may be used in magnetic circuits in preference to
Fe0.65Co0.35. Alloy additions such as V or Cr improve the mechanical proper-
ties. Vicalloy, Fe0.36Co0.52V0.12, can be drawn into wires or strips, which exhibit
square hysteresis loops useful for security tags.

Related materials Alnicos are magnets with phase-separated nanostructures
composed of Fe–Co needles in a nonmagnetic Al–Ni matrix. They have been
used as permanent magnets since the 1930s. Heat treatment at about 900 K
produces the desired spinodal structure. The Fe–Co needles are oriented by
casting onto a chilled block, or by heat treatment in a magnetic field below the
Curie point of Fe–Co.

FeRh has an ordered B2 structure with a0 = 299 pm. It orders ferromagnet-
ically below 670 K, and then antiferromagnetically below 350 K at a first-order
transition, where the volume decreases by 1.5% and there is a large drop in
electrical resistivity. The transitions are sensitive to heat treatment and applied
magnetic field.

Table 11.6. Properties of alnico alloys

µ0Ms Hc (BH )max

Composition (T) (kA m−1) (kJ m−3)

Alnico 3 Fe60Ni27Al13 0.56 46 10 Original 1932 composition
Alnico 2 Fe55Co13Ni18 Al10Cu4 0.72 45 14 Isotropic
Alnico 5 Fe49Co24Ni15 Al8Cu3Nb1 1.35 46 45 Cast or field-cooled from 1470 K
Alnico 8 Fe31Co38Ni14 Al7Cu3Ti7 0.88 120 42 Field-annealed at 1100 K
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Ni0.80Fe0.20

(Permalloy)

Structure A1 fcc Fm3̄m Z = 4 d = 8715 kg m−3

a0 = 352.4 pm
Fe/Ni in 4a (0, 0, 0)

A random fcc (γ ) solid solution with a tendency to L12 (γ ′FeNi3-type) order
depending on heat treatment.

Electronic properties Metal 3d9.04s0.6 � ≈ 0.16 µ� m.
Itinerant moments (strong ferromagnet)

Magnetic properties Ferromagnet TC = 843 K 〈m0〉 = 1.02µB atom−1

Exchange integral I = 1.00 eV
σ = 95.0 A m2 kg−1 Ms = 0.83 MA m−1 Js = 1.04 T
A = 10 pJ m−1. K1 ≈ −1 kJ m−3 κ ≈ 0
λs ≈ 2 10−6 α ≈ 0.02
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Figure 11.7

Anisotropy,
magnetostriction,
spontaneous
magnetization and Curie
temperature of Fe1−xNix
alloys.

Significance Dubbed the ‘fourth ferromagnetic element’, permalloy is an all-
purpose soft magnetic material, on account of its near-zero anisotropy and
magnetostriction. Electroplated films are used for write heads and magnetic
shields. Magnetic sensors exploit the soft magnetism and anisotropic magne-
toresistance (≈2%) of thin films in low fields. Their magnetic properties are
improved by annealing. Small additions of Cu and Mo help cancel both the
anisotropy and magnetostriction; supermalloy and mumetal, which can have rel-
ative permeabilities as high as 100 000, and are very effective magnetic shields.
Their soft magnetic properties are optimized by heat treatment.

Related materials γFe1−xNix alloys with compositions near x = 0.50 have
higher magnetization, Js = 1.50 T and TC = 770 K; compositions near
x = 0.30 have the highest resistivity � = 0.70 µ� m, with TC ≈ 670 K.
These invar alloys show zero thermal expansion near room temperature,
due to dilation of the lattice in the ferromagnetic state. Phase-separated
αFe1−xNix with x ≤ 0.07 is found together with γFe–Ni (taenite) in
meteorites.

Pure nickel (a0 = 352.4 pm) is magnetically inferior to permalloy in most
respects (magnetization, Curie temperature TC = 628 K, low magnetostriction,
cost). However, its magnetostriction λs = −35 × 10−6 (λ100 = −51 × 10−6,
λ111 = −24 × 10−6) along with its low saturation polarization Js = 0.61 T
(Ms = 488 kA m−1) is useful in magnetomechanical applications. Anisotropy
is K1 = −5 kJ m−3, K2 = −2 kJ m−3. The easy direction is [111] and mag-
netic symmetry is 3̄m′. The specific magnetization of pure nickel, σ =
54.78(15) A m2 kg−1 at 298 K is a NIST standard for calibrating magne-
tometers. World nickel production is about 1.5 Mt yr−1, but the metal is traded
as a commodity and the price is unstable. It has fluctuated between $5 and $50
per kg in recent years.
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a-Fe0.40Ni0.40P0.14 B0.06

(Metglas 2826)

Structure Random close-packed Bernal structure d = 7720 kg m−3

The packing fraction of the random close-packed structure is 0.64. Boron
occupies large interstitial sites where it likes to adopt trigonal prismatic
coordination.

Electronic properties Metal � ≈ 1.6 µ� m. (maximum metallic
resistivity)

Itinerant moments (strong ferromagnet)

Magnetic properties Ferromagnet TC = 535 K 〈m〉 = 1.2µB (3d atom)−1

σ = 84 A m2 kg
−1

Ms = 0.65 MA m−1 Js = 0.81 T
A = 8 pJ m−1 K1 ≈ 0 kJ m−3 κ ≈ 0 λs ≈ 11 × 10−6

Significance Metglas 2826 is the amorphous analogue of Fe0.50Ni0.50. It has
excellent soft magnetic properties, high resistivity and shows a large E effect.
Bulk anisotropy is practically zero because there is no crystal lattice. It has
remarkable tensile strength > 2 GPa. Prepared by melt spinning in ribbons or
sheets about 40 µm thick, uses include magnetic shielding, electromagnetic
sensors, pulsed-mode power supplies, saturatable inductors and other low-
frequency electromagnetic applications.

Related materials Magnetic glasses form for many combinations of tran-
sition metals and metalloids in an 80:20 ratio. Iron-rich glasses such as
a-Fe0.80B0.20 and a-Fe0.81B0.135Si0.035C0.02 (Metglas 2605SC) have higher
polarization (µ0Ms = 1.5−1.6 T) and higher Curie temperature (≈ 650 K).
They are used in distribution transformers. These alloys exhibit isotropic
linear magnetostriction, λs = 31 × 10−6, opposite in sign to that of
crystalline iron, and can be used in sensors. Cobalt-rich metallic glasses
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Ternary (Fe,Co,Ni)0.80B0.20

phase diagram, showing
the compositions for zero
anisotropy and zero
magnetostriction.
(R. C. O’Handley and C. P.
Chou, J. Appl. Phys. 49,
1659 (1978)).

(e.g. a-Fe0.05Co0.70Si0.15B0.10) show zero magnetostriction, and very high
permeability. Finmet alloys (Fe0.735Cu0.01Nb0.03Si0.135B0.09) are two-phase
nanostructured composites composed of crystalline Fe–Si in an amorphous
matrix, obtained by partial crystallization of an amorphous precursor. They
show vanishingly small anisotropy and magnetostriction and very low losses,
together with a polarization of 1.25 T, which is larger than permalloy. Finmet
shields do not need to be annealed after shaping.

The amorphous 80:20 alloys crystallize at 700–800 K.

Co

Structure A3 hcp P63/mmc Z = 2 d = 8920 kg m−3

a = 250.7 pm c = 407.0 pm
Co in 2c ( 1

3 , 2
3 , 1

4 )
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The hcp structure of εCo transforms to fcc γCo at 695 K. Cobalt can be
stabilized in the fcc structure in thin films.
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Electronic properties Metal, 3d8.44s0.6 � ≈ 0.06 µ� m.
Itinerant moments (strong ferromagnet)

Magnetic properties Ferromagnet TC = 1360 K
atomic moment m0 = 1.72 µB atom−1 (spin 1.58 µB ; orbit 0.14 µB )
exchange integral I = 1.01 eV

σ = 162 A m2 kg−1 Ms = 1.44 MA m−1 Js = 1.81 T
A = 31 pJ m−1 K1 = 410 kJ m−3 K2 = 140 kJ m−3

κ = 0.45 λs ≈ −60 × 10−6

Significance Fcc cobalt has the highest Curie temperature of all ferromagnets,
1388 K, but that of the hcp ε-phase is similar (1360 K). The magnetization
of γCo is a little greater (σ = 165 A m2 kg−1). Cobalt is a strategic metal,
unevenly distributed over the Earth, but it is roughly 100 times less abundant
than iron and the price has fluctuated wildly. A total of 4000 tonnes per year,
or 7% of global production, is used for magnets.

Related materials Cobalt is invaluable as an alloy addition to increase Curie
temperature and anisotropy. Cobalt thin films with Cr, Pt and B additives
(typical composition Co0.67Cr0.20Pt0.11B0.06) are used as longitudinal recording
media for hard discs. These films are composed of nanoscale grains with a
nonmagnetic boron-rich grain-boundary phase. Compositions with more Pt
and less Cr are used for perpendicular media.

CoPt

Structure L10 tetragonal (AuCu) P4/mmm Z = 2 d = 16040 kg m−3

a = 377 pm c = 370 pm
Co in 2a (0, 0, 0)
Pt in 2b ( 1

2 , 1
2 , 0)

The face-centred tetragonal structure, produced by annealing the disordered
γ -phase at Ta = 870 K, is always twinned, with c axes distributed along the
different cube edges. Noble metal additions reduce Ta . There is a broad homo-
geneity range around the equiatomic composition.
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Table 11.7. Ferromagnetic properties of some ordered binary AB alloys

Order TC (K) Js (T) K1 (MJ m−3) κ

CoPt L10 840 1.01 4.9 2.47
FePt L10 750 1.43 6.6 2.02
FePd L10 749 1.38 1.8 1.10
τMnAl L10 650 0.75 1.7 1.95
Co3Pt L12 1190 1.40 0.6 0.71
Ni3Mn L12 750 1.0 0.03 0.19

Electronic properties Metal
Itinerant moments on Co and Pt

Magnetic properties Ferromagnet TC = 840 K
σ = 50 A m2 kg−1 Ms = 0.80 MA m−1 Js = 1.01 T
A = 10 pJ m−1 K1 = 4.9 MJ m−3 κ = 2.47 Ba = 6.1 T

Significance CoPt finds wide applications as a permanent magnet in medi-
cal and military applications and in precision instruments where its excep-
tional corrosion resistance, ductility, machinability and good high-temperature
performance justify the high cost. Energy products of up to 100 kJ m−3 are
achieved.

Related compounds There is a large family of ferromagnetic ordered phases
with the L10 or L12 structures, including the hard magnets FePd, FePt
and MnAl. L12 ordering in Ni3Mn eliminates antiferromagnetically coupled
Mn–Mn nearest-neighbour pairs, and increases TC by 500 K. Co3Pt thin films
exhibit strong perpendicular anisotropy.

MnBi

Structure B81 hexagonal (NiAs) P63/mmc Z = 2 d = 9040 kg m−3

a = 428 pm c = 611 pm
Mn in 2b ( 1

3 , 2
3 , 1

4 )
Bi in 2a (0, 0, 0)
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Table 11.8. Ferromagnetic manganese pnictides

TC (K) Ms (MA m−1)

MnAs 318 0.63 Easy plane
MnSb 573 0.77 Spin reorientation at 520 K
MnBi 633 0.58 Spin reorientation at 84 K

The hexagonal NiAs structure is an ABAC. . . stacking of hexagonal layers of
Ni (A) and As (B, C).

Electronic properties Metal with a low density of states at εF
Mn d electrons are strongly hybridized with Bi 6p states.

Magnetic properties Ferromagnet TC = 633 K (first order transition)
Magnetic moment m0 = 3.95 µB fu−1 lies parallel to c above the spin reorien-
tation temperature Tsr = 84 K, and perpendicular to c below Tsr .
σ = 64 A m2 kg−1 Ms = 0.58 MA m−1 Js = 0.72 T
K1 = 0.9 MJ m−3 K2 = 0.3 MJ m−3 κ = 1.5

λcs ≈ 500 × 10−6

Significance MnBi is a hard magnet with good magneto-optic properties
due to the strong spin-orbit coupling of Bi: θK = 0.9◦; θF = 50◦ µm−1 at
� = 633 nm. Films with perpendicular anisotropy were used to demonstrate
thermomagnetic recording. Doping with Ge increases θK to 2.1◦. Magnetostric-
tion is very anisotropic.

Related compounds Properties of the NiAs-structure manganese pnictides are
summarized in Table 11.8. NiAs itself is nonmagnetic, but NiS shows a first-
order antiferromagnetic transition at TN = 260 K.

NiMnSb

Structure C1b cubic (AgMgAs) F 4̄3m Z = 4 d = 7530 kg m−3

a0 = 592 pm
Ni in 4a (0, 0, 0)
Mn in 4b (0, 1

4 , 1
4 )

Sb in 4c (0, 1
2 , 3

4 )
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Table 11.9. Heusler and half-Heusler alloys

a0 (pm) TC (K) σ 0 (A m2 kg−1) m (µB)

Cu2MnIn 621 500 75 4.0
Co2MnGa 577 694 93 4.1
Co2MnSia 565 985 141 5.0
Co2MnGea 574 905 116 5.1
Co2MnSn 600 829 97 5.1
Ni2MnGa 583 380 96 4.2
Ni2MnSn 605 360 81 4.2
Pd2MnSb 642 247 63 4.4
NiMnSba 592 730 93 4.0
PtMnSba 620 572 60 4.0
Mn2VAla 760 730 59 2.0

a Half-metal

A half-Heusler alloy, with one of four interpenetrating fcc lattices vacant.

Electronic properties Half-metal, ↑ electrons at εF � ≈ 0.6 µ� m.

Magnetic properties Ferromagnet TC = 728 K m0 ≈ 4.0µB fu−1

σ = 89 A m2 kg−1 Ms = 0.67 MA m−1 Js = 0.84 T K1 = 13 kJ m−3

Significance NiMnSb and PtMnSb were the first materials to be identified as
half-metals. The high spin polarization and Curie temperature of some Heusler
alloys make them potentially useful for spin electronics.

Related materials There is a large family of full Heusler X2YZ (L21 structure,
Fm3̄m) and half-Heusler XYZ alloys, in which the X,Y and Z atoms are
arranged on four interpenetrating fcc lattices. Many of them are ferromag-
netic or ferrimagnetic, and when perfectly ordered a few, such as Co2MnSi
(↓ gap of 0.4 eV), are half-metals. The moment per formula varies with the
total number of valence electrons Ze as m = Ze − 24 for full Heuslers and
as m = Ze − 18 for half-Heuslers. Some examples are listed in Table 11.9.
The Mn–Mn interactions are ferromagnetic, on account of large interman-
ganese distances ≈ 420 pm. Ferromagnetic shape-memory alloys based on
Ni2MnGa undergo large changes (∼10%) of size and shape in an applied
magnetic field due to a martensitic transition at 305 K from fcc to an fct
structure.
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αMn

Structure A12 cubic I 4̄3m Z = 58 d = 7470 kg m−3

a0 = 886.5 pm
Mn in 2a (0, 0, 0); 8c (0.317. 0.317, 0.317); 24g1(0.357, 0.357, 0.034);

24g1(0.089, 0.089, 0.282)

There is a small tetragonal distortion below the Néel point

Electronic properties Metal, 3d6.44s0.6 � ≈ 1.4 µ� m.
Itinerant moments

Magnetic properties Noncollinear antiferromagnet TN = 95 K
Atomic moment 〈m0〉 ≈ 0.7 µB atom−1

Site moments 2a 2.8µB ; 8c 1.8 µB ; 24g1 0.5 µB ; 24g2 0.5 µB

Significance Mn has the largest unit cell and the most complex structure of any
element. There are partly localized moments on 2a and 8c sites, and delocalized
moments on 24g sites, where the antiferromagnetic coupling is frustrated. The
magnetic properties of other Mn polymorphs are given in Table 11.10.

Related materials Mn can have the largest atomic moment of any 3d element,
but Mn additions usually decrease the moment in alloys of the ferromagnetic
3d elements because it couples antiparallel to them. Mn-rich alloys are
antiferromagnetic on account of the direct exchange interaction in the roughly
half-filled d-band. For antiferromagnetic Mn alloys, see IrMn3; for more dilute
ferromagnetic examples, see NiMnSb and MnBi. Generally Mn sites with the

Table 11.10. Magnetism of manganese polymorphs

TN (K)

αMn A12 Cubic 95 Noncollinear antiferromagnet
βMn A13 Cubic Spin liquid
γMn A1 Cubic, stabilized with Cu 450 Antiferromagnet
γ ′Mn A5 Tetragonal, quenched 570 Antiferromagnet
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shortest bonds (� 240 pm) are nonmagnetic, those with bonds of 250–
280 pm have small itinerant moments which couple antiferromagnetically and
the Mn with the longest bonds (� 290 pm) have larger moments which couple
ferromagnetically.

IrMn3

Structure L12 cubic (AuCu3) Pm3̄m Z = 1 d = 11070 kg m−3

a0 = 378 pm,
Ir in 1a (0, 0, 0)

Mn in 3b (0, 1
2 , 1

2 )

Electronic properties Metal, � ≈ 1 µ� m.

Magnetic properties Antiferromagnet TN = 960 K (dependent on degree
of atomic order) TN = 730 K in disordered ν-phase Keff = 3 ×
106 J m−3.

m = 2.6 µB Mn−1 No moments on Ir. The (111) planes are antiferromagnetic,
with a triangular configuration and moments in-plane along [21̄1̄].

Significance IrMn3 is frequently used for exchange bias in thin-film devices
such as sensors and memory elements.

Related materials A series of Mn-based antiferromagnetic compounds have
been used for exchange bias. Their Néel temperatures, blocking temperatures
and interfacial exchange coupling σ with cobalt or permalloy are summarized
in the Table 11.11.

Table 11.11. Antiferromagnetic Mn-based alloys

TN (K) Tb (K) σ (mJ m−2)

FeMn fcc Four noncolinear sublattices, S ‖ [111] 510 440 0.10
NiMn L10 af (002) planes, S ‖ a 1070 700 0.27
Pd0.32Pt0.18Mn0.50 L10 af (002) planes 870 580 0.17
PtMn L10 af (002) planes, S ‖ c 975 500 0.30
IrMn L10 af (002) planes S ‖ [110] 1145
RhMn3 Ll2 Triangular spin structure 855 520 0.19
IrMn3 L12 fm (001) planes, S ‖ a 960 540 0.19



397 11.2 Iron group metals and alloys

Cr

Structure A2 bcc Im3̄m Z = 2 d = 7190 kg m−3

a0 = 288.5 pm
Cr in 2a (0, 0, 0)

Electronic properties Metal, 3d5.44s0.6 � ≈ 0.13 µ� m.
Nested Fermi surface Itinerant moments form a spin density wave.

Magnetic properties Spin density wave antiferromagnet TN = 312 K
The transition is weakly first-order 〈m0〉 ≈ 0.43 µB atom−1; 60% orbital, 40%
spin. g = 1.2

Moments parallel to 〈100〉. Field cooling stabilizes a single antiferromagnetic
domain, with a slight tetragonal distortion, c/a > 1

Incommensurate antiferromagnetic wavelength λ = 303 pm corresponds to
a spin density wave with wavevector Q = 0.95(2π/a0) m‖ Q below TN but
m turns parallel to Q below the spin reorientation transition at 123 K

Significance Cr is the simplest example of a spin density wave antiferromagnet.
The wavevectorQ is determined by the nesting property of the chromium Fermi
surface.

z

Corner 
 atoms

Body-centred
   atoms

Corner 
 atoms

Body-centred
   atoms

Figure 11.9

The magnetic structure of
chromium, showing
modulation of the
magnetic structure on the
two sites in the unit cell.
The amplitude is 0.6 µB .
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Related materials The spin density wave becomes commensurate in strained
samples, or in alloys with small additions (≈ 2%) of Mn, Ru, Rh, Re or
Os. The moment is then 0.8 µB atom−1 and TN ≈ 500 K. Other materials
with spin density waves include MnSi (TN = 29 K) and organic salts such as
(TMTSF)2PF6 (TN = 12 K).

11.3 Rare-earth metals and intermetallic compounds

Dy

Structure A3 hcp P63/mmc Z = 2 d = 8530 kg m−3

a = 358 pm c = 562 pm
Dy in 2c ( 1

3 , 2
3 , 1

4 )

Electronic properties Metal � ≈ 0.90 µ� m
Localized moments 4f 9; 6H15/2 m = 10µB in 4f shell, 0.4µB in 5d

band.

Magnetic properties Orders in a helical structure at TN = 179 K, then becomes
ferromagnetic below TC = 85 K. The axis of the helix is along c, with moments
in the ab-plane. Localized J = 15/2 configuration.

m0 = 10.4 µB at 4.2 K σ 0 = 358 A m2 kg−1 M0 = 3.06 MA m−1

J0 = 3.84 T K1 = −55 MJ m−3 K ′
3 = 1.5 MJ m−3

Significance Dy and Ho are the ferromagnetic elements with the largest low
temperature moments and magnetization. Both show huge, hard-axis anisotropy
at low temperature.
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Related materials The rare-earth elements are a test-bed for localized mag-
netism, with properties ranging from a nonmagnetic singlet (Pr) to a nearly
room-temperature ferromagnet (Gd). The magnetic ordering temperatures scale
with the de Gennes factor (g − 1)2J (J + 1).

SmCo5

Structure D2d hexagonal (CaCu5) P6/mmm Z = 1 d = 8606 kg m−3

a = 499 pm c = 398 pm
Sm in 1a (0, 0, 0)
Co in 2c ( 1

3 , 1
3 , 0)

Co in 3g (0, 1
2 , 1

2 )

Derived from the hcp Co structure
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(a) (b)

100 nm 5 nm

Figure 11.11

(a) Cellular microstructure
of Sm(Fe, Co, Cu, Zr) 7−8

magnets showing 2:17
grains and a 1:5 grain
boundary phase; (b) lattice
image of a 2:17 grain
showing an intragranular
lamellar phase. (Data
courtesy of Josef Fidler.)

Electronic properties Metal � ≈ 0.8 µ� m
Strong ferromagnet, localized Sm 4f electrons

Magnetic properties Ferromagnetic parallel coupling of delocalized Co 3d and
small localized Sm 4f moments
Tc = 1020 K m = 7.8 µB fu−1

σ = 100 A m2 kg−1 Ms = 0.86 MA m−1 Js = 1.08 T
K1 = 17.2 MJ m−3 (KSm1 = 10.7 MJ m−3 KCo1 = 6.5 MJ m−3)
κ = 4.3 Ba = 40 T A = 12 pJ m−1 δw = 3.6 nm

Significance The first rare-earth permanent magnet and still the one with the
greatest anisotropy. About 65% comes from the Sm sublattice and 35% from
Co. SmCo5 magnets are used when temperature stability is critical.

Related materials The R2Co17 series, where a dumbbell Co-pair replaces R
in the structure. Alloys with general composition Sm(Co,Fe,Cu,Zr)7−8 have a
cellular microstructure of R2T17 with an RT5 intergranular phase. They are ver-
satile, high-temperature magnets with pinning-type coercivity. Unfortunately
iron-based alloys do not crystallize in the CaCu5 structure.

Table 11.12. Cobalt-based rare-earth intermetallics with the
CaCu5 structure

a (pm) c (pm) Tc (K) Ms (MA m−1) K1 (MJ m−3) Ba (T) κ

YCo5 494 398 987 0.85 6.5 15 2.7
SmCo5 499 398 1020 0.86 17.2 40 4.3
GdCo5 498 397 1014 0.29 4.6 32 6.6
SmCo4B 509 689 470 0.67 30.2 90 7.3
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Nd2Fe14B

(Neomax)

Structure Tetragonal P42/mnm Z = 4 d = 7760 kg m−3

a = 879 pm, c = 1218 pm
Nd in 4f (0.357, 0.357, 0) Nd in 4g (0.770, 0.230, 0)
Fe in 4c (0, 1

2 , 0) Fe in 4e (0, 0, 0.116)
Fe in 8j1 (0.098, 0.098, 0.294) Fe in 8j2 (0.318, 0.318, 0.255)
Fe in 16k1 (0.567, 0.225, 0.374) Fe in 16k2 (0.124, 0.124, 0)
B in 4f (0.124, 0.124, 0)

Double kagome layers of Fe, with Fe (8j2) sandwiched between them, inter-
leaved with planes containing Nd, B and Fe (4c)

Electronic properties Metal � ≈ 1.0 µ� m.
Itinerant moments (nearly strong ferromagnet), Nd has a localized 4f 3core

Magnetic properties Multisublattice ferromagnet TC = 588 K, 〈mFe〉 =
2.2 µB atom−1,m = 37.3 µB fu−1

Parallel coupling of localized Nd3+: moments and itinerant iron moments, Nd
4f , 4g 3.0 µB

Fe: 4c 1.9 µB ; 4e 2.2 µB ; 8j1 2.2 µB ; 8j2 2.5 µB ; 16k1 2.1 µB ; 8j1 2.2 µB ;
16k1 2.3 µB

Noncollinear below Tst = 135 K, moment inclined at θ = 30◦ to c at
T = 0 K.

Exchange constants JFe−Fe = 36.8 K, JNd−Fe = 8.7 K
σ = 165 A m2 kg−1 Ms = 1.28 MA m−1 Js = 1.61 T
K1 = 4.9 MJ m−3 (KNd1 = 3.8 MJ m−3, KFe1 = 1.1 MJ m−3) κ = 1.54
Ba = 7.7 T A = 8 pJ m−1 δw = 4.0 nm.

Significance Discovered in 1982, Nd2Fe14B is the highest-performance perma-
nent magnet; 50 000 tonnes are produced each year. The record energy product
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Magnetic structures and
spin orientations in R2

Fe14B and R2Co14B, relative
to the tetragonal c axis.

is 474 kJ m−3. Main uses are in permanent magnet motors for small appliances
and electric vehicles and in voice-coil actuators and spindle motors for hard
disc drives. Other uses include wind generators, magnetic bearings and flux
sources.

Related materials Of the entire R2Fe14B isostructural series, R = La−Lu, only
Pr offers comparable hard magnetic properties. Dy is added to improve coerciv-
ity especially at high operating temperatures. Isostructural cobalt compounds
R2Co14B, R = La–Tb, show easy-plane anisotropy for the cobalt sublattices.
When the rare-earth and the transition metal Fe or Co have anisotropy contri-
butions of opposing sign, a spin reorientation occurs at a temperature where the
sum is zero. Further spin reorientations may appear at low temperatures driven
by higher-order terms in the rare earth anisotropy.

Y2Co17
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Structure Rhombohedral (Th2Zn17) R3̄m Z = 3 d = 9003 kg m−3

a = 834 pm c = 1219 pm (hexagonal cell)
Y in 6c2 (0, 0, 1

3 )
Co in 6c1 (0, 0, 0.097)
Co in 9d ( 1

2 , 0, 1
2 )

Co in 18f ( 1
3 , 0, 1

3 )
Co in 18h ( 1

2 , 1
2 , 1

6 )
Y2Co17 also crystallizes in the related Th2Ni17 structure, which has a slightly

different stacking sequence, giving a 50% shorter c axis and Z = 2; the rare-
earth environment is similar

Electronic properties Metal, strong ferromagnet, � ≈ 0.5 µ� m

Magnetic properties Ferromagnet TC = 1167 K m = 27 µB fu−1

σ = 111 A m2 kg−1 Ms = 1.00 MA m−1 Js = 1.26 T
K1 = −0.34 MJ m−3

Significance Anisotropy is easy-plane, but may be tuned by substitutions. Of
interest as a microwave absorber.

Related materials The compounds R2Fe17 exist for all of the rare-earth
series crystallizing in the rhombohedral Th2Zn17 or the hexagonal Th2Ni17

structure. Curie temperatures for other isostructural R–Fe series are plotted in
Fig. 11.13.
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intermetallic compounds.
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Table 11.13. Rare-earth intermetallics with the Th2Ni17 or Th2Zn17

structure

m Ms K1

a (pm) c (pm) TC (K) (µB fu−1) (MA m−1) (MJ m−3) Ba (T)

Y2Fe17 848 826 327 18.6 0.48 −0.4 −1.6
Sm2Fe17 854 1243 389 22.4 0.80 −0.8 −2.0
Y2Co17 834 1219 1167 23.5 1.00 −0.3 −0.7
Sm2Co17 838 1221 1190 22.0 0.97 4.2 8.5
Gd2Co17 837 1218 1209 14.0 0.60 −0.5 −1.7

TbFe2

Structure C15 Laves phase (MgCu2) Fd3m Z = 8 d = 8980 kg m−3

a0 = 737 pm
Tb in 8a (0, 0, 0)
Fe in 16d ( 5

8 , 5
8 , 5

8 )

Electronic properties Metal 3d band is strong ferromagnet � = 0.6 µ�m

Magnetic properties Ferrimagnet TC = 698 K m0 = 6.0µB fu−1

Iron sublattice has a moment of 3.3 µB fu−1; the localized 4f 8 Tb moment
couples antiparallel

σ = 97 A m2 kg−1 Ms = 0.88 MA m−1 Js = 1.10 T
K1 = −6.3 MJ m−3 κ = 0.80 λs = 1750 × 10−6

λ111 = 2400 × 10−6
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Table 11.14. Magnetization and Curie temperature of some RT2 compounds

Fe Co Ni

a0 (pm) TC (K) m (µB ) a0 (pm) TC (K) m (µB ) a0 (pm) TC (K) m (µB )

Ce 730 235 2.5 731 712
Pr 730 49 2.8 729 15 0.9
Nd 726 105 3.5 727 16 1.8
Sm 742 688 2.7 742 227 1.3 723 21 0.2
Gd 740 796 3.6 740 404 4.8 720 79 7.1
Tb 735 698 4.5 735 238 5.7 716 40 7.7
Dy 733 635 5.8 733 146 6.9 715 27 8.8
Ho 730 608 5.5 730 87 7.7 714 20 8.8
Er 728 587 4.9 728 39 6.0 713 19 6.9
Tm 725 599 2.6 725 20 3.2 709 14 3.3

From K. H. J. Bushow, Rep. Prog. Phys. 40, 1179 (1977).

Table 11.15. Magnetization and Curie
temperature of some AFe2 compounds

a0 (pm) TC (K) m (µB )

UFe2 706 158 1.1
NpFe2 714 500 2.6
PuFe2 719 600 2.3
AmFe2 730 475 3.1

Significance TbFe2 shows giant magnetostriction. When alloyed with DyFe2

which has similar λ111 but the opposite sign of K1 (2.1 MJ m−3), it is possible
to obtain highly magnetostrictive alloys (Tb0.3Dy0.7)Fe2, which are magneti-
cally soft (Terfenol-D). Oriented bars are used as high-power transducers for
underwater sonar.

Related materials The Laves phase alloys RFe2, RCo2 and RNi2 exist for the
whole rare-earth series. There are many possible pseudobinary solid solutions
in this and other rare-earth transition-metal series of compounds. The RCo2

compounds are on the borderline for the appearance of 3d magnetism; YFe2

is a ferromagnet with TC = 540 K. YCo2 is a band metamagnet, where the
magnetic moment appears at a first-order transition in an applied field. Nickel
does not have a moment in RNi2. Actinides form ferromagnetic Laves-phase
compounds with iron. ZrZn2 is an unusual weak itinerant ferromagnet with
TC = 29 K, composed of two nonmagnetic elements.
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Structure Amorphous Random dense-packed structure of Gd and Co
atoms d = 7800 kg m−3

Electronic properties Metal � = 1.5 µ� m

Magnetic properties Ferrimagnet, with antiparallel Gd and Co sublattices.
TC ≈ 700 K, by extrapolation. The alloy crystallizes at a lower temperature.

Compensation point Tcomp = 320 K
〈m〉 = 0.6µB fu−1 at T = 0 K
σ = 10 A m2 kg−1 Ms = 0.08 MA m−1 Js = 0.10 T
σ 0 = 40 A m2 kg−1 M0 = 0.31 MA m−1 J0 = 0.39 T

Significance Additions of Tb allow thin films with perpendicular magnetic
anisotropy to be prepared. These show a significant Kerr effect θK ≈ 1◦,
and can be used as magneto-optic recording media. The alloy composition x in
a-Gd1−xCox can be varied continuously in the amorphous state, and it is chosen
to make Tcomp ideal for compensation-point writing.

Related materials A wide range of amorphous compositions a-R100−xCox can
be produced by sputtering. The random anisotropy with non-S-state rare-earths
may lead to sperimagnetic order. Likewise a-R100−xFex alloys are asperomag-
nets or sperimagnets on account of the broad exchange distribution associated
with the distribution of nearest-neighbour distancesP (J ). The iron subnetwork
becomes collinear on hydrogen absorption due to the effect of volume expan-
sion to shift the exchange distribution to more positive values.
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Compensation and Curie
temperatures of crystalline
and amorphous Gd100−xCox.

11.4 Interstitial compounds

Fe4N

Structure Cubic Pm3m Z = 1 d = 7212 kg m−3

a0 = 379.5 pm
Fe in 1a (0, 0, 0)
Fe in 3c ( 1

2 , 1
2 , 0)

N in 1b ( 1
2 , 1

2 , 1
2 )

An fcc γFe structure stabilized by interstitial nitrogen in the body centre

Electronic properties Metal, strong ferromagnet
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Magnetic properties Ferromagnet TC =769 K m0 = 8.88 µB fu−1

(2.98 µB on 1a, 2.01 µB on 3c, −0.13 µB on 1b)
σ = 209 A m2 kg−1 Ms = 1.51 MA m−1 Js = 1.89 T

K1 = −29 kJ m−3 λs = −100 × 10−6

Significance An example of an interstitial metallic structure, with a large 3d
moment on one site due to 1a→3c charge transfer.

Related materials Mn4N has a similar crystal structure with a0 = 386.5 pm and
a ferrimagnetic order withTc = 760 K. Moments are 3.8µB on 1a and −0.9 µB
on 3c. Ordered compounds such as Ni3FeN and Fe3PtN are isomorphic with
perovskite. Tetragonal α′′Fe16N2 has a structure intermediate between αFe and
γ ′Fe4N. Bulk α′′Fe16N2 has Js =2.3 T with K1 ≈ 1000 kJ m−3, but thin films
are claimed to show a giant polarization, as high as 3.2 T. This exceeds the
maximum moment expected for Fe from the Slater–Pauling curve (2.7 µB) and
is unconfirmed. Supersaturated αFe100−xNx with x ≈ 3 has a much reducedK1

and low λs in thin films.

Table 11.16. Lattice parameters and magnetic
properties of iron carbide and nitrides

a b c TC Js 〈m〉0(µB/Fe)

αFe97N3 287 1010 2.2 2.20
α′Fe90N10 283 312 835 2.3 2.48
α′Fe16N2 572 629 810 2.3 2.35
γ ′Fe4N 379.5 769 1.8 2.25
εFe3N 270 436 567
ζFe2N 483 552 443 9 0.05
Fe3C 452 509 674 483 1.5 1.78

Sm2Fe17N3

(Nitromag)
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Structure Rhombohedral R3̄m Z = 3 d = 7680 kg m−3

a = 873 pm c = 1264 pm
Sm in 6c (0, 0, 1

3 )
Fe in 6c (0, 0, 0) Fe in 18h ( 1

2 , 1
2 , 1

6 )
Fe in 9d ( 1

2 , 0, 1
2 ) Fe in 18f ( 1

3 , 0, 0)
N in 9e ( 1

2 , 0, 0)̄
An interstitial compound derived from the rhombohedral Th2Zn17-type
structure. Nitrogens form a triangle around the Sm.

Electronic properties Metal, strong ferromagnet

Magnetic properties Ferromagnet with parallel coupling of 3d moments and a
small localized Sm 4f moment. TC =749 K m0 =39 µB fu−1 (6c 2.8 µB ;
9d 2.2 µB ; 18f 2.0 µB ; 18h 2.4 µB)

σ = 160 A m2 kg−1 Ms = 1.23 MA m−1 Js = 1.54 T
K1 = 8.6 MJ m−3 (KSm1 = 9.7 MJ m−3, κ = 2.13

KFe1 = −1.1 MJ m−3)
Ba = 14 T A = 12 pJ m−1 δw = 3.7 nm

Significance Interstitial nitrogen in Sm2Fe17 produces a 6% volume expansion
which leads to a dramatic increase in Curie temperature of 360 K. The nitrogen
also creates a large uniaxial crystal field leading to strong uniaxial anisotropy
for R = Sm. Nitrogen is introduced from the gas phase into fine Sm2Fe17

powder, producing material suitable for bonded magnets, but the nitride is
metastable and the powder cannot be sintered.

Related materials Interstitial carbon has a similar effect. Other iron-based rare-
earth intermetallics such as ThMn12-structure compounds RFe12−xXx with
R = Pr, Nd and X = Si, Ti, Mo, V, x ≈ 1, and R3(Fe, X)29 compounds with

Table 11.17. Some 2:17 interstitial compounds

Ms K1

a (pm) c (pm) Tc (K) (MA m−1) (MJ m−3)

Y2Fe17 848 826 327 0.48 −0.4
Y2Fe17N3 865 844 694 1.17 −1.1
Y2Fe17C3 866 840 660 1.00 −0.3
Y2Fe17Hx 852 827 475 0.75 −0.4
Sm2Fe17 854 1243 389 0.80 −0.8
Sm2Fe17N3 873 1264 749 1.23 8.6
Sm2Fe17C3 875 1257 668 1.14 7.4
Sm2Fe17Hx 861 1247 550 1.10 4.2
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R = Pr, Nd, Sm and X = Ti show an increase in TC and K1 with interstitial
nitrogen. Interstitial hydrogen in rare-earth intermetallics with H/R up to 3
forms a proton liquid. The lattice expansion leads to an increase of TC and
sometimes a change of magnetic structure.

11.5 Oxides with ferromagnetic interactions

EuO

Structure B1 cubic (NaCl) Fm3̄m Z = 4 d = 8122 kg m−3

a0 = 516 pm
Eu in 4a (0, 0, 0)
O in 4b ( 1

2 , 0, 0)

An fcc oxygen array with Eu2+ in undistorted octahedral interstices

Electronic properties Black ferromagnetic semiconductor; bandgap εg =
1.2 eV. When nonstoichiometric, the oxide is metallic below the Curie point
and it exhibits a metal–insulator transition where the resistivity increases by
up to 14 orders of magnitude. Colossal magnetoresistance in the vicinity of TC
reaches 108% T−1. There is a spin splitting of the empty conduction band and
a red shift of the band gap of 0.2 eV below TC. Carriers in the paramagnetic
state are magnetic polarons.

Magnetic properties Ferromagnet TC = 69.3 K m0 = 7.0 µB
Localized moments Eu2+ 4f 7; S = 7

2 Ground state 8S − A1g

σ 0 = 233 A m2 kg−1 M0 = 1.89 MA m−1 J0 = 2.38 T.
K1 = 44 kJ m−3
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Europium forms an fcc lattice with ferromagnetic first- and second-neighbour
interactionsJ1 andJ2. The exchange involves virtual excitation of 4f electrons
into 5d and 6s conduction band states.

Significance Stoichiometric EuO is a model ferromagnetic semiconductor with
Heisenberg exchange. Electron doping increases TC . The spin splitting of the
conduction band below TC allows EuO and EuS to be used as tunnel barrier spin
filters. Cation-deficient material, or material doped with a trivalent rare-earth,
is an n-type magnetic semiconductor. The low Curie temperature precludes
practical applications.

Related materials GdN is a similar NaCl-structure ferromagnet with TC =
69 K; the other RN compounds have lower Curie temperatures. Europium hex-
aboride (EuB6) is a ferromagnet (a0 = 418 pm, TC = 12.5 K), with a similar
structure where the B2−

6 ion replaces O2−. The europium chalcogenides show
systematic variation of the first- and second-neighbour interactions with dis-
tance and covalency. EuTe is antiferromagnetic.

Table 11.18. Magnetic properties of europium
chalcogenides

a0 (pm) order TC J1 (K) J2 (K)

EuO 516 Ferro 69.3 0.60 0.12
EuS 596 Ferro 16.5 0.23 −0.11
EuSe 620 Ferri/antiferro 4.6/2.8 0.16 −0.16
EuTe 661 Antiferro 9.6 0.10 −0.21
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CrO2

Structure C4 rutile (TiO2) P42/mnm Z = 2 d = 4890 kg m−3

a = 442 pm c = 292 pm
Cr in 2a (0, 0, 0)
O in 4f (0.303, 0.303, 0)

Chromium is in nearly regular octahedral oxygen coordination, but the dxy-
orbitals are nonbonding, while the dyz and dzx form bonding and antibonding
hybrids with oxygen.

Electronic properties Black half-metallic ferromagnet with a spin gap in the ↓
density of states of 0.5 eV; � ≈ 2 µ� m (0.03 µ� m at 4.2 K). Chromium is
formally Cr4+ 3d2; t22g. One 3d electron is localized in the t↑xy-band. The other

is delocalized in a ↑ band of mixed t↑yz/t
↑
zx and oxygen character.

Magnetic properties Ferromagnet TC = 396 K. m0 = 2µB fu−1

σ = 80 A m2 kg−1, Ms = 0.39 MA m−1 Js = 0.49 T
K1 = 25 kJ m−3 κ = 0.36 A = 4 pJ m−1

JCr−Cr = 37.1 K JH = 0.9 eV λs = 5 × 10−6.

Significance CrO2 is the only binary oxide that is a ferromagnetic metal. It
is the simplest half-metal. It forms acicular particles; those with a length of
about 300 nm and an aspect ratio of 8:1 were used as a magnetic recording
medium, especially on video tapes. The Curie temperature cannot be increased
by substitution.
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Density of states for
half-metallic CrO2, showing
a spin gap in the ↓ band. P
is the spin polarization at
the Fermi level.
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Related materials RuO2 (4d4) is a rutile-structure Pauli paramagnet with an
unpolarized 4d band. VO2 (3d1) is an antiferromagnet with a metal–insulator
transition at TN = 343 K. TiO2 is an insulator with a small temperature-
independent paramagnetic susceptibility. There is a series of Magnelli phases
TinO2n−1 with mixed-valence titanium and sheets of oxygen vacancies. MnO2

is an antiferromagnet with TN = 94 K. SnO2 is an n-type semiconductor.

SrRuO3

Structure Orthorhombic perovskite Pbnm Z = 8 d = 8416 kg m−3

a = 557.3 pm b = 553.8 pm c = 785.6 pm
Sr in 4c (−0.018, 0.06, 1

4 )
Ru in 4b ( 1

2 , 0, 0)
O in 4c (0.05, 0.47, 1

4 )
O in 8d (−0.29, 0.275, 0.05)

Electronic properties Black metal with spin-split Ru 4d t2g-band of
width ≈ 1 eV � ≈ 4 µ� m.

Weak ferromagnet with low-spin Ru4+ 4d4; t42g

Magnetic properties Ferromagnet TC =165 K m0 =1.0 µB fu−1

σ 0 = 24 A m2 kg−1 M0 = 0.20 MA m−1 J0 = 0.25 T.
K1 = 640 kJ m−3 K2 = −1080 kJ m−3

Significance A rare example of a ferromagnetic 4d metal, of no practical
importance.

Related compounds There is a series of Ruddlesden–Popper phases
Srn+1RunO3n+1, with n corner-sharing octahedral layers, separated by an
SrO layer. The n = ∞ end member and the n = 3 compound Sr4Ru3O10

(TC = 104 K) are ferromagnetic, n = 1 is a superconductor, n = 2 is a param-
agnet with enhanced Pauli susceptibility. CaRuO3 does not order magnetically.
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(La0.7Sr0.3)MnO3

(LSMO)

Structure Rhombohedral perovskite R3̄m Z = 4 d = 6320 kg m−3

a0 = 584 pm α ≈ 60◦ (cubic structure with a0 = 0.390 pm)
Mn in 1a (0, 0, 0)
La,Ca in 1b ( 1

2 , 1
2 , 1

2 )
O in 3d ( 1

2 , 0, 0), (0, 1
2 , 0), (0, 0, 1

2 )

Electronic properties Black, borderline half-metallic ferromagnet with mixed-
valence manganese; � ≈ 10 µ� m. Localized Mn4+ 3d3↑; t3↑

2g ; S = 3
2 cores,

with 0.7 delocalized ↑ electrons in an eg-band. The bottom of the t↓2g-band
lies close to εF . Metal–insulator transition near TC with colossal negative
magnetoresistance. Granular samples also exhibit a low-field magnetoresis-
tance effect. Carriers are magnetic polarons above TC . Mn3+ is a Jahn–Teller
ion.

Magnetic properties Ferromagnet TC = 370 K m0 = 3.6 µB fu−1

σ = 71 A m2 kg−1 Ms = 0.44 MA m−1 Js = 0.55 T
K1 = −2 kJ m−3

σ 0 = 90 A m2 kg−1, M0 = 0.56 MA m−1 J0 = 0.70 T
The principal exchange interaction is double exchange mediated by the hopping
e↑
g electron

Significance A half-metallic oxide. LSMO has the highest ferromagnetic Curie
temperature of the mixed-valence manganites. The colossal magnetoresistance
effect is of limited practical importance because it is very sensitive to tempera-
ture and requires large magnetic fields. Some applications have been proposed
for related materials with TC ≈ RT as bolometers and position sensors.

Related materials Other half-metallic oxides include Tl2Mn2O7, which is a
half-metallic semimetal. The large family of mixed-valence manganites present
very rich electronic and magnetic phase diagrams including regions of mag-
netic, charge and orbital order. Related ABO3 compounds have Sr replaced
by Ca (LCMO) or Ba (LBMO). Colossal magnetoresistance of LCMO was
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Phase diagrams of
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O, O ′ orthorhombic, R
rhombohedral.

illustrated in Fig. 5.41. Hexagonal YMnO3 is both antiferromagnetic (TN =
75 K) and ferroelectric (Tcf = 900 K). Many other magnetically ordered ABO3

perovskites exist with other 3d atoms. Those with B = Fe or Co, often order
well above room temperature as, for example, the series of orthorhombic anti-
ferromagnetic rare-earth iron perovskites RFeO3. GdFeO3, for example, has
TN = 657 K. In some cobaltites, the Co is in a low-spin state. Thanks to
the numerous substitutions possible on both sites, perovskites are the largest
group of magnetically ordered oxides. LaTiO3 and LaMnO3 are antiferromag-
nets with TN = 146 K and 150 K, respectively. YTiO3 is a ferromagnet with
TC = 25 K.

Perovskite structures depend on a tolerance factor related to the ionic radii
of the constituents t = (rA + rO)/

√
2(rB + rO), which is 1 for the ideal cubic

structure. Orthorhombic distortion occurs for 0.80 < t < 0.89 and the structure
is hexagonal when t > 1. For intermediate values of t , it is rhombohedral.

Sr2FeMoO6 (SFMO)
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Structure Double perovskite P4/mmm Z =2 d = 5714 kg m−3

a = 557 pm c = 791 pm
Fe in 4a (0, 0, 0) (in Fm3m)
Mo in 4a ( 1

2 , 1
2 , 1

4 )
Sr in 8c ( 1

4 , 1
4 , 1

4 ), ( 3
4 , 3

4 , 3
4 )

O in 24d (0, 1
4 , 1

4 ), ( 1
4 , 0, 1

4 ), ( 1
4 , 1

4 , 0), (0, 1
4 , 3

4 ), ( 3
4 , 0, 1

4 ), ( 1
4 , 3

4 , 0)

An approximately fcc oxygen array with Fe and Mo in octahedral interstices;
NaCl-type order of Fe and Mo on the B sites of the perovskite lattice.

Electronic properties Black ferromagnet, half-metallic when cation order is
perfect � ≈ 4 µ� m

Delocalized electron in Mo 4d1; t2g band.

Magnetic properties Ferrimagnet TC = 436 K m0 = 3.60µB fu−1

σ = 35 A m2 kg−1 Ms = 0.20 MA m−1 Js = 0.25 T
K1 = 28 kJ m−3

Localized Fe3+ 3d5; t32g e
2
g ion cores S = 5

2
σ 0 = 48 A m2 kg−1 M0 = 0.27 MA m−1 J0 = 0.35 T

The NaCl-cation superstructure means that there are no Fe–O–Fe superex-
change bonds. Exchange is mediated by the delocalized ↓ 4d electron which
mixes with empty Fe 3d↓ states. The discrepancy between the low-temperature
moment and the 4.0 µB fu−1 expected for a stoichiometric, ordered half-metal
is due to Fe/Mo antisite defects.

Significance A ferromagnetic oxide with a Curie temperature significantly
higher than that of any manganite.

Related compounds An extensive family of double perovskites A2BB′O6 exists
with A = Ca, Ba, Sr; B = Fe, Cr; B′ = Mo, W, Re, . . .

Table 11.19. Double perovskites

a b c TC (K)

Ca2FeMoO6 541 553 770 345
Sr2FeMoO6 558 790 436
Ba2FeMoO6 806 367
Sr2FeWO6 565 794 39†

Ca2FeReO6 541 553 769 539
Sr2FeReO6 556 787 405
Sr2CrReO6 552 780 635

†TN
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11.6 Oxides with antiferromagnetic interactions

NiO

Structure B1 cubic (NaCl) Fm3̄m Z = 4 d = 6793 kg m−3

a0 = 418 pm
Ni in 4a (0, 0, 0)
O in 4b ( 1

2 , 1
2 , 0)

fcc oxygen array with Ni in undistorted octahedral interstices

Electronic properties Green insulator (black, polaron conductor when cation-
deficient) εg = 4.0 eV

Localized Ni2+ 3d8; t62ge
2
g ions S = 1 3F – A2g

Magnetic properties Type II antiferromagnet TN = 525 K mA
0 = 1.6 µB

Ni−1 λ100 = −140 × 10−6, λ100 = −79 × 10−6 Vsw = 38 km s−1

σA = 56 A m2 kg−1 MA = 0.38 MA m−1 JA = 0.48 T
K1 = −500 J m−3

Ni2+ ions form an fcc lattice with partly frustrated antiferromagnetic inter-
actions. The 〈111〉 directions are hard, producing a tiny rhombohedral mag-
netostrictive distortion below TN . J1 = −8 K, but this interaction with 12
nearest-neighbour cations is frustrated; J2 = −110 K, and this is a strong 180◦

superexchange interaction with six next-nearest-neighbour cations.

Significance NiO was used for exchange bias of early spin-valve structures.

Related compounds There is a series of NaCl-structure monoxides.

Table 11.20. Antiferromagnetic monoxides

a0 (pm) S m (µB ) TN (K) θ (K) J1 (K)† J2 (K)†

MnO 445 R 3d5 5/2 4.7 118 −610 −7.2 −3.5
FeO 431 R 3d6 2 3.3 198 −570 −7.8 −8.2
CoO 426 T 3d7 3/2 3.6 291 −330 −6.9 −21.2
NiO 418 R 3d8 1 1.8 525 −1310 −50 −85

R – rhombohedral distortion; T – tetragonal distortion. † deduced from TN , θ
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αFe2O3 (hematite)

Structure D51 corundum (Al2O3) R3̄c d = 5260 kg m−3

Z = 2 (rhombohedral) a = 252 pm α = 55.3◦

Z = 6 (hexagonal) a = 503.6 pm, c = 1374.9 pm
Fe in 12c (0, 0, 0.355)
O in 18e (0.307, 0, 0.25)

The structure is an hcp oxygen array with Fe in two-thirds of the octahedral
interstices

X-ray powder diffraction
pattern for αFe2O3

h k l d(pm) I /I max

0 1 2 366.0 25
2 0 0 269.0 100
2 2 0 241.0 50
0 0 6 228.5 2
1 1 3 220.1 30
2 0 2 207.0 2
0 2 4 183.8 40
1 1 6 169.0 60
2 1 1 163.4 4
0 1 8 159.6 16
2 1 4 149.4 35
3 0 0 145.2 35
2 0 8 134.9 4
1 1 9 131.0 20
2 2 0 125.8 8
0 3 6 122.6 2
2 2 3 121.3 4
1 2 8 118.9 8
0 2 10 116.2 10
1 3 4 114.1 12
2 2 6 110.2 14
0 4 2 107.6 2
2 1 10 105.5 18
1 1 12 104.2 2
4 0 4 103.8 2
2 3 2 98.9 10
2 2 9 97.2 2
3 2 4 96.0 18
0 1 14 95.8 6
1 4 0 95.1 12
4 1 3 93.1 6
0 4 8 92.0 6
1 3 10 90.8 25

Electronic properties Red insulator εg = 2.1 eV
Localized electrons Fe3+ 3d5; t32ge

2
g S = 5

2
6S – A1g

Magnetic properties Canted antiferromagnet TN = 960 K mA
0 = 4.9 µB

Fe−1

Ferromagnetic (001) planes, stacked + + −−
Exchange constants J1 = 6.0 K, J2 = 1.6 K, J3 = −29.7 K,

J4 = −23.2 K, Vsw = 34 km s−1.
Weak Dzyaloshinsky–Moriya interaction D ≈ 0.1 K, D‖001.
Spin reorientation (Morin) transition at TM = 260 K; S‖c for T < TM ;

symmetry 3̄m; S ⊥ c for T > TM symmetry 2/m. K1 changes sign at TM .
σ = 0.5 A m2 kg−1 Ms = 2.5 kA m−1 Js = 3 mT
σA = 175 A m2 kg−1 MA = 0.92 MA m−1 JA = 1.16 T
K1 = 9 kJ m−3 Ba = −7 T

Significance A common rock-forming mineral, and constituent of soil. Con-
tributes to the natural remanence of rocks. Used as iron ore, red pigment
and abrasive (jewellers’ rouge). Readily exhibits hysteresis on account of
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420 Magnetic materials

Table 11.21. Antiferromagnetic sesquioxides

a (nm) c (nm) TN

Ti2O3 514 1366 470
V2O3 503 1362 150
Cr2O3 496 1359 306
Mn2O3 504 1412 80
Fe2O3 504 1375 960
FeTiO3 508 1404 58

the large anisotropy field associated with the weak ferromagnetic moment.
(Ba = 2|K1|/Ms ≈ 7 T.)

Related compounds Antiferromagnetic sesquioxides with the corundum struc-
ture exist for Ti–Fe. V2O3 shows a first-order insulator–metal transition at TN .
The resistivity increases by as many as ten orders of magnitude below TN .

Cr2O3 has a different antiferromagnetic stacking + − +−. It is magnetoelec-
tric; a single antiferromagnetic domain state produced by cooling below TN

in parallel electric and magnetic fields exhibits a small electric-field-induced
magnetic moment. The effect is caused by relative displacements of Cr3+ and
O2− in the electric field, which produces small changes of the crystal field,
different at the two sublattices. BiFeO3 is another canted antiferromagnet with
TN = 640 K, and a rhombohedrally distorted perovskite structure (see LSMO),
but it is not a weak ferromagnet, because the weak moment follows a long-
period cycloidal structure. The compound is also ferroelectric with transition
temperature Tcf = 1090 K and a surface charge of 1 C m−2. LaFeO3 is an anti-
ferromagnet with TN = 740 K, which has been used for exchange bias.

αFeO(OH)

(goethite)
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Structure Orthorhombic Pnma Z = 4 d = 4270 kg m−3

a = 996 pm, b = 302 pm, c = 461 pm,
Fe in 4c (0.145, 1

4 , −0.045)
O in 4c (−0.199, 1

4 , −0.288)
O in 4c (−0.053, 1

4 , −0.198)
H in 4c (−0.08, 1

4 , −0.38)

Converts to αFe2O3 when heated

Electronic properties Yellow-brown insulator
Localized electrons Fe3+ 3d5; t32ge

2
g ions S = 5/2; 6S – A1g

Magnetic properties Antiferromagnet TN = 460 K
Ionic moment m0 = 4.0 µB

The magnetic structure consists of double zig-zag iron chains, ordered anti-
ferromagnetically with moments parallel to b
σA = 110 A m2 kg−1 Ms = 0.47 MA m−1 Js = 0.59 T
K1 = 60 kJ m−3

Significance The main constituent of rust. Often present in tropical soils.
Goethite can be superparamagnetic, even when quite well crystallized.

Related compounds There is a series of crystalline ferric hydroxides, all of
which order antiferromagnetically above room temperature, except for lepi-
docrocate, which has a structure with well-separated planes of Fe3+ cations.
Ferrous hydroxide has the CdI2 structure. It is a planar antiferromagnet, where
ferromagnetic c planes are coupled antiferromagnetically.

Table 11.22. Iron hydroxides

Lattice parameters (pm) Tc (K)

αFeO(OH) Goethite Pnma a = 996, b = 302, c = 461 af 460
βFeO(OH) Akaganénite I2/m a = 1053, c = 303 af 295
γFeO(OH) Lepidocrocite Bbmn a = 388, b = 1254, c = 307 af 70
δFeO(OH) Feroxyhyte P3ml a = 293, c = 460 fi 450
Fe5O3(OH)9 Ferrihydrite R a = 293, c = 460 fi 450
Fe1−x(OH)3 Ferric gel P3 Amorphous sp 100
Fe(OH)2 Amakinite P 3̄m1 a = 692, c = 1452 af 20

af – antiferromagnet; fi – ferrimagnet; sp – speromagnet.
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Fe3O4 (magnetite)

Structure H11 spinel (MgAl2O4) Fd3m Z = 8 d = 5195 kg m−3

a0 = 839.7 pm
Fe in 8a [ 1

2 , 1
2 , 1

2 ] A-site
Fe in 16d { 1

8 , 1
8 , 1

8} B-site
O in 32e (x, x, x), x = 0.380

X-ray powder diffraction
pattern for Fe3O4

1 1 1 485.2 8
2 2 0 296.7 30
3 1 1 253.2 100
2 2 2 242.4 8
4 0 0 209.9 20
4 2 2 171.5 10
5 1 1 161.6 30
4 4 0 148.5 40
5 3 1 141.9 2
6 2 0 132.8 4
5 3 3 128.1 10
6 2 2 126.6 4
4 4 4 121.2 2
6 4 2 112.2 4
7 3 1 109.3 12
8 0 0 105.0 6
6 6 0 99.0 2
7 5 1 97.0 6
6 6 2 96.3 4
8 4 0 93.9 4
6 6 4 89.5 2
9 3 1 88.0 6
8 4 4 85.7 8

10 2 0 82.3 4
9 5 1 81.2 6

10 2 2 80.8 4

An fcc oxygen array with Fe3+ in one-eighth of the tetrahedral interstices and
Fe2+/3+ in half of the octahedral interstices. [Fe3+]{Fe3+Fe2+}O4

Electronic properties Black, polaronic conductor �(RT) ≈ 50 µ�m. The sixth
3d-electron associated with Fe2+ on B sites is delocalized in a narrow, spin-
polarized t↓2g-band. Below the Verwey transition at TV = 119 K, there is a
charge-ordered insulating state where these electrons are localized in pairs
with different but non-integral charges.

Magnetic properties Ferrimagnet TC = 860 K
Localized Fe3+ 3d5; t32ge

2
g ion cores S = 5

2
6S on A- and B-sites

The A and B sublattices are oppositely aligned, with magnetization along
〈111〉. Spin-only moments for Fe3+ and Fe2+ are 5 and 4 µB respectively.
The net moment at T = 0 K is {5 + 4} − [5] = 4 µB fu−1. Exchange constants
JAA = −18 K, JAB = −28 K, JBB = 3 K.
σ = 92 A m2 kg−1 Ms = 0.48 MA m−1 Js = 0.60 T
A = 7 pJ m−1 K1 = −13 kJ m−3 κ = 0.21
λs = 40 × 10−6 λ100 = −20 × 10−6 λ111 = 78 × 10−6

Significance Very common in igneous rocks, Ti-substituted magnetite is by far
the most common magnetic mineral, and the main source of rock magnetism.
Outcrops of magnetite were naturally magnetized by lightning strikes. Essential
constituent of lodestone, the first permanent magnet discovered by man. Now
used as iron ore, pigment, toner (ink) and in ferrofluids. Biogenic magnetite is
produced by bacteria, pigeons etc. A ubiquitous magnetic contaminant.
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Table 11.23. Room-temperature magnetic properties of oxide
spinel ferrites

a a0 (pm) TC (K) Ms (MA/m) K1 (kJ/m3) λs (10−6) � (� m)

MgFe2O4 I 836 713 0.18 −3 −6 105

Li0.5Fe2.5O4 829 943 0.33 −8 −8 1
MnFe2O4 I 852 575 0.50 −3 −5 105

Fe3O4 I 840 860 0.48 −13 40 10−1

CoFe2O4 I 839 790 0.45 290 −110 105

NiFe2O4 I 834 865 0.33 −7 −25 102

ZnFe2O4 N 844 TN = 9 1
γFe2O3 834 985b 0.43 −5 −5 ∼1

a N, normal (2+ cation on A-sites); I, inverse (2+ cation in B sites);
b Estimate; reverts to αFe2O3 above 800 K.

Related compounds There is an important series of oxide spinel ferrites, where
many cationic substitutions are possible. The magnetic properties depend on
the cation distribution over A and B sites, which may be modified by thermal
treatment. Chalcogenide spinels include greigite, Fe3S4, (a0 = 988 pm, TC ≈
580 K) and the p-type magnetic semiconductors CuCr2S4 (a0 = 982 pm, TC =
420 K) and CuCr2Se4 (a0 = 1036 pm, TC = 440 K).

γ Fe2O3

(maghemite)

Structure Cubic defective spinel P4132 Z = 8 d = 4860 kg m−3

a0 = 833.6 pm
Fe in 8a [0, 0, 0] A-site
Fe in 16d { 1

8 , 1
8 , 1

8} B-site
O in 32e (x, x, x), x ≈ 0.25

An fcc oxygen array with Fe3+ in one-eighth of the tetrahedral interstices and
in one-third of the octahedral interstices. One-sixth of the B-sites of the spinel



424 Magnetic materials

structure are vacant

[Fe3+]{Fe3+
5/3�1/3}O4

The B-site vacancies may order in a P41 tetragonal cell with c ≈ 3a
Maghemite is thermodynamically unstable, converting to hematite at about
800 K when heated in air

Electronic properties Brown insulator
Localized electrons Fe3+ 3d5; t32ge

2
g ion S = 5

2 ; 6S – A1g.

Magnetic properties Ferrimagnet Tc ≈ 985 K (estimate)
The A and B sublattices are oppositely aligned. Magnetization lies along 〈111〉.
Symmetry 3̄m′. Net moment at T = 0 K is m = 5 × ( 5

3 − 1) = 3.3µB fu−1

σ = 82 A m2 kg−1 M = 0.40 MA m−1 Js = 0.50 T
K1 = −5 kJ m−3 λs = −9 × 10−6

Significance Acicular γFe2O3 powders are widely used for flexible magnetic
recording media usually with Co2+ surface doping to improve coercivity. Mag-
netic surface reconstruction (surface spin canting) reduces the magnetization of
nanoparticles. Stabilized nanoparticles are used in ferrofluids, and in magnetic
beads for bioassay. Maghemite is found in magnetic tropical soils.

Y3Fe5O12 (YIG)

Structure Cubic (garnet) Ia3d Z = 8 d = 5166 kg m−3

a0 = 1238 pm
Y in 24c ( 1

8 , 0, 1
4 )

Fe in 16a {0, 0, 0}
Fe in 24d [ 3

8 , 0, 1
4 ]

O in 96h (0.94, 0.06, 0.15)

Electronic properties Green insulator εg = 2.8 eV
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Spontaneous moment of
rare-earth iron garnets.
(E. F. Bertaut and R. Pauthenet,
Proc. Inst. Elec. Eng. B, 104, 261
(1957))

Magnetic properties Ferrimagnet Tc = 560 K.
Fe3+ 3d5; t32ge

2
g ions S = 5

2 ; 6S – A1g . The two ferric sublattices with
tetrahedral [24d] and octahedral {16a} sites are oppositely aligned, giving a
moment of 5 µB fu−1. Y3[Fe3]{Fe2}O12

σ = 27.6(1) A m2 kg−1 Ms = 0.143 MA m−1 Js = 0.180 T
(NIST Standard)

A = 4 pJ m−1 K1 = −2 kJ m−3 λ100 = 1 × 10−6

λ111 = −3 × 10−6 κ = 0.28

Significance YIG has excellent high-frequency magnetic properties and a very
narrow ferromagnetic resonance linewidth. It has good magneto-optic proper-
ties when doped with Bi.

Related materials The complete series of rare-earth garnets R3Fe5O12 exist,
with the magnetic rare-earth sublattices aligned parallel or antiparallel to the net
iron moment. When the rare-earth moment exceeds 5µB these materials exhibit
a compensation temperature. Complex magnetic structures at low temperature
are due to the anisotropy of the rare-earth sublattice. Numerous substitutions
are possible on all three cation sites. Yttrium aluminium garnet (YAG) is a
nonmagnetic analogue.

Natural garnets such as Ca3Si3Al2O12 are nonmagnetic. Hydrogarnet
Ca3Al2(OH)12 is a constituent of cement.
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BaFe12O19

(M-ferrite)

Structure Hexagonal magnetoplumbite (PbFe12O19) P63/mmc Z = 2
d = 5290 kg m−3

a = 589 pm c = 2319 pm
Ba in 2d ( 1

2 , 2
3 , 3

4 )
Fe in 2a {0, 0, 0}; 2b 〈0, 0, 1

4 〉; 4f1 [ 1
3 , 2

3 , 0.028]; 4f2 { 1
2 , 2

3 , 0.189};
12k { 1

3 , 1
6 , 0.108}

O in 4e (0, 0, 0.150); 4f ( 2
3 , 1

3 , 0.450); 6h(0.186, 0.372, 1
4 );

12k1( 1
6 , 1

3 , 0.050); 2k2( 1
2 , 0, 0.150)

An hcp array of oxygen + barium, with Fe3+ in octahedral {12k, 4f2 and
2a}, tetrahedral [4f1] and trigonal bipyramidal 〈2b〉 interstices

Electronic properties Brown insulator εg = 1.0 eV
Localized electrons Fe3+ 3d5; t32ge

2
g ions S = 5

2
6S – A1g

Magnetic properties Ferrimagnet Tc =740 K
Magnetic structure is 12k↑; 2a↑; 2b↑; 4f ↓

1 ; 4f ↓
2 . Net moment at T = 0 K

is m0 = [(6 + 1 + 1)] − (2 + 2)] × 5 = 20µB fu−1
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Table 11.24. Intrinsic magnetic properties of hexagonal ferrites at room
temperature (m0 at low temperature)

a c TC m0 Ms K1 µ0H0

(pm) (pm) (K) (µB fu−1) (MA m−1) (MJ m−3) (T) κ

BaM 589 2320 740 19.9 0.38 0.33 1.7 1.3
SrM 589 2304 746 20.2 0.38 0.35 1.8 1.4
PbM 590 2309 725 19.6 0.33 0.25 1.5 1.4
BaW 588 3250 728 27.6 0.41 0.30 1.5 1.2
BaX 588 5570 735 47.5 0.28 0.30 1.6 1.3

Exchange constants Jb−f2 = −36 K, Jk−f1 = −19.6 K, Ja−f1 = −18.2 K,
Jf2−k = −4.1 K, Jb−k = −3.7 K
σ = 72 A m2 kg−1 Ms = 0.38 MA m−1 Js = 0.48 T
A = 6 pJ m−1 K1 = 330 kJ m−3 κ = 1.35
σ 0 = 108 A m2 kg−1 M0 = 0.57 MA m−1 J0 = 0.72 T
Ba = 1.7 T K10 = 450 kJ m−3

Significance Barium and strontium M-ferrite are produced in huge quantities
(≈ 800 000 tonnes per year) as low-cost moderate-performance permanent
magnets.

Related materials SrFe12O19 is very similar to BaFe12O19. A La + Co
substitution for some Sr + Fe improves the magnetic properties slightly.
There is a family of compounds with different stacking sequences of the
basic building blocks: BaM2Fe16O27 (W-ferrite), Ba2M2Fe12O22 (Y-ferrite),
Ba2M2Fe24O46 (X-ferrite), Ba3M2Fe24O41 (Z-ferrite). (M represents a divalent
cation.) The M, W, X and Z compounds have easy-axis anisotropy, whereas Y is
easy-plane.

MnF2
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Structure Tetragonal, rutile (TiO2) P42/mnm Z = 2 d = 4890 kg m−3

a = 487.3 pm c = 313.0 pm
Mn in 2a (0, 0, 0)
F in 4f (0.3, 0.3, 0)

Manganese is in nearly regular octahedral oxygen coordination

Electronic properties Transparent insulator εg = 9 eV

Magnetic properties Antiferromagnet TN = 67.5 K Mn2+ 3d5; t32ge
2
g ion;

S = 5
2

6A1g θ = −80 K
Identical chemical and magnetic unit cells, moments parallel to c. Sym-

metry 4′/mmm′

Exchange constants J1 = 0.35 K J2 = 1.71 K D = 1.2 K

Significance A model antiferromagnet. Fluorine is the most electronegative
element, so fluorides are ionic compounds with little covalent character in the
M–F bond.

Related compounds Other antiferromagnetic difluorides and trifluorides are
listed in Table 11.25. Tetragonal K2NiF4 is an insulator with Ni2+ ions (S = 1).
It is a model two-dimensional antiferromagnet because the interlayer exchange
interactions cancel. Below 97 K, the material orders in three dimensions due to
uniaxial anisotropy. Rb2CoF4, which has stronger anisotropy, is an almost ideal
two-dimensional Ising antiferromagnet. LaF3 is a good diamagnetic matrix in
which to investigate the magnetic properties of isolated rare-earth ions. The
chromium trihalides are antiferromagnetic (F), metamagnetic (Cl), or ferro-
magnetic (Br, I) with magnetic ordering temperatures of 80, 17, 33 and 68 K,
respectively.

Table 11.25. Properties of antiferromagnetic difluorides and trifluorides

S a c TN (K) S TN (K)

MnF2 5/2 Rutile 487 313 68 CrF3 3/2 Rhom 80
FeF2 2 Rutile 470 331 78 MnF3 2 Rhom 43
CoF2 3/2 Rutile 470 318 38 FeF3 5/2 Rhom 365
NiF2 1 Rutile 465 308 83 CoF3 2 Rhom 460
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a-FeF3

Structure Amorphous. Octahedral continuous random network with (6–2)
coordination

Electronic properties Brown insulator
Localized electrons Fe3+ 3d5; t32ge

2
g S = 5

2 . 6A1g

Magnetic properties Speromagnetic Tf = 29 K
Spins freeze in random directions, with a tendency for antiparallel alignment of
nearest neighbours. There is a difference between field-cooled and zero-field-
cooled magnetization below Tf . A small remanence of ≈ 0.005 µB fu−1 is
attributed to the possibility of reconfiguring groups of about 1000 spins after
applying a field. The magnetic ground state is highly degenerate.

Significance A model amorphous compound with antiferromagnetic superex-
change interactions. Frustration is due to the presence of three- and five-
membered rings in the structure.

Related compounds Crystalline FeF3 is an antiferromagnet with TN = 365 K,
θp = −610 K. There are frustrated crystalline fluorides with pyrochlore or
kagome lattices. Fe(OH)3 · nH2O is an amorphous ferric oxyhydroxide with
Tf ≈ 100 K.
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Fe7S8 (pyrrhotite)

Structure Monoclinic C2/c Z = 4 d =5745 kg m−3

a = 1193 pm b = 688 pm ch = 1292 pm β = 118◦

Fe1 8f (0.126, 0.098, 0.991) Fe2 8f (0.256, 0.127, 0.246)

Fe3 8f (0.359, 0.140, 0.500) Fe4 4e (0, 0.393, 0.250)

S1 8f (0.896, 0.123, 0.876) S2 8f (0.353, 0.125, 0.124)

S3 8f (0.860, 0.125, 0.138) S4 8f (0.602, 0.124, 0.621)

Pyrrhotite has a monoclinic variant of the NiAs-type structure (ah = 344 pm,
ch = 571 pm) with metal vacancies ordered on alternate iron planes.with an
ABCD sequence in a 2

√
3a, 2a, 4c supercell. The vacancies are disordered at

the Curie temperature, where the structure becomes hexagonal, cation-deficient
NiAs-type. The phase range of Fe1−xS is 0.875 ≤ x ≤ 0.95.

Electronic properties Metallic, itinerant ferromagnet with a low density of
holes in the 3p(S) band. Fe 3d electrons are hybridized with S 3p states.
Collapses to a nonmagnetic structure under pressure P ≥ 5 GPa, forming
low-spin FeII.

Magnetic properties Ferrimagnet with ferromagnetic c-planes, coupled antipar-
allel to their neighbours. Moments ⊥ c. The transition at Tc = 598 K is weakly
first order. Moments rotate out of the plane with decreasing temperature,
θ0 = 60 ◦. The moment is reduced from the 4µB spin-only value for Fe2+

S = 2, by covalent admixture with sulphur to 3.16µB
σ = 26 A m2 kg−1 Ms = 0.15 MA m−1 Js = 0.19 T
K1 = 320 kJ m−3 λs ≈ 10 × 10−6
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Significance Fe7S8 is a fairly common rock-forming mineral; it is exploited as
an iron ore. Pyrrhotite is the most common magnetic mineral, after magnetite.

Related compounds FeS (troilite) is a rare antiferromagnetic mineral with
no cation vacancies. The iron forms triangles, in a

√
3ah, 2ch variant of the

NiAs structure stable below Tα = 413 K. Stoichiometric FeS has been found
in iron meteorites. There is a family of hexagonal cation-deficient sulphides,
selenides and tellurides. Fe7Se8 is similar to Fe7S8, but with a lower mag-
netic ordering temperature (448 K). Related hexagonal compounds are Fe3S4

(smythite) and Fe4Se4. Different vacancy superstructures have slightly differ-
ent ferrimagnetic properties. The dichalcogenides FeS2 (pyrite − fool’s gold),
FeSe2 and FeTe2 contain low-spin Fe2+ 3d6; t62g, S = 0, and are diamagnetic,

with a cubic, Pa3̄ structure. Electron-rich tetragonal FeSe1−x is a nonmagnetic
superconductor.

Table 11.26. NiAs-type iron sulphides and selenides

Tc,N Ms K1 κ

(k) (MA m−1) (MJ m−3)

FeS af 588 0.63 0.01
Fe7S8 fi 598 0.15 0.32
Fe3S4 fi 600 0.58 1.20 1.7
Fe7Se8 fi 448 0.07 0.25
Fe3Se4 fi 314 ∼0

af – antiferromagnet; fi – ferrimagnet.

Table 11.27. Pyrite-structure disulphides

a (pm) S TC,N (K)

MnS2 610 5/2 af sc 48
FeS2 542 0 dia sc
CoS2 553 1/2 f metal 110
NiS2 568 1 af sc 50

af – antiferromagnet; dia – diamagnet; sc – semiconductor.
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11.7 Miscellaneous materials

CuMn

Structure A1 fcc Fm3̄m Z = 4 d = 9820 kg m−3

a0 = 360 pm
Cu in 4a (0, 0, 0).

A dilute alloy with manganese impurities dispersed in an fcc copper
matrix.

Electronic properties Metal with impurity scattering due to Mn.

Magnetic properties A canonical spin glass. Spin freezing temperature and low-
temperature linear magnetic specific heat scale with Mn content, Tf ∝ x, cf ∝
x. The freezing temperature is about 2 K per % Mn. Magnetic coupling of Mn
impurities is via the RKKY interaction, which leads, in the dilute limit, to a
Gaussian distribution of J centred at J = 0.

Significance A model system for studying the interaction of dilute magnetic
impurities in an s-band metallic matrix.

Related materials AuMn and AuFe are examples of the numerous dilute alloy
spin-glass systems. There is a tendency for the magnetic impurity atoms to
cluster. Rare-earth-based spin glasses may use Y as a nonmagnetic crystalline
host or La80Au20 as an amorphous host. EuxSr1−xS is another, insulating spin-
glass system.
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US

Structure Cubic B1 (NaCl ) Fm3̄m Z = 4 d = 16407 kg m−3

a0 = 548.9 pm
U in 4a (0, 0, 0)
S in 4b ( 1

2 , 1
2 , 0)

An fcc sulphur array with U in undistorted octahedral coordination

Electronic properties Dense black metal; an itinerant electron ferromagnet.

Magnetic properties Ferromagnet TC = 177 K m0 = 1.55µB fu−1

(orbit 3.00 µB ; spin 1.45 µB)
σ 0 = 32 A m2 kg−1 M0 = 0.53 MA m−1 J0 = 0.66 T
K1c = 43 MJ m−3 〈111〉 easy directions κ = 11.1.

Significance An example of a magnetically ordered actinide. The 5f moment
is mainly orbital in character, and oppositely directed to the spin moment. US
has the largest cubic anisotropy of any known material.

Related materials Many actinide compounds with interatomic distances dAA >
340 pm are found to order ferromagnetically or antiferromagnetically, usually
with relatively low magnetizationM0 < 1 MA m−1 and an ordering temperature
below 300 K. Some are listed in Table 11.28. Intermetallics with higher TC form
with the ferromagnetic 3d elements.

Oxides have the CaF2 structure, the other compounds have the NaCl struc-
ture. In all cases dAA = a0/

√
2.

Table 11.28. Magnetic properties of actinide compounds

a0 TC a0 TC a0 TC

(pm) Order (K) (pm) Order (K) (pm) Order (K)

UN 489 af 52 UP 559 af 125 UO2 546 af 31
NpN 490 f 87 UAs 577 af 127 NpO2 543 af 25
PuN 490 af 19 USb 619 af 241 PuO2 540 para
AmN 499 para USe 575 f 175 AmO2 538 af 9
CmN 503 f 125 UTe 616 f 104 BkO2 538 af 3

af – antiferromagnet; f – ferromagnet; para – paramagnet
From M. B. Brodsky, Rep. Prog. Phys. 41, 1548 (1978).
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(MnxGa1−x)As

Structure Cubic ZnS-type (zinc blende) F 4̄3m Z = 4 d = 5280 kg m−3

a0 = 565.3 pm
Ga, Mn in 1b (0.25, 0.25, 0.25)
As in 1a (0, 0, 0)

Electronic properties A p-type semiconductor with 2 × 1026 carriers m−3,
�(RT ) ≈ 10 µ� m. Each Mn dopant introduces a hole in the As 4p band.

Magnetic properties Ferromagnet TC = 170 K for optimal Mn-doping,
x = 0.08, the solubility limit of Mn in GaAs.

Atomic moment m ≤ 4 µB Mn−1

σ 0 ≈ 11 A m2 kg−1 M0 =58 kA m−1 J0 = 0.07 T K1 = 2 kJ m−3

Significance The GaAs is a semiconductor with a gap εg = 1.43 eV. With
substitutional Mn, the ferromagnetic semiconductor is hole-doped, and the ↓
polarized holes in the As 4p valence band mediate a ferromagnetic interaction
among Mn ions. It is used with GaAs-based heterostructures (quantum wells)
for spin-electronic demonstrators.

Related materials Other possible dilute magnetic semiconductors (DMS) are
GaN:Mn and TiO2:Co. However, there is often a tendency for the transition
metal to form nanoscale clusters in these compounds.

T  < 175 KC

e F

(GaMn)As

cb

vb

 eF

T = 69–180 KC 

EuO

cb

vb

Figure 11.21

Schematic electronic
structures for some
magnetic semiconductors:
vb – valence band; cb
– conduction band.
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αO2

Structure Monoclininc C2/m Z = 4 d =1538 kg m−3

a = 537.5 pm b = 342.5 pm c = 424.2 pm β = 117.8 ◦

O in 4b (−0.055, 0, 0.133)
Close-packed (001) layers with O2 dumbbells perpendicular to the layers.

Electronic properties Blue insulator, εg = 1.0 eV (3%−
g →1  g)

Oxygen molecules O2 have a 3%−
g triplet ground state with S = 1,L = 0.Holes

in the 2p5 shells of atomic oxygen couple parallel.

Magnetic properties Antiferromagnet, TN = 23.9 K, the temperature of the
α → β structural phase transition. Antiferromagnetic ab-planes with moments
lying along b. Weak interplane exchange gives the antiferromagnetism a quasi-
two-dimensional character.
σA = 175 A m2 kg−1 MA = 0.27 MA m−1

JA = 0.34 T J1 = −28 K,
J2 = −14 K, J3 < −1 K
D ≈ 6 K K ≈ 4.6 MJ m−3

Significance The only magnetically ordered element with no d or f electrons.
Paramagnetic oxygen gas was described by Faraday, and paramagnetic liquid
oxygen by Dewar.

Related materials Solid oxygen has a complex temperature–pressure phase dia-
gram, with six different phases. β-O2, stable from 23.9–43.8 K, is a frustrated
triangular antiferromagnet exhibiting only short-range magnetic order. The γ
phase, stable between 43.3 K and the melting point 54.4 K, is not magnetically
ordered. The alkali metal superoxides KO2, RbO2 and CsO2 are also 2p anti-
ferromagnets. The compounds crystallize in the CaC2 body-centred tetragonal
structure (Ca in 0, 0, 0, C2 in 0, 1

2 ,
1
2 ). Oxygen molecules are O−

2 λ S = 1
2 .

Néel temperatures are 7, 15 and 10 K, respectively. Holes on oxygen in non-
stoichiometric oxides may carry a moment with a tendency to ferromagnetic
coupling.
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Solid oxygen phase
diagram. (Y. A. Freimann and
H. J. Jodl, Phys. Rep. 401,
1 (2004))

Figure 11.23

Helicoidal magnetic
structure of βO2.

Table 11.29. Phases of solid oxygen

α C2/m Blue Antiferromagnet m ‖ b
β R3̄m Blue Helicoidal
γ Pm3n Blue Paramagnetic
δ Fmmm Orange Antiferromagnetic, ferromagnetic planes
ε A2/m Red Diamagnetic
ς A2/m Metal Superconductor P > 96 GPa, T < 0.6 K
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β p-nitrophenyl

nitronyl nitroxide

C13H16O4N3

(p-NPNN)

Structure Orthorhombic : F2dd Z = 8 d = 1416 kg m−3

a = 1235 pm, b = 1935 pm, c = 1096 pm

Electronic properties Insulator, εg = 1.2 eV
The free radical electron is delocalized over the ONCNO moiety.

Magnetic properties Ferromagnet TC =0.6 K θp = 1.0 K
Atomic moment m = 0.5 µB fu−1

σ 0 = 10 A m2 kg−1 M0 =14 kA m−1 J0 = 0.017 T.
J = 0.6 K

Significance The first purely organic ferromagnet. A three-dimensional S = 1
2

Heisenberg ferromagnet.

Related materials The γ p-NPNN polymorph has quasi-one-dimensional fer-
romagnetic chains, with weak antiferromagnetic interchain coupling giving a
Néel temperature of 0.65 K. The δ polymorph may be a half-metal. The highest
Curie temperature in a crystalline organic material, TC = 1.48 K is found in
diazadamantane dinitroxide. Some π -conjugated polyethers have TC as high as
10 K. There are numerous organometallic compounds with 3d elements which
order magnetically, generally well below 100 K. The highest Curie temperature
is ∼370 K for vanadlium tetracyanethene, V(TCNE)x .
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12 Applications of soft magnets

Don’t mention the war.

Temporary magnets concentrate and guide the magnetic flux produced by circulating
currents or permanent magnets. Millions of tons of electrical sheet steel are used
every year in electromagnetic machinery – transformers, motors and generators.
Numerous small components in magnetic circuits are made from nickel–iron alloys,
which offer attractive combinations of permeability, polarization and resistivity.
Insulating ferrites are particularly suitable for high-frequency applications such as
power supplies, chokes and antennae, and for microwave devices.

A good soft magnetic material exhibits minimal hysteresis with low magne-
tostriction high polarization and the largest possible permeability. Permeability
is usually referred to the internal field, because soft magnets tend to be used in
a toroidal geometry where demagnetizing effects are negligible. In some range
of internal field, the B(H) response is linear B =µH or

B = µ0µrH, (12.1)

where the relative permeability µr = µ/µ0 is a pure number. The initial per-
meability µi at the origin of the hysteresis loop is smaller than the slope B/H
in slightly larger fields, where it attains its maximum value µmax , as shown
in Fig. 12.1. Remanence in a temporary magnet is negligible. The distinction
between polarization J = µ0M and induction B is insignificant in applications
where device design and high permeability of the soft material ensure that the
H-fields involved are very small.

Values of µmax/µ0 can reach a million in the softest materials. Hence B is
hugely enhanced, up to a limit set by the spontaneous induction Bs ≈ Js =
µ0Ms , compared to the free-space induction µ0 H ′ that induces it. Here H ′

is the external applied field. Permeability and loop shape can be modified
by annealing, especially in a weak external field. The distinction between
susceptibility and relative permeability is insignificant when µr is very large;
it follows from B =µ0(H + M) that µr = 1 + χ .

Soft materials may be used for static or AC applications. The main static
and low-frequency AC applications are flux guidance and concentration in
magnetic circuits, including cores for transformers and inductors operating
at mains frequency (50 or 60 Hz). Forces are exerted on current-carrying
conductors in motors. Magnetic forces are also exerted between pieces of
temporary magnet. Magnetostrictive transducers exert force directly. Changes
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Table 12.1. Soft magnetic materials and applications

Frequency Materials Applications

Static <1 Hz Soft iron, Fe–Co (permendur) Ni–Fe
(permalloy)

Electromagnets, relays

Low frequency 1 Hz–1 kHz Si steel, permalloy, finmet, magnetic
glasses

Transformers, motors, generators

Audio-frequency 100 Hz–100 kHz Permalloy foils, finmet, magnetic
glasses, Fe–Si–Al powder (sendust)
Mn–Zn ferrite

Inductors, transformers for
switched mode power supplies,
TV flyback transformers

Radio-frequency 0.1–1000 MHz Mn–Zn ferrite, Ni–Zn ferrite Inductors, antenna rods
Microwave >1 GHz YIG, Li ferrite Microwave isolators, circulators,

phase shifters, filters
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Figure 12.1

Hysteresis in a soft
magnetic material. B(H )
and J (H ) are
indistinguishable in small
fields.

of flux produce emf in generators and electronic components. Metals are used
up into the kilohertz range, but insulating ferrites are needed to concentrate flux
and generate emfs in the radio-frequency and microwave ranges, in order to
avoid eddy-current losses. Microwave applications involve the propagation of
electromagnetic waves in waveguides rather than currents in electric circuits.

The higher the operating frequency, the lower the permeability and sponta-
neous induction of the materials used, and the smaller the fraction of saturation
at which they operate. Hysteresis increases with frequency, and µmax falls from
about 104 in electrical steel to 100 or less for ferrites operating in the mega-
hertz range. Preferred materials for the main frequency ranges are specified in
Table 12.1.
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Whenever metals are exposed to an alternating magnetic field, the induced
eddy currents limit the depth of penetration of the flux. The skin depth δs is
defined as the depth where B falls to 1/e of its value at the surface:

δs =
√

�

πµrµ0f
. (12.2)

Here � is the resistivity and f is the AC frequency in hertz. For electrical steel
(�=0.5 µ�m, µr = 2 × 104) the value of δs is 0.36 mm at 50 Hz. At 500 kHz,
it is about 3.6 µm. Cores made from soft magnetic metals are often assembled
from a stack of insulated laminations, where the lamination thickness is chosen
to be less than δs , so that the applied field can penetrate each one. Insulators
are untroubled by these problems of flux penetration.

12.1 Losses

12.1.1 Low-frequency losses

Energy losses are critical in any AC application. Traditionally three main
sources were identified in soft metallic materials operating at low frequency, as
indicated in Fig. 12.2:

� hysteresis loss Phy ,
� eddy-current loss Ped ,
� anomalous losses Pan.
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Br

Hc

B

H

Hysteresis loss per cycle is
the area of the B(H ) or
µ0 M (H ’) loop (Fig.
2.19(c)).

The total losses per cubic metre are therefore

Ptot = Phy + Ped + Pan.

Hysteresis loss is related to irreversibility of the static B(H ) or M(H ′) loop.
The energy loss per cycle (2.93) is Ehy = µ0

∫
loopH

′dM . At a frequency f the
loss is fEhy

Phy = fµ0

∫
loop
H ′dM. (12.3)

Reduction of eddy-current
losses by lamination.

Eddy-current loss is inevitable when a conducting ferromagnet is subject to
an alternating field. The induced currents dissipate their energy as heat. In a
sheet of thickness t and resistivity � cycled to a maximum induction Bmax , the
losses Ped vary as f 2:

Ped = (π tfBmax)
2/6�. (12.4)

These losses can be minimized by using thin laminations or highly resis-
tive material. For example, electrical steel Fe94Si6 (3 wt% Fe–Si) is usually
made in laminations about 350 µm thick. It has � ≈ 0.5 µ�m and density d =
7650 kg m−3. For Bmax = 1 T, it follows from (12.4) that Wed = Ped/d ≈
0.1 W kg−1 at 50 Hz. Lamination reduces eddy-current losses by a factor 1/n2,
where n is the number of laminations.

Anomalous losses are whatever remains after Phy and Ped have been taken
into account. They turn out to be comparable in magnitude to Ped and they
arise from extra eddy-current losses due to domain wall motion, nonuniform
magnetization and sample inhomogeneity. Essentially, the anomalous losses
reflect the broadening of the hysteresis loop with increasing frequency, so the
separation of static hysteresis loss and anomalous loss is artificial. Think of an
imaginary circuit containing a moving domain wall; the flux through the circuit
is changing, so there is an emf which drives an eddy current near the moving
wall.

Anomalous losses are reduced by a structure of many parallel domain walls,
which decreases the distance the walls must move during the magnetization
process. High-grade electrical steels are therefore laser-scribed to define a
structure of narrow stripe domains. Much of the physics in that case is captured
by the Pry and Bean model, Fig. 12.3. The electrical sheet is supposed to have
a structure of uniformly spaced domains with separation d, which expand and
contract in an AC field applied parallel to the walls. The losses in that case are

Pan = (4fBmax)2dt
π�

∑
n odd

1

n3
coth(nπd/t), (12.5)

which reduces to the relation (7.33) in the limit (d/t) � 1. Losses for permalloy
as a function of frequency are shown in Fig. 12.4.
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Total losses per kilogram
for permalloy at different
frequencies. Thickness is
350 µm.

A modern physical approach to anomalous losses, due to Bertotti, ascribes
the broadening of the hysteresis loop at high sweep rates to the movement of
elementary magnetic objects, identified as domain walls or groups of correlated
walls. An effective field Han = Pan/(dJ/dt) is introduced, where J is the
polarization, and the anomalous losses are found to vary as (fBmax)2/3/�1/2.

wt

Hx

Hy

A rotating magnetic field
H = H0ex cos ωt
+ H0eysin ωt.

Losses in rotating fields are double those in axial fields, because the rotating
field can be decomposed into two perpendicular axial components. As the
polarization tends to saturation, domain walls are eliminated and the losses
tend to zero.

Progress in ameliorating key properties of temporary magnets operating at
mains frequencies – core loss and permeability – was dramatic in the twentieth
century; they improved by two and four orders of magnitude, respectively, as
shown in Fig. 12.5.

12.1.2 High-frequency losses

Losses at high frequencies are best represented in terms of a complex perme-
ability. The magnetization process involves magnetization rotation rather than
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Progress with soft
magnetic materials during
the twentieth century:
(a) total losses in
transformer cores and
(b) initial static
permeability.

domain-wall motion, and losses in the GHz frequency range are influenced by
ferromagnetic resonance. If the applied field ish = h0eiωt , the induced flux den-
sity b = b0ei(ωt−δ) generally lags behind by a phase angle δ, known as the loss

angle. The real parts of these expressions represent the time-dependent fields
h(t) and b(t). The complex permeability µ = (b0/h0)e−iδ can be expressed as
(b0/h0)(cosδ − i sin δ), or

µ = µ′ − iµ′′, (12.6)

where µ′ = (b0/h0)cosδ and µ′′ = (b0/h0)sinδ. The real part of the product
µh is the time-dependent flux density

b(t) = h0(µ′ cosωt + µ′′ sinωt), (12.7)

so µ′ gives the component of b that is in phase with the excitation field h, and
µ′′ gives the component which lags by π/2. Losses are proportional to µ′′, the
response in quadrature with the driving field. The magnetic quality factor Qm
is defined as (µ′/µ′′) = cot δ and the figure of merit is µ′Qm.

Real and imaginary parts of
the permeability for an
undamped resonance.

From a knowledge of µ′(ω) and µ′′(ω), the real and imaginary parts of the
frequency-dependent permeability of a linear system, it is possible to deduce
the response to any small, time-dependent stimulus h(t) which can be expressed
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as a Fourier integral

h(t) = 2

π

∫ ∞

0
h(ω) cosωtdω, (12.8)

where the Fourier components are

h(ω) = 2

π

∫ ∞

0
h(t) cosωtdt. (12.9)

The time-dependent response of the system is the superposition of the responses
at different frequencies ω:

b(t) =
∫ ∞

0
[µ′(ω) cosωt + µ′′(ω) sinωt]h(ω)dω. (12.10)

An equivalent expression relates m(t) with h(ω) in terms of the complex
susceptibility χ = χ ′ − iχ ′′. Since µr = 1 + χ , it follows that

µ′
r = 1 + χ ′ and µ′′

r = χ ′′.

These expressions provide a complete description of the dynamic response of
a linear magnetic system. Moreover, the real and imaginary parts of µ or χ
are related. Knowledge of one part over the whole frequency range leads to a
knowledge of the other, via the powerful Kramers–Kronig relations

µ′(ω) = 2

π

∫ ∞

0

µ′′(ω′)ωdω′

(ω′2 − ω2)
, µ′′(ω) = −2

π

∫ ∞

0

µ′(ω′)ωdω′

(ω′2 − ω2)
. (12.11)

If the sample is anisotropic, the susceptibility and permeability are tensors
related by µ̂ = I + χ̂ , which can be diagonalized by suitable choice of axes.
Each component satisifes the Kramers–Kronig relations.

To calculate the energy losses, we use (2.92) for the work done on
a magnetic system. The rate of energy dissipation is P = h(t)db(t)/dt =
h2

0 cosωt(−µ′ω sinωt + µ′′ω cosωt). Since (1/2π)
∫ 2π

0 sin θ cos θdθ = 0 and

(1/2π )
∫ 2π

0 cos2 θdθ = 1
2 , the expression for the average rate of energy loss is

Pav = 1
2µ

′′ωh2
0. (12.12)

The equivalent expression in terms of the imaginary part of the susceptibility
is 1

2µ0χ
′′ωh2

0. The losses are necessarily positive, which explains the choice of
the minus sign in the definition (12.6) of the complex permeability.

To look into the losses associated with the magnetization dynamics in more
detail, we consider the damped equation of motion for coherent rotation of the
magnetization introduced in Chapter 9:

dM

dt
= γµ0 M × H + α

Ms
M × dM

dt
, (12.13)
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where the magnetization vector M has magnitude Ms and it precesses around
the directionOz of the static magnetic field H , which incorporates the applied
field, the demagnetizing field and the anisotropy field. The damping term on
the right of the Landau–Lifschitz–Gilbert equation causes the magnetization to
spiral inwards towards theOz direction. Damping is essential for any measure-
ment of static magnetization. Without damping, the spontaneous magnetization
would precess perpetually around the applied field and never align with it.

H

h

M

M

m

s

q

Magnetization precession.

We consider the case where a field is applied along an easy anisotropy axis.
The equilibrium value of M isMs , aligned along Oz. The instantaneous value
of M is inclined at an angle θ and the deviation m is defined as M − Ms .

The effective field H s , also along Oz, is the sum of the applied field H and
the effective anisotropy field Ha cos θ . The torque is � = γµ0 M × H s . Next
we apply an alternating magnetic field h = h0 cosωt in the xy-plane. In the
undamped case,

dM/dt = γµ0 M × (H s + h). (12.14)

The equation is linear when the perturbation is small, that is when h� Hs and
m� Ms , Thus

dM/dt = γµ0(m × H s + Ms × h). (12.15)

In component form

dmx
dt

− γµ0Hsmy = γµ0Mshy, (12.16)

dmy
dt

+ γµ0Hsmx = −γµ0Mshx, (12.17)

dmz
dt

= 0. (12.18)

In complex notation d/dt is replaced by iω. Setting ω0 = γµ0Hs and ωM =
γµ0Ms , the equations are written

ω0 iω 0
iω −ω0 0
0 0 0




mxmy
mz


 = ωM


−hx
hy

hz


 ,

which can be inverted to read
mxmy
mz


 =

∣∣∣∣∣∣
κ −iν 0
iν κ 0
0 0 0

∣∣∣∣∣∣

hxhy
hz


 ,

where

κ = ω0ωM
/(
ω2

0 − ω2
)

(12.19)

and

ν = ωωM
/(
ω2

0 − ω2
)
. (12.20)
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Figure 12.6

Real and imaginary parts of
the susceptibilities κ and ν.

This susceptibility tensor describes the precession of the magnetization for
uniaxial anisotropy in the absence of damping. Only the in-plane components
need be considered, so

|χ | =
[
κ −iν
iν κ

]
.

When ω = 0, ν = 0, the tensor reduces to a scalar: χ 0 = ωM/ω0 = Ms/Hs.

As ω −→ ω0, the ferromagnetic resonance frequency, κ , and ν diverge as
shown in Fig. 12.6. The product of the static susceptibility and the resonance
frequency χ 0ω0 = ωM is constant:

χ0ω0 = γµ0Ms. (12.21)

This is Snoek’s relation. The greater is the ferromagnetic resonance frequency
ω0, the lower is the static susceptibility χ0. Unfortunately, extending the
frequency response of ferrites leads to a decline in susceptibility and loss
of performance.

In the case of a polycrystalline sample of volume v having crystallites of
volume vi with randomly oriented easy axes, the induced magnetization m =∑
i viχh = χ eff h. The susceptibility χ eff = 2

3κ = 2ωMω0/3(ω2
0 − ω2). The

product of the static susceptibility and the resonance frequency in this case is
χ0ω0 = 2

3ωM = 2
3γµ0Ms. This shows that it is impossible to exceed the Snoek

limit in such a system, but it can be circumvented in ferrites with strong planar
anisotropy. Ferrites are used as phase shifters in microwave applications above
10 GHz.

When damping is taken into consideration, a term −(α/Ms)M × dm/dt is
added to (12.15). The new expressions for κ and ν are

κ = ωM (ω0 + iαω)

ω2
0 − (1 + α2)ω2 + i2αωω0

, (12.22)

ν = ωMω

ω2
0 − (1 + α2)ω2 − i2αωω0

. (12.23)



448 Applications of soft magnets

  Unoriented
electrical steel

Carbon steel
Soft ferrites 

Fe–Ni

Grain-oriented
 electrical steel

Amorphous, powderFigure 12.7

Global market for soft
magnetic materials. The pie
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year.

12.2 Soft magnetic materials

The global market for soft magnetic materials is summarized in Fig. 12.7.
Electrical steel for transformers and electromagnetic machinery is predominant.
Produced in quantities in excess of 7 million tonnes per year, it represents
about 1% of global steel production, but 95% of the tonnage and 75% of the
market value of all temporary magnets. The choice of soft magnetic material is
a trade-off between polarization, permeability, losses and cost. The polarization
should be as large as possible for a given excitation field, and core losses must
be acceptable at the operating frequency. Alloy additions such as C, Si or
Al, which reduce losses and increase permeability also reduce the saturation
polarization and increase cost. One alloy does not suit all needs, but there are
a few widely used grades, which have been optimized over the years.
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Low-carbon mild steel is used for cheap motors in consumer products such as
washing machines, vacuum cleaners, refrigerators and fans, where losses are of
little interest to the manufacturer. The customer pays for the electricity. Better
electrical performance requires other alloy additions. Silicon is ideal, because
4 at% suffices to suppress the α → γ phase transition in iron, permitting hot
rolling of the sheet. Traces of carbon extend the γ phase stability region, so the
silicon content is usually around 6 at% or 3 wt%. Silicon steel was invented
by Robert Hadfield in 1900, who found that the 6 at% Si composition was
sufficiently ductile to be rolled into thin sheets. Isotropic and grain-oriented
Fe94Si6 in the form of sheets about 350 µm thick is produced by the square
kilometre for mains-frequency electrical applications. Losses are about ten
times lower than for mild steel. Silicon increases the resistivity, and reduces
both the anisotropy and the magnetostriction of the iron. Isotropic sheet is
appropriate for motors and generators, where the direction of flux changes
continually during operation. In transformers, however, the axis of B is fixed,
and it is beneficial to use crystallographically oriented sheet with an easy axis
to further reduce losses. This material was developed by the felicitously named
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Table 12.2. Properties of magnetic sheet steels

Js µr at Hc Wtot �

Material (T) 1.5 T (A m−1) (W kg−1) (µ� m)

Mild steel 2.15 500 80 12 0.15
Si steel 2.12 1 000 40 2.5 0.60
Grain-oriented Si steel 2.00 20 000 5 1.2 0.50

0
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Figure 12.8

Losses as a function of
operating induction for
grain-oriented silicon steel.

Norman Goss in 1934. It went into mass production in 1945, and now accounts
for around 20% of the volume of electrical steel produced. Grain-oriented
silicon steel with the Goss texture is produced by an extended process of rolling
and annealing which promotes secondary crystallization. The {110} planes of
the secondary crystallites are parallel to the sheets and a [100] easy axis is
parallel to the roll direction. The losses at 1.7 T are below 1 W kg−1, but they
increase as the material operates closer to saturation, Fig. 12.8.

[100] roll direction

[011] plane

The Goss texture of
grain-oriented Si–Fe.

The thickness of grain-oriented silicon steel laminations is 200–350 µm.
Thinner Si–Fe sheet can be produced by planar flow casting. The thinner
laminations are useful at higher frequencies, and for reducing losses for non-
sinusoidal waveforms with a high harmonic content, which arise, for example,
from wind farms. The properties of different magnetic steels are compared in
Table 12.2.

A great range of useful magnetic properties can be achieved in the Ni–Fe

alloy system. Here the economic benefit is measured not so much in thousands
of tonnes as in millions of magnetic components of widely differing shapes
and sizes. The outstanding feature of Ni–Fe alloys is their permeability, which
is achieved by carefully controlled heat treatment. Interesting compositions,
between 30% and 80% nickel, have the fcc γNi–Fe structure. A weak uniax-
ial anisotropy of order 100 Jm−3 can be induced in Ni–Fe alloys by magnetic
field annealing to help control the magnetization process. Most remarkable are
the permalloys with composition close to Ni80Fe20, where both anisotropy and
magnetostriction fall to zero at almost the same composition. This promotes the
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Table 12.3. Properties of soft materials for static or low-frequency
applications

Material Name µi µmax Js (T) Hc (A m−1))

Fe Soft iron 300 5 000 2.15 70
Fe49Co49V2 V-permendur 1 000 20 000 2.40 40
Ni50Fe50 Hypernik 6 000 40 000 1.60 8
Ni77Fe16.5Cu5Cr1.5 Mumetal 20 000 100 000 0.65 4
Ni80Fe15Mo5 Supermalloy 100 000 300 000 0.80 0.5
a-Fe40Ni38Mo4B18 Metglas 2628SC 50 000 400 000 0.88 0.5
Fe73.5Cu1Nb3Si13.5B9 Finmet 50 000 800 000 1.25 0.5

highest, shock-insensitive permeability. A tendency towards Ni3Fe-type L12

atomic ordering can be suppressed by Mo additions in supermalloy, and
ductility is achieved with copper additions in mumetal, which is good for mag-
netic shielding. Larger polarization is obtained near the equiatomic Ni50Fe50

composition (hypernik), but the soft magnetic properties are slightly inferior to
those of permalloy (Table 12.3). The iron-rich invar alloys, around Ni36Fe64,
offer low Curie temperatures and rapid thermal variation of the spontaneous
polarization, which are exploited in applications such as rice cookers and
electricity meters. Their dimensional stability around room temperature due
to negative volume magnetostriction makes them suitable for mechanical
precision instruments. Charles Guillaume received the Nobel prize in 1920
for his discovery of invar, the only time the prize was awarded for a new
magnetic material.

The Co–Fe alloys are much less versatile, and more expensive. The cost
of cobalt used to fluctuate wildly, but it stabilized as more geographically
diverse sources of supply became available. The great advantage of permendur,
Fe50Co50, is its polarization, the highest of any bulk material at room temper-
ature (2.45 T). Addition of 2% vanadium improves the machinability without
spoiling the magnetic properties. The Fe65Co35 composition provides similar
polarization with less cobalt.

Powder of iron or the brittle zero-anisotropy, zero-magnetostriction alloy
Sendust (Fe85Si10Al5) can be insulated and used at higher frequencies in cores.
Iron powder with a particle size of a few micrometres is practically anhysteretic
at all temperatures (Fig. 12.9). Relative permeability is limited to 10–100
because of the demagnetizing fields. Long telephone lines are loaded with
powder-core inductors (loading coils) to balance their capacitance.

Melt-spun amorphous alloy ribbons can be produced with thickness of about
50 µm and resistivity ≈ 1.5 µ� m. No higher resistivity can be achieved in
a metal because it corresponds to a mean-free path comparable to the inter-
atomic spacing. The compositions are close to the glass-forming ratio M80T20,
where T = Fe, Co, Ni and M = B, Si. Cobalt-rich compositions exhibit zero
magnetostriction, and permeability up to 106. Metallic glass ribbons can be
wound into cores for use up to about 100 kHz, and applied, for example, in
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Magnetization of diluted
iron powder with a particle
size of 6–8 µm. (Data
courtesy of M. Venkatesan.)

switched mode power supplies, distribution transformers, as well as in flux gate
magnetometer. Partially crystallized nanocrystalline materials such as finmet

(§11.2.4) offer comparable permeability, with higher polarization.

An assortment of
soft-magnetic components
made from finmet.
(Courtesy, Hitachi metals.)

Soft ferrites have mediocre polarization and permeability compared to
metallic ferromagnets – their ferrimagnetic saturation polarization is only
0.2–0.5 T – but their insulating character is a decisive advantage at high fre-
quencies. Since eddy-current losses are not a problem, there is no need for
lamination. Oxides are also much better than metals at resisting corrosion.
Ceramic components have to be produced to near-net shape, and finished by
grinding.

Magnetic properties of the spinel ferrites have been tailored by tuning the
composition, microstructure and porosity since the 1940s when these materials
first saw the light of day in the Netherlands. Mn–Zn ferrites are used up
to about 1 MHz, and Ni–Zn ferrites from 1–300 MHz or more. The latter
have lower polarization, but higher resistivity. Conduction is usually due to
traces of Fe2+, which promotes Fe2+–Fe3+ electron hopping. Most cations
make a negative contribution to the magnetostriction and anisotropy constant;
〈111〉 directions in the spinel lattice are usually easy, unless Co2+ or Fe2+ are
present.

The frequency response of the initial permeability of a ferrite µi is almost
flat up to a rolloff frequency f0, associated with ferromagnetic resonance
(Fig. 12.10). The losses peak at f0. The permeability and resonance frequency
vary oppositely with anisotropy, and according to Snoek’s relation (12.21) their
product is constant for a particular compositional family: the higher the rolloff
frequency, the lower the permeability. The figure of merit µif0 is about 8 MHz
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Table 12.4. Properties of soft materials for high-frequency
applications

Material Js(T) µi Hc (A m−1) � (� m) P (0.2T)

Mn–Zn ferrite 0.45 4000 20 1 200
Ni–Zn ferrite 0.30 500 300 >103
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Frequency response of the
real and imaginary parts of
the permeability for some
Ni–Zn ferrites with different
permeability. (After Smit
and Wijn (1979).)

for Ni–Zn ferrites and 4 GHz for MnZn ferrites. Hence it is not feasible
for a MnZn ferrite with a permeability of 10 000 to operate above 400 kHz.
Properties of high-frequency ferrites are summarized in Table 12.4.

YIG is an excellent microwave material for use in the GHz range. Highly
perfect insulating crystals can be prepared which have minimal anisotropy.
To measure the ferromagnetic resonance, a small sample ground and pol-
ished in the form of a sphere is placed near the end of a waveguide. The
reflected signal is measured at fixed frequency as the applied field is swept
through the resonance at ω0 = γH0, where γ is the gyromagnetic ratio
≈28 GHz T−1. In the X-band (8–12 GHz radiation, handled in 25 mm
waveguides) the linewidth of the resonance observed in an applied field of
350 kA m−1, may be only 350 A m−1 for dense polycrystalline YIG and better
than 35 A m−1 for a single-crystal sphere. TheQ factorω/ ω is therefore 1000
in one case and 10 000 in the other. These sharp resonances are indispensable
for microwave filters and oscillators. The snag is that a magnetic field is needed
to operate these components, which must be provided by an electromagnet or
a permanent magnet.
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12.3 Static applications

Figure 12.11

An electromagnet.

B B out
in

Magnetic shielding. The
shielding ratio R is
Bout/Bin.

Electromagnets consist of field coils to polarize an iron core, a yoke to guide
the flux and pole pieces to concentrate flux in the airgap, Fig. 12.11. Flux
guidance and concentration in electromagnets requires material with the highest
polarization and very little remanence. Pure soft iron or Fe65Co35 is used. For
best results, the pole pieces are tapered at an angle of 55◦.

Electromagnetic relays and solenoid valves are miniature electromagnets
where an iron core is magnetized and exerts a force on another temporary
magnet. When the gap flux density is Bg , the force per unit area is B2

g/2µ0

(13.13).
Passive magnetic shielding of low-frequency AC fields or weak DC fields,

such as the Earth’s, requires material to provide a low-reluctance flux path
around the shielded volume. Reluctance is the magnetic analogue of resistance.
The shielding ratio R is the ratio of the field outside to the field inside. Values
of R ≈ 100 are achieved in low fields. The thickness of shielding material
is chosen so that its polarization is unsaturated by the flux collected. It is
more effective to use several thin shields rather than one thick one. DC shields
are often made of permalloy or mumetal, which have negligible anisotropy and
magnetostriction, and are therefore immune to shock and strain. Flexible shield-
ing woven from cobalt-rich metallic glass tape, or finmet sheet may be used
directly.
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12.4 Low-frequency applications

(b)

(c)

(a)

(d)

Figure 12.12

Types of cores: (a) stacked
laminations, (b)
tape-wound core, (c)
powder core (sectioned to
show internal structure)
and (d) ferrite E-core.

Inductors are one of the three basic components of electric circuits. They are
circuit elements that resist any change of current through them. The voltage
drop across a resistanceless inductance of L henry is V (t) = −L∂I/∂t. If
I = I0 sinωt , the resulting voltage LI0ω cosωt has a phase lag of exactly
π/2. Consider the inductor as a long solenoid with cross section A, length l
and n turns per metre. The flux density in the solenoid is µ0nI . By Faraday’s
law V = −∂�/∂t = −µ0n

2lA∂I/∂t ; henceL = µ0n
2lA. Filling the solenoid

with soft magnetic material of permeability µr increases the flux density by
this factor, so that

L = µ0µrn
2lA. (12.24)

The soft magnetic core therefore increases the electrical inertia of the inductor
by orders of magnitude. Alternatively, the dimensions of a component with
a given inductance can be greatly reduced by including a soft core. Some
commonly used ones are shown in Fig. 12.12.

An inductor with and
without a soft magnetic
core.

Low-frequency electrical machines include transformers, motors and gener-
ators that operate at mains frequencies of 50 or 60 Hz, or 400 Hz in the case
of airborne or shipborne power. They include soft iron cores to generate and
guide the flux. Eddy-current losses (12.4) are reduced by using thin laminations
of material with a high resistivity. Efficiencies of well-designed transformers

exceed 99%; they are probably the most efficient energy converters ever made.
Core losses represent about a quarter of the total, the remainder being in the
windings. The core losses in transformers nevertheless cost some 10 billion
dollars per year. World-wide annual consumption of electrical energy is around
18 × 1012 kW h, which corresponds to an average rate of consumption of
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Two electric motor designs:
(a) an induction motor and
the squirrel cage (b) a 3/4
variable reluctance motors.

300 W per head of population. The rich billion of the Earth’s people
consume about ten times as much, and the poorest billion almost none
at all.

Electricity is produced in power stations by large turbogenerators (∼1000
MW) turning at constant frequency. The mains power is generated at a multiple
of this frequency so it is unnecessary to use laminations in the rotor.

Electric motors are manufactured by the million. Whether they are excited
by field coils or permanent magnets, they incorporate quantities of temporary
magnets to guide the flux. Here we will describe just two designs which consume
much electrical steel. The induction motor is the simplest and most rugged of all
(Fig. 12.13(a)). It is manufactured in sizes ranging from 10 W to 10 MW for a
myriad of domestic and industrial applications. The ‘fractional horse power’1

motors in consumer goods are usually induction motors.
The stator of this workhorse is a hollow cylindrical stack of laminations,

pressed into a core, with slots to receive the field windings. The windings are
energized with single-phase mains power (three-phase for industrial drives),
which creates a rotating magnetic field in the centre. There is a ‘squirrel cage’
rotor consisting of metal bars running parallel to the axle which are short-
circuited by circular end rings, and another soft-iron core is mounted in the
centre. The forces on currents induced in the squirrel cage cause it to rotate
with the field, but at slightly less than synchronous speed. It is an asychronous
motor which draws maximum current at startup.

1 1 horse power =746 W.
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(a) Schematic diagram of a
fluxgate magetometer,
(b) principle of operation.
The cores are saturated in
the sum of the AC field h
and the applied field H ’.
The pickup voltage V is
proportional to H ’.

A different operating principle applies in the variable-reluctance motor. Reluc-
tance is the magnetic resistance associated with the flux path. The analogy
between electric and magnetic circuits is developed in §13.1. A 3/4 motor
design is illustrated in Fig. 12.13(b). There are three pairs of stator windings,
which are energized in the sequence 1–2–3 to create a rotating field. The rotor
this time is just a piece of laminated soft iron with four poles in the form of a
cross. Initially it is in the position shown, but when windings 2 are energized, it
rotates clockwise by 60◦, and so on. The motor is synchronous. It offers a high
torque to inertia ratio, but it requires a precise electronic controller to power
the windings.

AC
source

~

DC
source

Load

'
B

H

b

a

a

'

b

A magnetic amplifier. With
no DC control current, there
is a large flux swing (a–a’),
but as the control current
rises the flux swing ceases
(b–b”) and the AC load
current rises.

Magnetic amplifiers use square-loop cores which may be made from textured
Ni50Fe50. When the DC control current is zero, the load current passing through
the AC winding is very small because the voltage drop across the winding,
proportional to d�/dt , almost cancels the source signal. As the current from
the DC source saturates the core, the change in flux in the core becomes
negligible and the current in the load rises.

A related application which depends on saturable soft cores is the fluxgate

magnetometer, Fig. 12.14. The magnetometer consists of two identical, parallel
cores with a field winding creating an AC field, h, in opposite directions. A
toroidal core with a helical winding will work as well. The field, H ′, to be
measured is applied parallel to the cores, and it leads to periodic saturation of
one of them. The changing flux is sensed in a secondary coil usually with the
help of a lockin detector. A response linear in applied field is obtained by flux
compensation to null the signal. Fields of up to 200 A m−1 can be measured
with an accuracy of 0.5 A m−1. Typical noise figures are 100 pT Hz−1/2.

A different family of applications of soft magnets makes use of their
magnetostrictive properties, which generally depend on the direction of mag-
netization relative to the crystal axes. The linear saturation magnetostriction
λ′
s of an isotropic polycrystalline material is an average over all directions.

Nickel, for example, has λs = −36 × 10−6, so modest strains can be achieved



457 12.5 High-frequency applications

Transducers

Signal
output

Signal
input

Piezoelectric
substrate

Magnetorestrictive
film

Magnetic
field

Figure 12.15

A surface acoustic wave
delay line.

by magnetizing nickel rods. Grain-oriented silicon steel has λ100 = 20 × 10−6,
which is why transformers hum. Much larger effects are obtained with the
mixed Tb–Dy alloy terfenol (§11.3.5), where cancellation of cubic anisotropy
contributions of opposite sign for the two rare-earths means the alloy is easy to
magnetize. The huge linear magnetostriction of 1500 × 10−6 makes it useful
for linear actuators and ultrasonic or accoustic transducers, including sonar.

Another manifestation of magnetostriction in a soft magnetic material is
the  E effect (§5.6.2). The dramatic softening of Young’s modulus, as the
domains align in a small field, can be used to tune a surface accoustic wave
delay line, Fig. 12.15, of the type incorporated in military radar. The accousic
wave propagates in a piezzoelectric substrate such a quartz or LiMbO3, where
it is excited and detected by a pair of interdigitated transducers. The beam from
an array of antennae can be directed by tuning the time delays between adjacent
elements of the array.

12.5 High-frequency applications

Ferrite components are extensively employed in high-frequency applications,
although metallic alloys with very thin laminations offer the benefit of higher
polarization at frequencies where the losses are not too severe.

Ferrite cores appear in chokes, inductors and high-frequency transformers
for switched-mode power supplies. They are also used for broad-band ampli-
fiers and pulse transformers. Losses at 100 kHz are about 50 W kg−1. Another
common application of ferrites is as antenna rods in AM radios, Fig. 12.16.
The ferrite antenna consists of an N -turn pickup coil wound on a rod of cross-
sectional area A. The voltage induced by a radio-frequency field of amplitude
b0 and frequency ω would have amplitude NωAb0 for the coil alone. The
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(a) (b)

b0

b0Figure 12.16

(a) A wire loop antenna,
and (b) an equivalent
ferrite rod with much
smaller cross section.

external susceptibility of a piece of soft material with demagnetizing factor N
was given by (2.42) χ ′

e = χ(1 + χN )′.
In the present case, N is small and µ is very large, so that χ = µ, and

χN � 1. Hence µ′ ∼ 1/N . The amplitude of the voltage induced in the
antenna is therefore NωAb0/N . The ferrite acts as a flux concentrator, so
that the antenna is equivalent to a much larger bare coil of area A/N . Ni–Zn
ferrite is best for this application on account of its high resistivity.

A pulse transformer.

The wide frequency range over which ferrites exhibit near constant µ′ and
negligible µ′′ (Fig. 12.10) makes them suitable for pulse transformers. A pulse
that is sharply defined in time contains Fourier components spanning a wide
range of frequencies. The transformer is just a ring of soft ferrite on which both
the primary and secondary are wound.

A single grade of ferrite can be used to produce high-frequency inductors of
a standard size with different values of L by the expedient of leaving an airgap
in the core. If lm is the length of the core which has permeability µ, lg is the
length of the airgap and A is the cross section, the reluctance is the sum of
the contributions of the ferrite and the airgap (13.5), which can be written as(
lm/µ0µeff A

) = (lm/µ0µrA) + (lg/µ0A
)
. Hence

1

µeff
≈ 1

µr
+ lg

lm
≈ lg

lm
. (12.25)

AC core with an airgap.

The cross section can be obtained when the permeability is degraded by
the airgap, which introduces a demagnetizing field in the ferrite. The effective
demagnetizing factor of the gapped core is N = lg/ lm.

Miniature inductors can be integrated with on-chip electronics. A planar or
bilevel copper coil and a thin permalloy core can be electroplated and sputtered
directly onto the chip.

Resonant filters are LC circuits which pass a narrow band of frequencies,
whose width is limited by losses in the components, Fig. 12.17. The relative
width of the peak gauged at the point where the value falls to 1/

√
2 of the peak

value is2

 ω

ω0
= 1

Q
, (12.26)

2 The external susceptibility χ ′ in the applied field H ′ should not be confused with the real part
of the complex susceptibility, which also features in this chapter.
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An LC filter circuit and the
pass band.

where the Q factor is essentially limited by resistive losses in the inductor.
Q is defined as µ′/µ′′. The quality factor is maximized when the losses are
equally divided between the copper windings and the magnetic material; Q is
then Lω/2R.

12.5.1 Microwave applications

Microwave ferrites can operate in the frequency range 300 MHz–100 GHz. At
these frequencies, we need to consider the electromagnetic wave travelling in
a waveguide rather than the current in a circuit. Microwave devices exploit the
nonreciprocal interaction of the electromagnetic field with the ferromagnetic
medium, especially in the vicinty of the ferromagnetic resonance frequency
ω0. Generally, if a uniform external field is applied along Oz and an AC field
h′ is applied in the xy-plane, the resulting flux density B is given by the tensor
permeability 

BxBy
Bz


 =


 µ′ −iµ′′ 0

iµ′′ µ′ 0
0 0 µ0




H ′

x

H ′
y

H ′
z


 , (12.27)

where H ′ = Hz + h. The off-diagonal terms produce the nonreciprocal
effects.

A plane-polarized wave h = h0 cosωt can be decomposed into two oppo-
sitely rotating circularly polarized waves.

h = h0 cosωt = h0

2
(eiωt + e−iωt ), (12.28)

which generally propagate at different speeds c/
√
εµ+ and c/

√
εµ−. This

magnetic circular birefringence is the microwave Faraday effect. The + and −
directions are defined in relation to the polarization of the ferrite. Here µ+
and µ−, the effective permeabilities for right and left polarizations, are µ+ =
µ′

+ − iµ′′
− and µ− = µ′

−+ iµ′′
−, Fig. 12.18. The first turns in the sense of

the Larmor precession and shows a resonance at the ferromagnetic resonance
frequency, the second turns in the opposite sense and does not resonate. If
the plane wave is incident normal to the surface of a plaque of ferrite of
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right-polarized radiation.

F F

(a) (b)

(c)

+wt t

+wt + f+ +wt + f

qF

qF qF

+k
M

Figure 12.19

Two counter-rotating
circularly polarized waves
(a), which become
dephased because they
propagate with different
velocities (b), producing
the Faraday roation θ F (c).
The effect does not depend
on the sense of
propagation of the waves
relative to the
magnetization of the
birefringent medium.

thickness t, the two counter-rotating modes become dephased by an angle
φ± = √(εµ±)ωt/c, and the plane of polarization is rotated through an angle
θ = (φ+ + φ−)/2 when it traverses the ferrite, as shown in Fig. 12.19. This is
the microwave Faraday effect. Unlike the Faraday effect at optical frequencies,
where µ = µ0, which is of order 10−4 radians for d = �, the rotation at
microwave frequencies is of order 1 radian per wavelength, so it is best to place
ferrite components inside the waveguides.

The Faraday effect is nonreciprocal in the sense that the direction of rotation
of the plane of polarization of the light does not depend on the direction of
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A waveguide propagating a
TE01 mode. Filling the upper
half with YIG magnetized
vertically absorbs the
microwaves for one
direction of propagation,
but not the other.

propagation of the electromagnetic waves. Reflecting the microwaves back the
way they came produces double the rotation, not zero rotation.

We briefly describe devices which depend either on resonant absorption of
microwaves, or on the circular birefringence far from resonance which produces
the microwave Faraday effect. Microwave ferrite devices are frequently made
of YIG; highly perfect polished spherical crystals may have a linewidth as low
as 5 ± 1 A m−1 for resonance at 10 GHz. Such a sphere hasQ = f0/ f ≈ 105.
These very sharp resonances are needed for the microwave filters and
oscillators made for communications and measurement systems operating in the
1–100 GHz range.

Microwave devices exploit the difference between µ+ and µ− in various
ways. Resonant isolators use the resonance at ω0 to absorb signals reflected
back along a waveguide, Fig. 12.20. Phase shifters exploit differences between
µ+ andµ− above and below the resonance peak. Three- or four-port circulators
transmit signals from one port to the next one, while strongly absorbing on other
paths. Faraday rotators rotate the plane of polarization of the microwaves.

The isolator protects a signal source from reflections of power back down
the waveguide. It operates at resonance, where there is the greatest possible
difference in absorption between the + and − modes. The waveguide transmits
a TE01 mode, where the magnetic field is parallel to the broad faces of the guide
and it is circularly polarized in opposite senses in the upper and lower halves
of the waveguide. The pattern of field in the guide is reversed when the wave
travels in the opposite direction. If the top half of the guide is filled with YIG
and a field is applied perpendicular to the broad faces so that its magnetization
precesses in the plane of the H-field, the wave can pass freely in the forward
direction, with attenuation of about 0.3 dB, but it will be strongly alternated, by
up to 40 dB in the reverse direction. The attenuation of the power in the forward
sense is 7%, but in the reverse sense it is 104.

A circulator is a device with three or four ports which delivers the input signal
at one port as the output at the next one, while the other ports remain isolated.
The principle of the four-port circulator is illustrated in Fig. 12.21. The heart
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A four-port circulator:
(a) illustrates the principle,
(b) shows the sense of
circulation and (c) is the
logic table.

of the device is a YIG disc with thickness and applied field chosen to produce a
Faraday rotation of precisely π/4. The device operates at a frequency whereµ+
and µ− are sufficiently different to produce the required Faraday rotation, yet
far enough from resonance to minimize losses. Two polarization splitters, the
microwave equivalent of optical Wollaston prisms, are offset by π/4 as shown.
Each acts to split an incident beam into two perpendicular, linearly-polarized
components or conversely to combine them into a single beam. The beam
splitting in the microwave device is achieved using single-mode waveguides.
A linearly-polarized input at 1 becomes the output at 2. Similarly, an input
at 2 becomes an output at 3, and so on. The circulator is a key component
of microwave circuits, because it allows a single antenna to be used both for
reception and transmission. This was essential for the development of modern
telecommunications and radar equipment.

A resonant microwave
filter. The device transmits
signals in a narrow
frequency range around
the ferromagnetic
resonance frequency f0.

A tunable narrow-band resonant filter is made by winding two orthogonal
coils on a small YIG sphere, about 1 mm in diameter. The signal from one coil
will only be detected in the other at resonance, where the + mode is circularly
polarized. The resonant frequency can be tuned from 1 GHz to more than
10 GHz by changing an externally-applied field.

For higher-frequency, millimetre-wavelength microwave applications such
as military phased-array radar, satellite communications or automobile anti-
collision radar, the ferromagnetic resonance is not determined by an exter-
nally applied magnetic field, but by the anisotropy field of a hard magnet.
For BaFe12O19, the anisotropy field µ0Ha = 1.7 T corresponds to a resonance
frequency of 36 GHz when N = 1 (9.17). The resonant frequency can be
decreased by scandium substitution or increased by aluminium substitution.
These self-biased, miniature high-frequency microwave devices therefore make
use of hard magnets, rather than soft magnets.



463 Exercises

FURTHER READING

C. W. Chen, Magnetism and Metallurgy of Soft Magnetic Materials, New York: Dover
Publications (1983). The reprint of this 1977 text provides a wealth of detailed and
reliable information on almost every aspect of soft magnets.

R. M. Bozorth, Ferromagnetism, Piscataway: Wiley–IEEE Press (1993). The reprint of
Bozorth’s classic 1951 text remains a reference for metallic materials and electro-
magnetic applications.

P. Brissonneau, Magnétisme et matériaux magnétiques pour l’électrotechnique, Paris:
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EXERCISES

12.1 Use the method of dimensions to show that δ ∝ (�/µf )1/2 and Ped ∝ (ifB2
max)/�

((12.2) and (12.4)).
12.2 Deduce the expression for penetration depth (12.2). Estimate how thin a soft

metallic film should be if it is to operate at (a) 10 kHz and (b) 1 GHz.
12.3 By considering the field at the apex of a cone of a fully saturated magnetic

material produced by the surface magnetic pole density J · en, show that the field
is maximum when the half-angle of the cone is tan−1√2.

12.4 Show that the reduction of eddy-current losses in a laminated core scales as
1/N 2, where N is the number of laminations.

12.5 Estimate (a) the average rate of consumption of electrical energy in watts, per
person on Earth, (b) the number of turbogenerators on Earth and (c) the maximum
possible diameter of their rotors, if the elastic limit of steel is 700 MN−2.

12.6 Show that theQ-factor for an RL circuit is Lω/2R.
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Fail better
Samuel Beckett 1906–1989

Permanent magnets deliver magnetic flux into a region of space known as the air
gap, with no expenditure of energy. Hard ferrite and rare-earth magnets are ideally
suited to generate flux densities comparable in magnitude to their spontaneous
polarization J s . Applications are classified by the nature of the flux distribution,
which may be static or time-dependent, as well as spatially uniform or nonuniform.
Applications are also discussed in terms of the physical effect exploited (force,
torque, induced emf, Zeeman splitting, magnetoresistance). The most important
uses of permanent magnets are in electric motors, generators and actuators. Their
power ranges from microwatts for wristwatch motors to hundreds of kilowatts for
industrial drives. Annual production for some consumer applications runs to tens or
even hundreds of millions of motors.

The flux density Bg in the airgap (equal toµ0 Hg) is the natural field to consider
in permanent magnet devices because flux is conserved in a magnetic circuit,
and magnetic forces on electric charges and magnetic moments all depend
on B.

A static uniform field may be used to generate torque or align pre-existing
magnetic moments since � = m × Bg . Charged particles moving freely
through the uniform field with velocity v are deflected by the Lorentz force
f = qv × Bg , which causes them to move in a helix, turning with the cyclotron
frequency (3.26) fc = qB/2πm. When the charged particles are electrons con-
fined to a conductor of length l constituting a current I flowing perpendicular
to the field, the Lorentz force leads to the familiar expression f = BgI l. This
is the basis of operation of electromagnetic motors and actuators. Conversely,
moving a conductor through the uniform field induces an emf given by Fara-
day’s law E = −d�/dt , where� (= Bg ·A) is the flux threading the circuit of
which the conductor forms a part.

Spatially nonuniform fields offer another series of useful effects. They exert
a force on a magnetic moment given by the energy gradient f = ∇(m · Bg).
They also exert nonuniform forces on moving charged particles, which can be
used to focus ion or electron beams or generate electromagnetic radiation from
electron beams passing through the inhomogeneous field, as in a synchrotron
wiggler, for example. The ability of rare-earth permanent magnets to generate
a complex flux pattern with rapid spatial fluctuations (∇Bg > 100 T m−1) is



465 Applications of hard magnets

Table 13.1. Classification of permanent-magnet applications

Field Physical effect Type Application

Uniform Zeeman splitting Static Magnetic resonance imaging
Torque Static Magnetic powder alignment
Hall effect, Static Proximity sensors

magnetoresistance
Force on conductor Dynamic Motors, actuators, loudspeakers
Induced emf Dynamic Generators, microphones

Nonuniform Forces on charged Static Beam control, radiation sources
particles (microwave, UV, X-ray)

Force on paramagnet Dynamic Mineral separation
Force on iron Dynamic Holding magnets
Force on magnet Dynamic Bearings, couplings, maglev

Time-varying Various Dynamic Magnetometery
Force on iron Dynamic Switchable clamps
Eddy currents Dynamic Brakes, metal separation

unrivalled by any electromagnet. Remember that a magnet with J ≈ 1 T is
equivalent to an Ampèrian surface current of 800 kA m−1. Solenoids, whether
resistive or superconducting, would have to be several centimetres in diameter
to accommodate the requisite number of ampere-turns, whereas blocks of rare-
earth or ferrite magnets of any size can be assembled in any desired orientation
as close to each other as necessary.

Time-varying fields are produced by displacing or rotating the permanent mag-
nets, or by moving soft iron in the magnetic circuit. A field which varies in
time can be used to induce an emf in an electric circuit according to Fara-
day’s law or to produce eddy currents in a static conductor and exert forces
on those currents. If it is spatially nonuniform, it can exert a time-dependent
force on a magnetic moment or a particle beam. Applications include mag-
netic switches and apparatus for measurements of physical properties as a
function of field. The applications of permanent magnets are summarized in
Table 13.1.

Other uses of magnets, in agriculture, acupuncture, pain control, rejuve-
nation, suppression of wax formation in oilwells or control of nucleation of
limescale deposits in water pipes defy classification. Some are undoubtedly
fanciful, like the persistent myth that a magnet can be beneficial or harm-
ful depending on whether its North or South pole is presented to the patient.1

Others are good areas for scientific investigation. A closed mind learns nothing.
Figure 13.1 provides an overview of permanent magnet applications.

1 Details of medical applications imaginatively claimed for magnets can be found in the 1811
treatise Materia Medica Pura by Samuel Hennemann, the father of homeopathy.
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(a) A simple magnetic
circuit and its electrical
equivalents, (b) with and
(c) without flux loss.

Permanent magnets are conventionally shown in magnetic circuits as trans-
parent or unshaded, with a solid arrow to indicate the direction of magnetization.
Soft iron is shaded.

13.1 Magnetic circuits

A magnetic circuit comprises a magnet and an airgap with soft iron to guide the
flux. When flux from a permanent magnet of length lm and cross section Am
is guided through soft magnetic material into an airgap of length lg and cross
section Ag , as in the circuit of Fig. 13.2(a), ∇ · B = 0 gives

BmAm = BgAg, (13.1)

provided there is no flux leakage. We make the simplifying, if unrealistic,
assumptions that Bm and Bg are constants, and that the soft material in the
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circuit is ideal insofar as it has infinite permeability (H = 0). IfHm is the value
of H in the magnet, Ampère’s law

∮
H · dl = 0 then gives

Hmlm = −Hglg. (13.2)

Multiplying (13.1) and (13.2), and using the fact that Bg = µ0Hg ,

(BmHm)Vm = −B2
gVg/µ0, (13.3)

where Vm, Vg represent the volume of the magnet and the airgap, respectively.
The flux density in the gap is therefore maximized when the product BmHm
is maximum; hence the emphasis on energy product as a figure of merit for
permanent magnets. Dividing (13.1) by (13.2), gives the equation for the load

line Bm(Hm) whose negative slope is the permeance coefficient Pm:

Load line
Working point

B

H

Load line M

HH

Hc

c

Second-quadrant µ0 M (H )
and B(H ) for an ideal
permanent magnet. The
working point and load line
for maximum energy
product are indicated.

Bm

Hm
= −µ0

Aglm
Amlg

. (13.4)

The working point is where the load line intersects the B:H loop. It depends on
the dimensions of the magnet and the airgap.

The shape of an optimized
permanent magnet
cylinder. The
demagnetizing factor
N = 1

2 .

As materials improved, magnets grew shorter and fatter to work nearer their
(BH)max point. This point for an isolated magnet with an ideal square magne-
tization loop can be calculated by maximizing µ0(Hm +M)Hm with respect to
the shape of the magnet, represented by its demagnetizing factor N . The square
M(H ) loop corresponds to a linear second-quadrant B(H ) variation with slope
µ0. UsingHm = −NM , the result is that the optimum value of N is exactly 1

2 .
Squat cylinders have replaced the bars and horseshoes of yesteryear! The work-
ing point of this ideal magnet, which has second-quadrant magnetization equal
to its remanence, is at B = Br/2, H = −Mr/2. Its permeance is µ0, and the
maximum energy product is µ0M

2
r /4. Practical magnets have less-than-perfect

loops, and their energy product always fall short of this upper limit.
Inevitably, there are flux losses in the circuit, so a factor β is introduced on

the left-hand side of (13.1). Furthermore, the soft material will be less than
ideal so a factor α is introduced on the left-hand side of (13.2). Typically, α is
in the range 0.7–0.95, but β may be anywhere from 0.2 to 0.8. When designing
a magnetic circuit, it is always good practice to place the magnets as close as
possible to the airgap in order to reduce flux losses.

The design of magnetic circuits is an art, facilitated by computer simulation.
A formal analogy between magnetic and electric circuits, set out in Table 13.2,
is helpful. Ampère’s law

∮
H · dl = 0 in the absence of conduction currents

corresponds to the electric field result
∮

E · dl = 0 in the absence of changing
magnetic fields. Corresponding continuity equations are ∇ · B = 0 and ∇ · j =
0, where j is the electric current density. Magnetic potential difference defined
as ϕab = ∫ b

a
H · dl is measured in amperes, using the potential coil illustrated

in Fig. 10.24. The permanent magnet behaves like a battery. It is the source of
magnetomotive force (mmf), the magnetic analogue of emf, because it is the
only segment of the circuit where the magnetic potential rises; H is oppositely
directed inside the magnet and outside it. The magnetic ‘battery’ is energized
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Table 13.2. Analogy between electric and magnetic circuits

Electric Magnetic

Field E (V m−1) H (A m−1)
Potential ϕe (V) ϕm (A)
Current/flux density j (A m−2) B (T or Wb m−2)
Potential difference ϕe=

∫
E · dl ϕm= ∫ H · dl

Continuity condition ∇ · j= 0 ∇ · B= 0
Linear response law j= σ E B= µH
Current/flux I (A) � (T m2 or Wb)
Resistance/reluctance R = ϕe/I (�) Rm = ϕm/� (A Wb−1)
for a cylinder of section A and length l R = l/Aσ Rm= l/Aµ
Conductance/permeance G = 1/R Pm= 1/Rm

as the last step in magnet manufacture, when the unmagnetized ferromagnetic
component is polarized in a pulsed field.2 Magnetic flux � is the analogue of
current, and reluctance Rm (= ϕ/�) is the equivalent of resistance. Its inverse,
permeance Pm is the analogue of conductance. Both Rm and Pm depend only
on the physical dimensions of the circuit element. For instance, the reluctance
of a short airgap is

Rg = ϕg/�g = lg/µ0Ag, (13.5)

where ϕg is the potential drop across the gap. The magnet has an internal
reluctance determined by its working point on the B:H curve; Rm = ϕm/�m.
The equivalent circuit of Fig. 13.2(b) illustrates the principle of matching the
airgap reluctance to the desired working point of the magnet, which is normally
the (BH)max point. Figure 13.2(c) shows the equivalent circuit allowing for
nonzero reluctance of the soft segments and flux losses.

Flux losses in magnetic circuits are much more severe than current losses
in electrical circuits, because the relative permeability of iron µr ≈ 103–104

is much less than the conductivity of copper relative to that of air. There are
many good electrical insulators, but the only true magnetic insulators are type
I superconductors, for which µ = 0. An approximate solution for the flux pro-
duced by a magnetic circuit may be achieved by dividing it into segments, and
attributing a standard permeance to each segment according to its dimensions.3

The permeances are added in series or parallel, and the flux is then calculated
from the mmf.

Rare-earth permanent magnets are particularly suited for use in ironless
circuits, where flux is confined to the magnets themselves and to the airgap.

2 Claims of magnetic ‘perpetual motion’ machines appear from time to time. Some depend on
drawing down the energy stored in a magnet. The energy product is reduced if the magnet does
irreversible work. Such devices have an unadvertised expiry date!

3 Tables of standard permeances are found in textbooks such as the chapter by Leupold in Coey
(1996).
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Hysteresis loops showing
working points for: (a) a
static application, (b) a
dynamic application with
mechanical recoil and (c) a
dynamic application with
active recoil.

Flux concentration is achieved whenever the flux density in the airgap exceeds
the remanent induction of the magnet, Bg/Br > 1.

13.1.1 Static and dynamic operation

Applications are classified as static or dynamic according to whether the work-
ing point in the second quadrant of the hysteresis loop is fixed or moving
(Fig. 13.3). The position of the working point reflects the internal field Hm,
which depends in turn on the magnet shape, airgap and any fields that may be
generated by electric currents. The working point changes whenever magnets
move relative to each other, when the airgap changes or when time-varying
currents are present. On account of their square loops, oriented ferrite and rare-
earth magnets are particularly well suited for dynamic applications that involve
changing flux density. Ferrites and bonded metallic magnets also minimize
eddy-current losses.

For mechanical recoil, the airgap changes from a narrow one with reluctance
R1 to a wider one with greater reluctance R2. After several cycles, the working
point follows a stable trajectory, represented by the line P2Q in Fig. 13.3(b)
whose slope is known as the recoil permeability µR. Recoil permeability is
2–6 µ0 for alnicos, but it is barely greater than µ0 for oriented ferrite and
rare-earth magnets. The shaded area in Fig. 13.3(b) is a measure of the useful
recoil energy in the gap, the recoil product (BH)u, which will always be less than
(BH)max , but approaches this limit in materials with a broad square loop and a
recoil permeability close to µ0.

Active recoil occurs in motors and other devices where the magnets are subject
to an H-field during operation as a result of currents in the copper windings.
The field is greatest at startup, or in the stalled condition. Active recoil involves
displacement of the permeance line along the H -axis.

13.2 Permanent magnet materials

The market for hard magnetic materials is nowadays dominated by two families
of materials, the hexagonal ferrites and Nd–Fe–B (Fig. 13.1(a)). Their production
volumes and costs are quite different, but each holds roughly half the market.
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Ferrites are produced throughout the world, but Nd–Fe–B production is concen-
trated in China, where there are abundant rare-earth reserves. Most magnets are
produced as sintered blocks or other simple shapes, but increasing quantities
of polymer-bonded material, suitable for making complex shapes by injection
moulding, are manufactured.

The maximum energy product doubled roughly every 12 years over the
course of the twentieth century (Fig. 1.13). Consequences for permanent magnet
device design have been dramatic, as illustrated in Fig. 13.4. The devices
shrink as higher energy-product magnets become available, their configuration
changes and the number of parts can be reduced. The advantage of magnets
over coils in small structures can be appreciated by comparing a small disc-
shaped magnet with a coil having the same magnetic moment. A magnetized
cylinder with diameter 8 mm and height 2 mm made of a material with M =
1 MA m−1 has m ≈ 0.1 A m2. The equivalent current loop, m = IA would
require 2000 ampere-turns, an impossible demand in such a small space!

There has been no further doubling of (BH)max since 1996, and there seems
to be little scope for further dramatic improvements of bulk material, barring
the development of practical oriented hard/soft nanocomposites.

Properties of some typical magnets are shown in Table 13.3. The data are
for dense oriented magnets, made from sintered uniaxial ceramic ferrite or
metallic alloy powder. These magnets have a microstructure in which the c
axes of the individual crystallites are aligned by applying a magnetic field
during processing. All except alnico are true permanent magnets, in the sense
that the magnetic hardness parameter κ , defined by (8.1), is greater than unity.
The (BH)max values achieved fall short of the theoretical maximum µ0M

2
r /4

because of nonideal loop shape. Two values of coercivity are listed, one is the
‘intrinsic’ coercivity iHc measured on the M(H ) loop, the other, BHc, is the
coercivity measured on the B(H ) loop.
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Table 13.3. Properties of commercial oriented magnets

µ0Mr Js iHc BHc (BH)max µ0M
2
r /4

(T) (T) (kA m−1) (kA m−1) (kJ m−3) (kJ m−3)

SrFe12O19 0.42 0.47 275 265 34 35
Alnico 5 1.25 1.40 54 52 43 310
SmCo5 0.88 0.95 1700 700 150 154
Sm2Co a

17 1.08 1.15 1100 800 220 232
Nd2Fe14B 1.28 1.54 1000 900 350 326

a Intergrown with 1:5 phase

The world’s first rare-earth permanent magnets were based on SmCo5. This
compound has huge uniaxial anisotropy and a high Curie temperature, but
its magnetization limits the achievable energy product (§11.3.2). A family of
pinning-type magnets based on Sm2Co17 with iron and other additions offers
better energy products. However, cobalt is expensive and supplies have been
uncertain, leading to the severe price fluctuations mentioned in §11.2.5. The
magnets with the best properties are now made of sintered Nd2Fe14B with a high
degree of crystallite orientation and the minimum amount of secondary phases.
Remanence of 1.55 T and energy products of 470 kJ m−3 have been achieved,
which approach the theoretical maxima for the Nd2Fe14B phase (µ0Ms =
1.62 T, 1

4µ0M
2
s = 525 kJ m−3). Premium grades containing Dy or Tb have

coercivity as high as 2.0 MA m−1. They resist recoil to higher temperature,
at the expense of remanence, energy product and magnet cost. Both Dy and
Tb are heavy rare-earths which couple with their moment antiparallel to iron.
Dy is several times as expensive as Nd, but it may prove indispensable for the
magnets used in motors for electric vehicles. Co additions help by increasing
the Curie temperature, which is rather low for some applications, but it degrades
the anisotropy.

Ferromagnetic microstructures are illustrated in Fig. 13.5. Sometimes the
additional process steps needed to produce an oriented magnet cannot be jus-
tified economically. It may be cheaper to make more of an isotropic magnet
with inferior magnetic properties. The c axes of the individual crystallites are
random and, if interactions between crystallites are neglected, the remanence is
Ms〈cos θ〉 = 1

2Ms , where θ is the angle between the c axis and the direction of
magnetization. Components made of ceramic or sintered metal are shaped by
slicing or grinding. Polymer bonding allows for more versatility in shaping mag-
netic components. A coercive powder is mixed with a binder, with a fill factor
fm of 60–80 vol%. The mixture is die-pressed, injection moulded, extruded or
rolled into the required shape. The c axes of the crystallites in the powder may
be oriented in the binder by using a magnetic field in order to augment the
remanence. Since Mr is now fmMs〈cos θ〉, where θ is the angle between the
c axis and the aligning field, even a fully aligned powder with fm = 0.7
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Table 13.4. Properties of sintered and bonded
ferrite magnets

Mr Hc (BH)max

(kA m−1) (kA m−1) (kJ m−3)

Intrinsic SrFe12O19 380 45a

Oriented, sintered 330 270 34
Isotropic, sintered 180 310 9
Oriented, bondedb 240 245 16
Isotropic, bondedc 100 180 5

a Theoretical maximum.
b Injection moulded.
c Rubber bonded.

Sintered

Isotropic Oriented

Bonded

Isotropic Oriented

(a) (b) (c) (d)

Figure 13.5

Schematic microstructure of
permanent magnets:
(a) isotropic, sintered;
(b) oriented, sintered;
(c) isotropic, bonded;
(d) oriented, bonded.

has an energy product that is less than half of the bulk value. Table
13.4 illustrates the properties of differently processed magnets based on
SrFe12O19.

The magnets in electrical machines can be subject to temperatures in excess
of 100 ◦C during routine operation. Magnetization and coercivity naturally
decline as the Curie point is approached. Temperature coefficients around
ambient temperature are listed in Table 13.5. Not all the loss is recoverable
on returning to ambient temperature; irreversible losses are associated with
thermal cycling. Maximum service temperatures for different materials are
included in the table.

Ferrites and rare-earth magnets with wide, square hysteresis loops have the
property that the field of one magnet does not significantly perturb the magneti-
zation of a neighbouring magnet. This is because the longitudinal susceptibility
is zero for a square hysteresis loop, and the transverse susceptibility isMs/Ha ,
which is only of order 0.1, since the anisotropy fieldHa = 2K1/µ0Ms is much
greater than the magnetization. Rigidity of the magnetization means that the
superposition of the induction of rare-earth permanent magnets is linear and
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Table 13.5. Mechanical, electrical and thermal properties of
permanent magnets

d α � dMs/dT dHc/dT Tmax

(kg m−3) (10−6 ◦C−1) (µ� m) (% ◦C−1) (% ◦C−1) (◦C)

SrFe12O19 sintered 4300 10 108 −0.20 0.45 250
SrFe12O19 bonded 3600 −0.02 0.45 150
Alnico 5 cast 7200 12 0.5 −0.02 0.03 500
SmCo5 sintered 8400 11 0.6 −0.04 −0.02 250
Sm2Co17

asintered 8400 10 0.9 −0.03 −0.20 350
Nd2Fe14B sintered 7400 −2 1.5 −0.13 −0.60 160
Nd2Fe14B bonded 6000 200 −0.13 −0.06 150

a Intergrown with 1:5 phase.
α = thermal expansion, � = resistivity.

the magnetic material is effectively transparent, behaving like vacuum with per-
meability µ0. Transparency and rigidity of the magnetization greatly simplify
the design of magnetic circuits. There is no need to worry about the effect of
one magnetic segment on another.

Magnet cost is often critical for applications. Ferrite and Nd–Fe–B magnets
are both produced in large quantities – roughly 1 million tonnes of ferrite and
50 000 tonnes of Nd–Fe–B in 2008. The properties of the two are quite different,
and numerous grades of Nd–Fe–B are available, featuring high coercivity or
high remanence, with energy products ranging from 250 to 450 kJ m−3. A very
rough guide to cost is $1 per joule of stored energy. Hence, from the data in
Tables 13.3 and 13.4, the costs of oriented ferrite and Nd–Fe–B work out at
about 7$ kg−1 and 40$ kg−1, respectively. Ferrite is even cheaper than this but
the cost of sintered Nd-Fe-B is about twice that estimate.

13.3 Static applications

Modern permanent magnets are ideally suited to generating magnetic fields
which are comparable to, or even somewhat greater than, their remanence.
These fields may be uniform or nonuniform.

13.3.1 Uniform fields

The magnetic field produced by a point dipole of moment m A m2 is nonuni-
form and anisotropic. It falls off as 1/r3. In polar coordinates with m



474 Applications of hard magnets

along Oz,

Br = 2µ0m

4πr3
cos θ, Bθ = µ0m

4πr3
sin θ, Bφ = 0. (2.10)

Nonetheless, a uniform field can be achieved by assembling segments ofm

(a)

(b)

Comparison of the
magnetic field produced
by: (a) a point dipole m and
(b) a line dipole λ.

magnetic material, each magnetized in a different direction, such that their
individual contributions combine to yield a field which is uniform over some
region of space. The field of a magnetic dipole has the important property
of scale independence. Provided the magnetization is rigid, the field generated
is simply related to the remanence of the magnets via a scale-independent
geometric factor K:

Bg = KBr. (13.6)

On reducing the dimensions by a scale factor ξ , the moment m is reduced by a
factor ξ 3, but the field which varies as r−3 is increased in the same proportion.
Hence, the factor K depends on the relative dimensions, but not on the absolute
size of the magnetic circuit. Scalabiliy is the secret of the success of magnetic
technology.

It is not obvious how to combine dipoles to create a uniform field. One
approach is to build the structure from long segments whose fields approximate
those of extended dipoles with dipole moment per unit length of λ A m. The
field of such a line dipole, which runs parallel toOx and is magnetized parallel
to Oz, is (2.22)

Br = µ0λ

4πr2
cos θ, Bθ = µ0λ

4πr2
sin θ, Bφ=π/2 = 0. (13.7)

The magnitude of H(r,θ),
√
H 2
r +H 2

θ , is now independent of θ and its direc-
tion makes an angle 2θ with the orientation of the magnet as shown in the
figure.X’

X

The dipole field of a block
of magnetic material is
scale-independent. Fields
at X and X´ are the same.

By assembling a cylindrical magnet with a hollow bore from long cylindrical
segments, it is possible to generate a uniform field in a central region surrounded
by magnets. Choosing the orientation of the segments appropriately, the fields
all add in the centre, and they may cancel completely outside. The segments can
be assembled according to many different prescriptions; some of the designs
are shown in Fig. 13.6. The efficiency ε of any particular structure is defined
as the ratio of the energy stored in the airgap 1

2

∫
µ0H

2
g d3r to the most that

can be stored in the magnets (1/2µ0)
∫
B2
r d3r . In the case of an extended

two-dimensional structure producing a uniform field in a cavity, the definition
leads to

ε = K2Ag/Am, (13.8)

where Ag is the cross sectional area of the cavity and Am is the cross sectional
area of the magnets. A reasonably efficient structure has ε ≈ 0.1. The theoretical
upper limit is 1

4 .
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Figure 13.6

Cross sections of some
permanent magnet
structures discussed in the
text which produce a
uniform transverse field in
the direction indicated by
the hollow arrow. Magnets
are unshaded, with an
arrow to show the direction
of magnetization. Soft iron
is shaded.

The open square cylinder of Fig. 13.6(a) has an equipotential outer sur-
face, and therefore produces no external field, provided the dimensions t/r =√

2 − 1, in which case the flux density in the air gap (the square bore) is
0.293Br . Multiples of this field could be achieved by nesting similar structures
inside one other. This design, or a design with flat cuboid magnets and a soft
iron yoke (Fig. 13.6(b)) is used to for NMR and for MRI, which combines
NMR with sophisticated signal processing to yield two-dimensional tomo-
graphic images of solid objects as discussed in §15.4.5. Permanent magnet flux
sources typically supply fields of order 0.3 T with homogeneity of 1 part in 105

for whole-body scanners. Shimming to compensate for any imperfections in
the magnets is done by placing small dipoles or pieces of soft iron in appropri-
ate places around the airgap. The fields generated by permanent magnets are
lower than those of competing superconducting solenoids, but there is no need
for any cryogenic installation. These systems are popular in Japan. As well as
the medical applications, proton resonance is increasingly applied for quality
control in the food and drug industries,

Figure 13.6(c) shows the ideal Halbach cylinder, introduced in §2.2.2, where
the direction of magnetization of any segment at angular position ϑ in the
cylinder is oriented at 2ϑ to the vertical axis. According to (13.7), all segments
now combine to create a uniform field across the airgap in the vertical direction.
Unlike the structure of Fig. 13.6(a), the radii r1 and r2 can take any values
without creating a stray field outside the cylinder. The flux density in the airgap
of this ingeneous structure is

Bg = Br ln(r2/r1), (13.9)

so the geometric factor K is ln(r2/r1). Efficiency is greatest (ε = 0.16) when
r2/r1 = 2.2. A continuously varying magnetization pattern is not easy to
realize. In practice, it is convenient to assemble the device from N trape-
zoidal segments, as illustrated in Fig. 13.6(d) for N = 8. In that case, a factor
[sin(2π/N )]/(2π/N) must be included on the right-hand side of (13.9). Finite
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Efficiency of a Halbach
cylinder plotted as a
function of the geometric
factor K = Bg/Br .

length 2 z0 reduces the airgap flux density by a further amount{
(z0/2)

[
1

z1
− 1

z2

]
+ ln

[
z0 + z2

z0 + z1

]}
Br,

where zi = √
(z2

0 + r2
i )

K >1 in (13.6) corresponds to flux concentration. There is no limit in principle
to the magnitude of the field that could be produced by a permanent magnet
array, but in practice the coercivity and anisotropy field of the magnets sets
a limit on ultimate performance. Because of the logarithmic dependence in
(13.9) and the high cost of rare-earth magnets, it becomes uneconomic to use
permanent magnets to generate magnetic fields that exceed about twice the
remanence. The efficiency of a Halbach cylinder is plotted in Fig. 13.7.

Soft iron can be introduced into a permanent magnet circuit, either to provide
a cheap return path for the flux (Fig. 13.6(b)) or to concentrate the flux in the
airgap, thereby creating a larger field in a smaller volume (Fig. 13.6(e)). The
extra flux density can never exceed the polarization of the soft material (e.g.
2.15 T for iron or 2.45 T for permendur), and will normally be only a fraction
of that.

Large Halbach-type arrays weighing several tonnes which produce a field
of order 1 T are used for magnetic annealing to set the exchange bias during
manufacture of spin-valve sensors and magnetic random access memory on
wafers up to 300 mm in diameter (Fig. 13.8).

A further simplification of the basic structure of Fig. 13.6(c) is the magic

mangle shown in Fig. 13.6(f), which uses a few transversely magnetized rods
aligned around a central bore following the 2ϑ rule. This design affords access
to the field from different directions. The field at the centre for N rods which
are just touching is

Bg = (N/2)Br sin2(π/N ). (13.10)

When N = 4, K =1.
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Figure 13.8

Large Halbach array used
for magnetic annealing.
(Courtesy of Magnetic
Solutions Ltd.)

(a) (c) (e)(b) (d)

Figure 13.9

Some cylindrical magnet
structures which produce
nonuniform fields: (a) and
(b) give a quadrupole field,
(c) a hexapole field, (d) an
external quadrupole and
(e) a uniform field
gradient.

Uniform fields can also be generated in spherical cavities using the same
principles as for cylindrical cavities. A uniform field is generated in a spherical
cavity when the magnitude of the polarization of a volume element at (r, ϑ, ϕ)
in a hollow, spherical magnet is kept constant, provided its orientation varies as
(2ϑ, ϕ). The expression (13.10) then acquires a factor 4

3 on the right-hand side.
The ultimate limit to the field that can reasonably be generated with permanent
magnets is about 5 T, which has been achieved in a spherical volume of a cubic
centimetre.

13.3.2 Nonuniform fields

Nonuniform fields are useful for particle beam control and focussing electrons
in cathode ray tubes and other electro-optic machines. They also serve to
generate microwaves and other radiation, and to exert forces in bearings,
couplings, suspensions and magnetic separators. The cylindrical configurations
of Fig. 13.6 may be modified to generate transverse multipole fields. Figure
13.9(a) shows an ideal quadrupole source and Fig. 13.9(b) shows a simplified
vesion. Higher multipole fields are obtained by having the magnetic orientation
of the segments in the ring vary as (1 + (ν/2))ϑ , where ν = 2 for a dipole
field, ν = 4 for a quadrupole, ν = 6 for a hexapole and so on. The practical
hexapole shown in Fig. 13.9(c) can be used to produce ions from a plasma
contained in a magnetic bottle. Halbach’s original cylindrical magnets actually
produced a quadrupole field for focussing beams of charged particles. The field
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Figure 13.10

Periodic flux sources: (a) a
magnet for a microwave
travelling-wave tube; and
(b) a wiggler magnet used
to generate intense
electromagnetic radiation
from an electron beam.

at the centre of the quadrupole is zero, but whenever the beam deviates along
one axis, it experiences an increasing field which causes its trajectory to curve
back to the centre. The force along the perpendicular axis causes the beam to
diverge, so quadrupole focussing magnets are used in crossed pairs.

A variant of the normal multipole Halbach configuration is the external
multipole magnet, where the orientation varies as (1 − (ν/2))ϑ . The multipole
field is then produced outside the cylinder, and it is the field inside that is
zero. An external quadrupole is illustrated in Fig. 13.9(d). External multipole
magnets are used as rotors of permanent magnet electric motors.

A ′fridge magnet with a
one-sided flux pattern.

Unrolling a Halbach cylinder, and repeating the pattern creates a one-sided

magnet, where the field turns in a direction perpendicular to the axis of the
magnetized segments. There is a strong field on one side of the sheet, but
none on the other. Such a configuration is used for novelty fridge magnets and
other holding magnets made from bonded ferrite. The back side where the field
appears depends on the sense in which the magnetization turns.

Other arrangements of permanent magnets can be devised that produce a
uniform magnetic field gradient. Figure 13.9(e) shows an arrangement of four
rods which creates a uniform field gradient in the vertical direction at the centre.
Field gradients are most useful for exerting forces on other magnets.

A cusp field.

Different structures have been devised to create a nonuniform field directed
along the magnet axis, which may be the direction of motion of a charged
particle beam. Microwave power tubes such as the travelling wave tube are
designed to keep the electrons moving in a narrow beam over the length of the
tube and focus them at the end while coupling energy from an external helical
coil. One period of the structure in Fig. 13.10(a) generates an axial cusp field.
Another use of cusp fields is the stabilization of molten metal flows. Axial
fields of alternating direction are found in magnetic water treatment devices,
for whatever reason.

Electrons in a synchrotron, moving with relativistic velocities, v ≈ c, and
energy γmec2 are guided by bending magnets around a closed track. Insertion
devices or wigglers (Fig. 13.10(b)) located in straight sections of the track
are permanent magnet structures which serve to generate intense beams of
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A domestic microwave
magnetron. Electrons from
the cathode are
accelerated towards the
anode in a transverse
magnetic field of 90 mT
produced by ferrite ring
magnets. Currents
circulating in the copper
tines create the microwave
radiation which is led to
the cavity via an antenna.

polarized hard radiation (ultraviolet and X-ray) from the energetic electron
beam by setting up a sinusoidal transverse field of wavelength λ. As the elec-
trons traverse the insertion devices, they radiate at a frequency c/λ. When the
frequency of oscillation in the insertion device exceeds the cyclotron frequency,
the radiation becomes coherent and the wiggler is then known as an undulator.

Other devices employing permanent magnets that generate microwave radi-
ation from electrons include klystron and magnetron sources. The magnetron
in a domestic microwave oven uses ferrite magnets producing a field ≈0.09 T.
The cyclotron frequency (3.26) of an electron in a fieldB is 28 GHz T−1, so the
frequency of radiation of an electron in this field is 2.45 GHz, corresponding
to a wavelength λ ≈ 8 cm which is readily absorbed by water. Water absorbs
microwaves over a broad range of frequency but the 2.45 GHz band is reserved
for cooking. The operation of the resonant cavity is illustrated in Fig. 13.11.

Magnetrons used in sputtering sources are permanent magnet arrays which
create a magnetic field near the target, causing the electrons in the plasma to
spiral, thereby increasing the ionization of the argon sputtering gas. Ion pumps
for ultra-high vacuum operate similarly. Magnets increase the ionization of the
residual gas used to sputter titanium, which acts as a getter.
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Figure 13.12

(a) Open-gradient
magnetic separation and
(b) electromagnetic
separation with permanent
magnets.

Magnetic separation The use of nonuniform magnetic fields in magnetic
separation offers social benefits extending from the tiphead to the haematology
laboratory. The expression for the energy of a pre-existing magnetic moment
m in an external field H ′ is −µ0m · H ′, leading to the expression (2.74)

f = µ0∇(m · H ′). (13.11)

However, if the moment m = χVH ′ is induced by the field in a material of
volume V and susceptibility χ , the force density becomes

F = 1
2µ0χ∇(H ′2). (13.12)

To separate ferrous and nonferrous scrap or to select minerals from crushed
ore on the basis of their magnetic susceptibility, it is appropriate to use open-

gradient magnetic separation, where material tumbles through a strong magnetic
field gradient, Fig. 13.12(a). Material with the greatest susceptibility will be
deflected most. Since the force is proportional to particle volume (mass), the
trajectory is independent of particle size and the separation is susceptibility-
selective. Field gradients in open-gradient magnetic separators are about
100 T m−1 and separation forces on ferrous material are of order 109 N m−3.

Field and force patterns
around a cylindrical iron
wire in a high-gradient
magnetic separator.

Permanent magnet traps are commonly used to remove ferrous scrap in
industrial processes such as milling of foodgrains. A cow magnet is a special-
ized form of open-gradient separation, in which a magnet coated in polytetra
fluoroethylene (PTFE) resides in one of the ruminant’s seven stomachs, where
it captures bits of barbed wire and other foreign ferrous objects.

High-gradient magnetic separation is suitable for capturing weakly paramag-
netic material in suspension. A liquid containing the paramagnetic suspension
passes through a tube filled with a fine soft ferromagnetic mesh or steel wool.
The flux pattern of a uniform external field is distorted, creating local field
gradients as high as 105 T m−1 and separation forces of upto 1012 N m−3

on paramagnetic material which remains stuck to the wires until the external
field is switched off. It can then be flushed out of the system and collected.
The method is applied to separate paramagnetic deoxygenated red blood cells
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from whole blood. A similar principle is used to separate ferrofluid particles or
magnetic beads which are increasingly used in bioassays.

A different principle is employed in electromagnetic separation, where non-
ferrous metal such as aluminium is separated from nonmetallic material in a
stream of refuse. A fast-moving conveyor belt carries rubbish over a static or
rotating drum with embedded permanent magnets. The relative velocity of the
magnets and the refuse may be 50 m s−1. Eddy currents induced in the metal
create a repulsive force and the metal is thrown off the end of the belt in a
different direction to the nonmetallic waste (Fig. 13.12(b)). Deflection depends
on the ratio of conductivity to density, so it is feasible to sort different metals
such as aluminium or copper.

13.4 Dynamic applications with mechanical recoil

Permanent magnet structures can be adapted to produce a variable magnetic
field by some change of the airgap or movement of the magnets or soft iron.
The working point is displaced as the magnets move, so these devices involve
mechanical recoil.

13.4.1 Variable flux sources

Figure 13.13 illustrates different types of movement that can create a variable
field. Two Halbach cylinders of the sort shown in Fig. 13.6(d) with the same
radius ratio ρ = r2/r1 can be nested one inside the other, Fig. 13.13(a). Rotat-
ing them in opposite senses through an angle ± α about their common axis
generates a variable field 2Br ln ρ cosα. Another solution is to rotate the rods
in the device of Fig. 13.6(e). By gearing a mangle with an even number of rods
so that alternate rods rotate clockwise and anticlockwise though an angle α, the
field varies asBmax cosα, as shown in Fig. 13.13(b). The number of rods needed
for a mangle may be halved by using a sheet of soft iron to create an image. A
third solution is to take a uniformly magnetized external dipole ring, which has
no flux in the bore, and move one or two soft iron sheaths so that they cover part
of the magnet, Fig. 13.13(c). The image in the soft iron is a normal Halbach
dipole configuration with ν = 2. In all cases the coercivity and anisotropy field
of the material limit the maximum field available, since some magnet segments
are subject to a reverse or transverse H-field equal to the field in the bore.

Permanent magnet variable flux sources are compact and particularly conve-
nient to use since they have none of the high power and cooling requirements
of a comparable electromagnet. A commercial device, illustrated in Fig. 13.14,
uses nested Halbach magnets made of 25 kg of Nd2Fe14B to generate a 0–2.0 T
field in any transverse direction in a 25 mm bore. These magnets are ideal for
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Figure 13.13

Permanent magnet
variable flux sources:
(a) double Halbach
cylinder, (b) four-rod
mangle, (c) an external
Halbach cylinder with a soft
iron sheath.

Halbach cylindersSample rod

Vibrator

Sample

Pick-up coils

Hall probe

Figure 13.14

A 2 T permanent magnet
variable flux source based
on nested Halbach
cylinders. The variable field
can be in any transverse
direction in the bore. The
magnet shown is used for a
compact vibrating-sample
vector magnetometer,
shown below.
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Figure 13.15

Two designs for switchable
magnetic clamps: (a) a
rotatable magnet design;
(b) a design where the
magnet array is displaced
laterally.

compact instrumentation such as benchtop vibrating-sample magnetometers or
magnetoresistance measurements.

The practical size limitation is imposed by (13.10). Permanent magnet vari-
able flux sources can challenge resistive electromagnets to generate fields of
up to about 2 T, but they can never compete with superconducting solenoids
in the higher field range, unless regard superconductors with trapped flux as
permanent magnets.

Bg

d

A magnetic toroid, cut and
separated, creates a field in
the airgap.

13.4.2 Switchable magnets; holding magnets

A switchable magnet is a simpler type of variable flux source. Magnetic holding
devices have a piece of ferrous metal in contact with a magnet. The working
point shifts from the open circuit point to the remanence point whereH = 0 as
the circuit is closed. The maximum force f that can be exerted at the face of a
magnet may be derived by considering a toroid which is cut into two C-shaped
segments that are separated by a small distance d. The energy appearing in
the air gaps is 2 × 1

2µ0H
2
gAgd = B2

gAgd/µ0. The work done separating the
segments is 2f d, hence the magnitude of the force per unit area is

f

Ag
= B2

g

2µ0
. (13.13)

When the gap is narrow, Bg = Bm so forces of up to 40 N cm−2 can be attained
for Bm = 1 T. If large blocks of rare-earth magnet are allowed to come into
contact, they are very difficult to separate!

A face-type coupling with
four axially magnetized
segments.

Two switchable magnets, one used for holding components on an optical
bench, the other for holding a workpiece on a machine tool are illustrated in
Fig. 13.15.

13.4.3 Couplings and bearings

Permanent magnets are useful for coupling rotary or linear motion when no
contact between members is allowed. Simple magnetic gears are feasible.
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(a) (b) (c)

Figure 13.16

Two elementary magnetic
bearings made from axially
magnetized rings: (a) a
radial bearing, (b) an axial
bearing and (c) a linear
bearing. The direction of
instability is denoted by
the dotted line. Magnetic bearings are well suited to high-speed rotary suspensions in tur-

bopumps or flywheels for energy storage. Linear suspensions have been tested
in prototype magnetically levitated transportation systems. A mechanical con-
straint or active electromagnetic support is always required when the bearing
is composed only of permanent or soft magnets and an airgap, Fig. 13.16.

A 2:1 magnetic gear with
radially magnetized
segments.

If the axial and radial components of the forces are f z and f r , the corre-
sponding diagonal stiffnessesKz andKr are defined as −d f z/dz and −d f r/dr
respectively. WhenKi is positive, f i is a restoring force and the bearing is sta-
ble in that direction. In absolute stable equilibrium, Fi = 0 and Ki > 0 for all
components. Sadly, this cannot be achieved just by a static magnetic field acting
on a permanent magnet. It can be shown that

Kx +Ky +Kz = 0. (13.14)

It is therefore impossible to achieve stability in all three directions, a result
known as Earnshaw’s theorem. For a cylindrical system, 2Kr +Kz = 0, hence
if Kz is positive, Kr is negative and the axial bearing is radially unstable. Con-
versely, ifKr is positive,Kz is negative and the radial bearing is unstable along
the axis. Either a mechanical constant or an active electromagnetic bearing is
needed in one direction to achieve stability.

Samuel Earnshaw,
1805–1888.

The forces in bearings and couplings are most easily calculated using the
surface charge method introduced in §2.4. Each surface of the magnet, assuming
uniform magnetization M, has a surface charge σm = M · en, where en is the
surface normal. The potential ϕm(r) at a point r is obtained by integrating
(2.56) over the surface

ϕ1m(r) = (1/4π )
∫
S

(σ 1m|r − r ′|)d2r ′.

The force on an element of surface charge σ 2md2r ′ on the other magnet is
−∇ϕ1mσ 2m d2r ′.

The linear magnetic bearing shown in Fig. 13.16(c) provides levitation along
a track, but lateral mechanical constraint is required. Magnetic levitation of
a moving vehicle (MAGLEV) may be provided by attraction to a suspended
iron rail, or by repulsion from eddy currents generated in a track by permanent
magnets attatched to the base of the vehicle, Fig. 13.17. The magnets can be
mounted on a soft-iron plate that acts as a flux return path, and creates a con-
figuration like a strong one-sided fridge magnet Permanent magnet levitation
systems can support 50–100 times the weight of the magnets. Other levitation
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Figure 13.17

A Maglev system based on
eddy-current repulsion.

schemes are based on electromagnets or superconducting magnets. One design
includes a series of embedded conducting rings in the track. Propulsion along
the track is by a linear motor.

Earnshaw’s prohibition of stable levitation of a permanent magnetic moment
by any static field configuration applies for static magnetic fields in free space.
Some ways to circumvent it are discussed in §15.3, where we return to the
intriguing topic of magnetic levitation.

mg

A magnetically
compensated hinge.

The magnetic hinge is a bearing designed to compensate gravitational torque
on an arm. The torque on an arm of length l is � = mgl sinα, where m is the
suspended mass which may be compensated at any angular position a by the
torque mB sinα on a magnet of moment m built into its the axle, which turns
in a region of uniform field B produced by a Halbach cylinder.

13.4.4 Sensors

Magnetic sensors detect a varying field in an airgap using a Hall effect or
magnetoresistance probe which delivers a voltage depending on B. Magnetic
position and speed sensors used in brushless motors and automobile system
controls offer reliable noncontact sensing in a hostile environment involving
dirt, vibration and high temperatures. Sensors are discussed in detail in §14.3.
The point to emphasize here is that a permanent magnet usually forms part of
the circuit; it provides a noiseless magnetic field with no expenditure of energy.
For example, a variable reluctance sensor with a magnet and a Hall probe may
be used to detect the rotation of a toothed wheel.

Hall probe

Soft iron wheel

Variable-reluctance sensor
based on a permanent
magnet.

13.5 Dynamic applications with active recoil

Motors and actuators account for much of the annually produced tonnage
of permanent magnets. Designs for consumer products such as electric clocks,
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A flat voice-coil actuator for
a personal-computer disc
drive.

earphones, loudspeakers, cameras, kitchen appliances and hard-disc drives may
be manufactured by tens or hundreds of millions every year.

13.5.1 Actuators

An actuator is a electromechanical device with a limited linear or angular
displacement. Usually, the airgap is fixed, and the dynamic working is due
to the H-field produced by current windings. Three basic configurations are
moving-coil, moving-magnet and moving-iron.

Moving-coil loudspeakers have been built with permanent magnets for about
a century. Flux is directed into a radial airgap where the voice coil is suspended,
attatched to a light, rigid cone. As the current passes through the coil, the force
on it is proportional to Bg . The coil moves, vibrating the cone, which produces
sound. Acoustic power Pv varies as B2

g . From (13.3), this is maximized by
operating at the (BH)max point. Large, flat ferrite ring magnets can be used
with iron to concentrate the flux (Fig. 13.4). These designs are cheap but
inefficient because there is much flux leakage; the flux loss factor β ≈ 0.4.
Stray fields are reduced in the cylindrical magnet designs using alnico or rare-
earth magnets. Moving-magnet designs are feasible using Nd2Fe14B, where the
magnet is glued to the cone and a stationary drive-coil surrounds it.

Voice-coil actuators are essentially similar to loudspeakers in design. They are
used for head positioning in computer hard-disc drives and mirror positioning
in laser scanners. Rapid dynamic response is ensured by the low mass of the
voice-coil assembly and the low inductance of the coil in the airgap. With a
cylindrical coil, radially magnetized ring magnets can be used to enhance the
flux density in the airgap.

A flat-coil configuration where the coil is attatched to a lever which allows
it to swing in a limited arc between two pairs of rare-earth magnets is
the favoured design for the flat disc drives of portable personal computers,
Fig. 13.18. Nd–Fe–B with the highest possible energy product is required
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Moving-iron actuators:
(a) print hammer and
(b) reed switch.

(>400 kJ m−3). Access time at constant acceleration a is proportional to a−1/2,
hence to B−1/2

g , since the force f = BgI l = ma.
Moving-coil meters are rotating-coil actuators with no stringent dynamic

response requirement, but very uniform airgap flux density is needed to achieve
a deflection which is accurately proportional to current. The requirement for
minimal temperature variation of the flux density leads to the choice of alnico
magnets (Table 13.5).

Moving-magnet actuators may be linear or rotating. They offer low inertia
and no flying leads. Linear reciprocating actuators with a stroke of several
millimetres are used in pumps at frequencies of order 50 Hz. The mechanical
system is designed to operate at its resonant frequency. Rotary actuators can be
regarded as reversible electric motors with restricted travel.

Moving-iron actuators may also be linear or rotary. A design that was used for
a print hammer in a dot-matrix printer is shown in Fig. 13.19(a). The hammer
spring forms part of the magnetic circuit, and in the unexcited position it is held
tight against the iron, with no airgap. When a current pulse passes through the
solenoid, the hammer springs out. A similar principle is used in reed switches,
where two flat soft-iron reeds are drawn into contact by a magnetic field
(Fig. 13.19(b)). The switch can be opened by activating a solenoid to create a
reverse field, or simply by moving the magnet.

13.5.2 Motors

Like actuators, motors whose operation depends on permanent magnets are
produced in multiple millions. Small DC permanent magnet motors are found in
domestic appliances and consumer electronics. DC servomotors power machine
tools, robots and other industrial machinery. Permanent magnets can also be
used to advantage in large industrial drives and for wheel drives in electric
vehicles and high-speed trains.
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The ability to fabricate ferrite or rare-earth magnets in any desired shape has
led to many permutations on a few basic electrical machine designs. Availability
of polymer-bonded magnets has extended design potential.

The two main parts of a rotary machine are the fixed stator and the revolving
rotor. The classical induction motor is an AC machine in which the stator is an
electromagnet with one or more pairs of poles. The term ‘pole’ here refers to a
region of hard or soft material magnetized normal to the airgap, which bears a
surface magnetic charge density σ A m−1. The poles of soft-magnetic material
may be energized sequentially, in two or more ‘phases’. The rotor is usually a
squirrel-cage winding. Its operation was described in §12.4.

DC motor designs incorporate both permanent magnets and electromagnet
current windings. A permanent magnet on the stator creates a field at the
current-carrying windings of the rotor. Electronic or mechanical commutation
with brushes distributes current to the windings in such a way that the torque
� on the rotor is always in the same sense. Conversely, the device will function
as a generator, producing an emf E in the windings, if it is driven at an angular
velocity ω.

The torque characteristic of the DC motor is �(ω). If the radius of the rotor
winding is r , the flux density of the magnet is B and there are N conductors
of length l perpendicular to B, each carrying a current I , then � = NrBI l.
The output power �ω will be equal to EI , where the back emf E generated
as the rotor turns is 2rωBl per conductor. The number of conductors con-
nected in series is N/2, so E = NrωBl. If the applied voltage is V = E + IR,
where R is the resistance of the windings, the torque equation for the
motor is

� = K(V −Kω)/R, (13.15)

where K = NrBl is the torque constant of the motor. Torque is greatest at
startup, when ω = 0 and � is proportional to the flux density produced by the
magnet. It falls to zero when V = Kω.

In a DC servomotor, the torque or the angular velocity is controlled by mod-
ifying the applied voltage. Simple velocity control is based on monitoring
the back emf E , but more sophisticated control systems use a tachogenerator
(a small DC generator coupled to the drive shaft) or a precise position encoder
to generate voltage feedback to control the output power.

The motor design may be modified, as shown in Fig. 13.20, to eliminate
the mechanical commutator which is a source of sparking and wear. In the
brushless DC motor, the magnets are positioned on the rotor and the armature
windings, now located on the stator, are energized in an appropriate sequence
by means of power electronics. Electronically commutated motors are reli-
able and they are particularly suited to high-speed operation, ω > 100 rad s−1

(≈1000 rpm). Position sensors form an integral part of the device since the
winding to be energized depends on the position of the rotor.
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DC motor designs: (a) brush
motor with magnets on the
stator and (b) brushless
motor with magnets on the
rotor.
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Figure 13.21

Variants of the brushless DC
motor: (a) normal design,
(b) cup-type
(c) pancake-type.
1 – magnet; 2 – stator;
3 – stator winding;
4 – position sensor.

Variants of the design of the brushless dc motor are shown in Fig. 13.21.
Flattening the rotor into a disc produces a pancake motor. The low moment
of inertia means that high angular accelerations are possible, especially when
Nd–Fe–B is used for the magnets. They may be embedded in the rotor so as
to concentrate the airgap flux. The cup-type rotor is another flat low-inertia
design. By unrolling the armature, a linear motor is obtained.

A feature of all permanent-magnet motors is armature reaction. The currents
in the armature, regardless of whether the armature windings are on the sta-
tor or on the rotor, create a field which is usually in a direction opposed to
the magnetization. The working point of the magnets is shifted, as shown in
Fig. 13.3(c). The effect is particularly severe at the trailing edges of the poles,
and a solution is to make these sections from a grade of magnet with higher
coercivity.-+

A four-pole synchronous
motor with a permanent
magnet rotor. A 13-bar
squirrel-cage winding is
built in so that the machine
will operate as an induction
motor for startup.

Synchronous motors run at a frequency which is a multiple of that of the
AC power supply. Electronic power inverters are available which allow the
frequency to be continuously variable. The basic design is that of Fig. 13.21(a),
where the magnet is on the rotor, and a multiphase winding on the stator
produces a field which rotates around the airgap. Torque is proportional to sin
δ, where δ is the angle at any instant between the flux produced by the stator and
the direction of magnetization of the rotor. A multipole rotor may be produced
by embedding long magnets with different orientations.

Synchronous motors offer high efficiency and power density, but their weak
point is feeble starting torque until they reach synchronous rotation speed. A
classical induction motor with its squirrel-cage winding on the rotor has the
opposite characteristic; the torque is maximum at startup and falls to zero as the
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A two-pole stepping motor
(Lavet motor) used in
clocks and watches. In
watches the magnet, made
of bonded Sm2Co17, has a
mass of a few milligrams.

rotor approaches the angular velocity of the rotating field produced by the stator.
Then there is then no changing flux in the squirrel-cage winding and hence no
induced current and no force. A best-of-both-worlds solution incorporates the
rotor in a cage winding with the bars connected to conducting plates at top and
bottom to help startup.

Most motor designs can be operated in an inverse mode as generators. The
rotor is driven, exposing the armature windings to a time-varying magnetic
field, thus generating an emf. One of the first permanent magnet devices ever
to find a mass market was the bicycle dynamo. Fifty years ago, people in the
developed world owned only one or two magnets. Now they own 100–200 of
them, unless we count the hard disc drive on a personal computer, where there
are billions more.

Large disc-type generators with many permanent-magnet poles (24–36) are
employed for energy conversion in wind farms. The alternator for the hybrid
electric vehicle may also use a permanent-magnet design. Operating at 100 000
rpm, a 30 kW generator is expected to have a mass of about 10 kg.

Stepping motors are devices which rotate through a fixed angle when one of
the windings is energized by a suitable electronic control circuit. A very simple
two-pole motor is illustrated in Fig. 13.22. Stepping motors are used for precise
position control.

It is possible to build a stepper motor using a soft-iron rotor with no per-
manent magnets whatsoever. This variable-reluctance motor was introduced in
§12.4. The motor in Fig. 12.13(b) had salient poles on the stator and a rotor with
a smaller number of protrusions or ‘teeth’. The rotor turns by 60◦ as different
pairs of windings are activated. A combination of high efficiency and small
step is achieved by combining the variable-reluctance and permanent magnet
stepping motors in the hybrid design, illustrated in Fig.13.23. There are six
poles, with five teeth on each. The rotor has 32 teeth with a permanent magnet
at the centre. As the poles are energized in sequence A,B,C, the motor turns in
steps of 1

64 th of a revolution. A common design makes 200 steps per revolution,
a 1.8◦ step size. With a suitable controller, it can proceed in half-steps of 0.9◦.
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Miniature hybrid stepping
motor.

13.6 Magnetic microsystems

Miniaturized mechanical drives such as microactuators and micromotors
present new opportunities for permanent magnets. This is the field of mag-

netic MEMS. These microdevices have to exert a force on some small object
such as a silicon cantilever, so it is important to understand how the forces
scale as the dimensions are reduced. We have already seen that the dipole field
is invariant as all the dimensions are scaled up or down by a factor ξ .

If there is a conductor in the vicinity of a magnet, the Lorentz force on it per
unit volume depends on the vector product of B and current density j . This,
too, is scale-independent because jc is an intrinsic property of the conductor.
The properties of permanent magnet micromachines based on magnet/current
forces depend only on the materials properties Br and jc, where jc is the
maximum current loading.

Magnet/magnet forces and current/current forces scale differently. The force
on a permanent or induced moment m depends on the field gradient. Consider
a system of two permanent magnets. When the distances are scaled down
by a factor ξ (ξ > 1), the field at each magnet, created by the other remains
constant, but the field gradients are multiplied by ξ so the force per unit volume
is amplified. The dynamic response improves as the system shrinks. Emfs
created by electromagnetic induction depend on the rate of change of flux in
a circuit, which scales as 1/ξ 2 at constant frequency f for fields created by
permanent magnets. The induced electric field scales as 1/ξ . However, the field
created by a current element given by the Biot–Savart law (Eq. (2.5)) depends
on jδV/r2. It scales as j/ξ . If the fields are created by coils, the emf and the
electric fields are reduced by a further factor of ξ .

But it is really too pessimistic to assume that the current density j has to
be the same in large conductors as in small ones. Heat is dissipated at the
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Table 13.6. Scaling of electromagnetic
interactions in microsystems

Magnet Current Soft iron

Magnet ξ η ξ

Current η η1η2/ξ η/ξ

surface, and the surface : volume ratio improves with reducing size; the ratio
is further improved when we pass from circular to planar conductors. If the
current density can be increased by a factor η, which may even be greater than
ξ , the scaling of the interactions per unit volume are as shown in Table 13.6.
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EXERCISES

13.1 Show that the efficiency of an extended two-dimensional magnetic structure
given by (13.8) cannot exceed 1/4.

13.2 Compare the efficiencies of the cylindrical flux sources shown in Figs. 13.6(a)
and 13.6(c).

13.3 Calculate the flux density at the centre of an octagonal Halbach cylinder with
r1 = 12 mm and r2 = 40 mm. and length 80 mm, made of a grade of Nd–Fe–B
havingBr = 1.25 T. Compare with the value for an infinite ideal Halbach cylinder
(13.9). Note that a reasonable fraction of the ideal flux density is achieved in a
cylinder whose length is equal to its diameter.
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13.4 Design a permanent magnet assembly that will produce a flux density of 5 T in
a 25 mm bore. What are the magnetic properties required of the magnet? What
does your magnet weigh? Cost?

13.5 Design an undulator.
13.6 In the absence of conduction currents, B = −µ0∇ϕm. Show that it follows from

Maxwell’s equation ∇ · B = 0 that ∇ · f = ∇2(m · B) = 0, where the force f
on a magnet of moment m is ∇(m.B).

13.7 Given a cylindrical permanent magnet of length 1 cm and radius r , made of a
material with a polarization of 1.5 T, find the maximum value of r for which it
is possible to stably levitate a tiny drop of water.

13.8 Design magnetic footware that would allow you to walk across a flat iron ceiling.
13.9 Permanent magnets arc used to limit arc discharges at high-current switches.

How do they work?
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Conventional electronics has ignored the spin on the electron

Spin electronics exploits the angular momentum and magnetic moment of the elec-
tron to add new functionality to electronic devices. A first generation of devices
comprised magnetoresistive sensors and magnetic memory. The sensors have
numerous applications, especially in digital recording. Magnetic recording uses semi-
hard magnetic thin films as the recording media. Write heads are miniature thin-film
electromagnets, while read heads are usually spin-valves exhibiting giant mag-
netoresistance (GMR) or tunnelling magnetoresistance (TMR). Magnetic random-
access memory (MRAM) is based on switchable spin valve cells, similar in structure
to the read head. New generations of spin electronic devices are under develop-
ment in which the angular momentum of a spin-polarized current is used to exert
spin transfer torque, or the flow of spin-polarized electrons is controlled via a third
electrode in a transistor-like structure.

Gate

Source Drain

GateSource

Inversion layer nl

Drain

A field-effect transistor.

A hugely successful electronics technology has been built around the manipula-
tion of electronic charge in semiconductor microcircuits. The operations needed
for computation are conducted using complementary metal-oxide semiconduc-
tor (CMOS) logic. The semiconductors can be doped n- or p-type so that the
charge carriers may be electrons or holes. Binary data are stored as charge
on the gates of field-effect transistors (FETs). An important feature of CMOS
logic, Fig. 14.1 is that it only consumes power when the transistors are switching
between the on and off states. It is scalable technology, which has been repeat-
edly miniaturized since its introduction in 1982. The semiconductor industry
follows a roadmap. The minimum feature size in silicon circuits was 45 nm in
2008, and it is projected to decrease to 22 nm in 2011. It is unclear what will
take over at the end of the roadmap, when feature sizes of less than 10 nm will
make CMOS unsustainable. Some form of spin-based electronics may be an
option.

Semiconductor random-access memory can be static (SRAM) or dynamic
(DRAM), Fig. 14.2. Both are volatile, in the sense that information stored on
the gate of an FET is lost when the power is cut. SRAM requires less power and
is faster, but the memory cell uses six transistors. DRAM demands periodic
refreshment every few milliseconds as the charge leaks away, but it requires only
one transistor per memory cell. Error rates are about one per month per gigabit
of memory, but these are bound to increase as the cells become ever smaller
and cosmic rays and other background radiation disturb their stored charge.
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Memory cells of: (a) DRAM,
consisting of a single
transistor, which needs to
be refreshed and (b) SRAM.

Flash is nonvolatile computer memory that can be electrically erased and
reprogrammed. It is based on FET cells that have two gates instead of one.
A fully insulated floating gate stores the charge. Flash is economical, but
relatively slow, with limited rewritability. Solid state memory based on flash
will supplement or replace magnetic hard-disc storage for some applications.

Conventional electronics works with no regard to electron spin. It treats the
electron as a mobile charged particle. Charge currents surge around silicon
chips in ever-smaller and faster semiconductor circuits, where the number of
transistors per chip has been doubling every two years in accordance with
Moore’s law (Fig. 1.14). Named after the founder of INTEL, this is not a
physical principle but an empirical observation based on over 30 years of
industrial experience. Like any exponential growth, Moore’s law must even-
tually come to an end. By 2020 the extrapolated dimensions of a transistor
approach those of the atom! But for the present, Moore’s law retains the status
of a self-fulfilling prophesy. Its extrapolation sets targets for the industry road
map.

Ferromagnetic information storage has been the partner of semiconductor
electronics in the information revolution. Nonvolatile storage of vast quantities
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of digital data on hard and floppy discs and tapes has been possible because
magnetic storage densities have followed their own Moore’s law, with densities
doubling even faster than for semiconductors (Fig. 14.3). The recorded infor-
mation is erasable and the media can be reused. Magnetic recording owes its
success to the nature of the dipole field, which varies as m/r3,where m � Md3

is the magnetic moment of a magnetized bit with dimension d . As d and r are
shrunk in the same proportion, the stray field remains the same. Like CMOS,
magnetic recording is scalable technology. The amount of data stored on servers
and hard discs around the world is astonishing, currently of order 100 exabytes
(1 exabyte = 1018 bytes) of new digital information are created and stored
every year. This is the same order of magnitude as all other data existing in the
world. The text of this book is a mere 107 bits, and the figures account for a
further 1010 bits. Each and every one is stored in an individually addressable
magnet on a hard disc. It is sobering to realize that the numbers of magnets and
transistors we manufacture in fabs exceeds the number of grains of rice and
corn we grow in fields!

The relentless trend towards extreme miniaturization of electronic logic and
memory has led to the consideration of schemes where the electron spin plays
a key role in the operation of new devices. A highly successful first generation
of spin electronics1 was based on magnetoresistive sensors and bistable mem-
ory elements. These are two-terminal devices. Future three-terminal devices,
including various types of spin transistor, may offer spin gain. The vision for
spin electronics is that it will integrate magnetism with electronics at chip level,
a marriage already achieved with optics in various optoelectronic devices.

1 The term spintronics is practically synonymous with spin electronics. Magnetoelectronics is a
near synonym, referring to carrying out electronic functions with magnetic elements.
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14.1 Spin-polarized currents

Together with its charge −e, the electron carries quantized angular momen-
tum �ms , where ms = ∓ 1

2 for the ↑ or ↓ states.2 The magnetic moment of
the electron is proportional to its angular momentum, m = γ�ms = ±1 Bohr
magneton. Spin angular momentum of the electron is the basis of both solid-
state magnetism and spin electronics. An electric current is always a flow of
charge; but it can also be a flow of angular momentum. The important differ-
ence is that angular momentum, unlike charge, is not conserved in an electric
circuit. Electrons can be flipped from ↑ to ↓ states, or vice versa, by scattering
processes which are relatively uncommon compared with the normal scattering
events that modify the momentum and occasionally the energy of the electron.
The comparative rarity of spin-flip scattering means that conduction can be
thought of as taking place in two independent, parallel channels for ↑ and ↓
electrons – the two-current model proposed by Mott in 1936 for conduction in
metals. A brief review of spin-polarized electronic conduction is appropriate,
before embarking on the applications.

R

R R

j j

The two-current model.

14.1.1 Conduction mechanisms

Conduction in metals is normally a diffusive process. The electrons are contin-
ually being scattered, and the mean free path between scattering events may
be different for ↑ and ↓ electrons in ferromagnets. The conductivity for each
channel is then proportional to its mean free path λ↑ or λ↓.

Consider first conduction in copper, the nonmagnetic metal having a filled
3d band with ten electrons per atom, and a half-filled 4s band with just one
(Fig. 14.4). Conduction is mainly due to the 4s electrons which acquire a drift
velocity vd in the direction of an applied electric field, as described in §3.2.7.
The current density is j = −nevd , where n is the electron density. In copper,
n is 8.45 × 1028 m−3. Typical current densities in electronic circuits are 107 A
m−2, making vd of order 1 mm s−1.

The mean free path is the average distance travelled by an electron in the
time τ between collisions, which is known as the momentum relaxation time.
The mean free path is then λ = vF τ , where vF is the Fermi velocity. In the
free-electron model, it follows from (3.1), the de Broglie relation, and (3.37)
that vF = (�/me)(3π2n)1/3, which in the case of copper is 1.6 × 106 m s−1.
The Fermi wavelength of the electron in copper, λF = h/mevF , is therefore
0.7 nm or about three interatomic spacings. From (3.51), the relation between

2 The arrow points in the direction of the magnetic moment of the electron, which is opposite
to the direction of its angular momentum. The ↑ electrons are the majority-spin electrons in a
ferromagnet, or a paramagnet in an applied magnetic field.
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conductivity and mean free path λ is

σ = ne2λ

mevF
. (14.1)

Since the conductivity of pure copper is ≈ 108 S m−1, the mean free path is
about 40 nm, and the momentum relaxation time is about 25 fs. A rough rule
of thumb for monovalent metals is λ ≈ 10−15σ m.

The diffusive process
characteristic of electrical
conduction in metals. Since
spin-flip scattering is much
less common than normal
momentum scattering
events, the spin diffusion
length ls is much longer
than the mean free path λ:
generally λs � ls � λ.

An electron, like a billiard ball, will undergo several elastic collisions with
momentum transfer before it experiences an inelastic collision, which involves
energy loss or gain as well. It undergoes many collisions, of order ν = 100
or more, before it experiences a spin-flip scattering event that involves an
exchange of angular momentum with the lattice. The spin scattering time is
τ s . The distance travelled in time t � τ in a diffusive process is l = √

Det ,
where De is the diffusion constant (units m2 s−1). Since electrical conduc-
tion is essentially diffusion of electrons in the direction of the applied field,
the spin diffusion length is given by the three-dimensional random-walk
expression:

ls =
√
Deτ s, (14.2)

where the diffusion constant for electrons, which is proportional to the conduc-

tivity, is De = 1
3v

2
F τ = 1

3vFλ. Hence ls =
√

1
3νλ

2. The distance travelled by
the electron along its path between spin flip events is λs = vF τ s . Conductivity
is related to the density of states at the Fermi level D(εF ) and the diffusivity
De by the Einstein relation:

σ = D(εF )e2De. (14.3)

For copper, De = 21 × 10−3 m2 s−1, so the estimate ν = 100 gives ls =
230 nm. The value for pure copper is larger than this, but copper in thin-
film devices contains defects and diffused impurity atoms which decrease the
conductivity and reduce the mean free path and spin diffusion length below
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Table 14.1. Estimates of mean free paths and spin diffusion
lengths at room temperature, in nanometres

Al Fe Co Ni Fe20Ni80 Cu

λ↑ 12 8 20 5 15 20
λ↓ 12 8 1 1 1 20
ls 350 50 40 10 3 200

these estimates. De is also reduced at finite temperatures by electron-phonon
scattering.

Passing now from copper to nickel, a strong ferromagnetic metal with one
less electron per atom, the 3d band is spin split, as shown in Fig. 14.4. The
electronic configuration of nickel is 3d9.44s0.6. Conduction is still mainly by
4s electrons, which have a much greater mobility than their 3d counterparts,
but the ↑ and ↓ carriers are now scattered differently. The ↑ electrons behave
much as in copper since the 3d↑ band is full and the Fermi surfaces are similar,
but the ↓ electrons can be scattered into empty 3d states at the Fermi level. The
mean free path of ↓ electrons in nickel is about five times shorter than that of
their ↑ counterparts.

The spin diffusion length in nickel is only about 10 nm. Indicative values of
the scattering lengths for some other metals and alloys commonly featured in
thin-film devices are listed in Table 14.1.

Besides diffusion, three other modes of electron transport are encountered
in solids. One is ballistic transport, where the mean free path of the electrons
exceeds the dimensions of the conductor, so they traverse the conductor in a
single shot, without scattering. This is what happens in small point contacts, and
in highly perfect conductors with a low electron density, such as semiconductors
or carbon nanotubes. There is no distinction between ballistic transport of ↑
or ↓ carriers. In diffusive transport, the electrons move ballistically between
collisions.k

e

x

e

A ballistic nanowire with
contact pads. The electrons
moving along the wire
show a free-electron
dispersion ε = h−2k2

x/2me,

but the modes in the y-,
z-directions are split
because of quantum
confinement. The current is
carried by electrons in the
shaded zone.

But the resistance and magnetoresistance of electrical circuits with a con-
striction is dominated by the constriction, the weak link in the conducting
circuit. For a large contact, where the transport is diffusive, the resistance is
simply R = �t/πa2. Here � is the resistivity of the material in the contact, a is
its radius and t is the thickness. When the diffusive contact is thin, t � 2a, the
resistance RM = �/2a is known as the Maxwell resistance. On the other hand,
if the transport is ballistic, the resistance of a small contact is given by the
Sharvin formula:

Rs = h

2e2

4

a2k2
F

. (14.4)

The crossover from diffusive to ballistic transport for a thin contact occurs
when a = 0.85λ. For pure copper, the crossover contact resistance is about
0.1 �, but it scales with the square of the resistivity, so that it can rise to a
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kilohm in a poorly conducting metal with � ≈ 1 µ�m. The ratio h/e2 features
prominently in transport theory. It has units of ohms, and magnitude 25 812�.
The inverse G0 = e2/h is known as the conductance quantum.3

Since there is no scattering in a ballistic channel, the resistance must some-
how be associated with the contacts. Considering a ballistic nanowire with
radius a comparable to the Fermi wavelength, the wire behaves as an electron
waveguide or two-dimensional quantum well, with only a few transverse modes
separated in ky or kz by π/a. The wavevector along the length of the wire is
unconstrained, and free-electron-like. If the potentials of the two electrodes are
µ1 and µ2, electrode 1 injects electrons with kx < 0 and electrode 2 injects
electrons with kx > 0. The current carried in one of the modes is −nev, where
n is the number of electrons per unit length of wire. The electron density asso-
ciated with a single k-state in a conductor of length l is 1/l, hence the current
is

I = −e
l

∑
k

1

�

∂εk

∂k
f (εk), (14.5)

where f (εk) is the probability of occupancy of a state. Replacing the sum over
k-states by an integral gives

I = −2e

h

∫ ∞

ε0

f (εk)dεk. (14.6)

If the number of modes νm is a constant over the range µ1 > ϑ > µ2, then
I = (2e2/h)νm(µ1 − µ2)/e, which leads to a conductance

G = 2e2

h
νm. (14.7)

Each unpolarized mode contributes 2G0 to the conductance. If the mode is not
a perfect transmitter, the expression for conductance is modified to the Landauer

formula

G = e2

h

∑
i,α

Ti,α, (14.8)

where Ti is the transmission of the ith mode for ↑ or ↓ electrons.
The third means of electron transport is tunnelling (§8.3.6). When two con-

ductors are separated by a thin layer of insulator, or a vacuum gap where the
electronic wave functions decay exponentially, there is some probability that
electrons will pop out on the other side of the barrier, provided its width w
is less than or of order the decay length of the electronic wave function. The
probability of tunnelling through a barrier of height φ and width w is given by
the transmission coefficient:

T = exp{−2w
√

2meeφ/�}. (14.9)

3 This is for one spin. The conductance for an unpolarized spin channel is twice as large, 2e2/h.
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A generic spin electronic
device, with a
ferromagnetic spin injector
and detector.

The characteristic feature of tunnelling transport is an almost temperature
independent conductanceG� G0,which shows a nonlinear I :V characteristic

I = GV + γV 3, (14.10)

due to the deformation of the barrier in the applied electric field. Fitting this
curve to the expression given by Simmonds for tunnelling through a barrier
yields the effective barrier height φ and width w using (8.13) and (8.14).

w

V

w

e f

V

I

e

A tunnel barrier for
electrons is deformed
when a voltage is applied,
leading to a nonlinear I :V
curve.

The fourth mode of electron transport is hopping. This arises when the
electrons are localized, so they are described by a confined wavepacket ψ ∼
exp(−αr) rather than an extended wave function ψ ∼ exp(k · r). Electrons
move from one site to the next by thermally assisted jumps. When the hopping
to nearest-neighbour sites requires an activation energy εa , the conductivity
is proportional to exp(−εa/kBT ), much like that of a semiconductor. At low
temperatures, the electrons may jump further afield to find a site with almost
the same energy. The conductivity is then described by Mott’s variable-range
hopping expression

σ = σ∞ exp −(T0/T )1/4, (14.11)

where T0 = 1.5/[kBα3N (εF )]. Electron hopping is the principal transport
mechanism in defective oxides and organic conductors.

14.1.2 Spin polarization

Spin electronics depends on the creation and detection of spin polarization
of mobile electrons. A simple device comprises a source of spin-polarized
electrons, which are injected into a conductor of some description, where they
transmit information coded in their spin polarization to a detector, Fig. 14.5.
Electrical spin injection and detection are relatively straightforward for all-
metal structures such as GMR spin valves, and the technique works well for the
TMR spin valves with an insulating tunnel barrier, presented in Chapter 8. These
spin-valve magnetoresistors are two-terminal electronic devices. Spin injection
is much more problematic for semiconductors where the spin polarization of
injected electrons is lost because of the impedance mismatch at the interface.
Although the spin injector and detector are often ferromagnets, as in Fig. 14.5,
the spin-polarized electrons may also be created or detected with polarized light.
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Table 14.2. Calculated values of spin polarization

Fe Co Ni CrO2 La0.67Ca0.33MnO3 Tl2Mn2O7

pa 0.27 0.18 0.06 1.00 0.91 0.99
P0 0.52 −0.70 −0.77 1.00 0.36 0.66
P1 0.38 −0.39 −0.43 1.00 0.76 −0.05
P2 0.36 0.11 0.04 1.00 0.92 −0.71

aSpin polarization calculated from 3d and 4s electron densities. (Data courtesy of Ivan
Rungger, and from B. Nadgorny, I.I. Mazin, M. Osovsky et al. Physics Review, B63.
184433 (2001) and D. Singh, Physics Review, B55. 313 (1997)).

Spin polarization is the central concept here, so we need to understand how it is
defined and measured. The definition (3.22) in terms of the electron densities n↑
and n↓ is equivalent to the relative spin magnetization of the electrons. However,
when discussing TMR in Chapter 8, we introduced the definition which involves
the densities of states at the Fermi level D↑(εF ) and D↓(εF ). For convenience
we will drop εF . Transport properties involve electrons at the Fermi surface,
or electrons within an energy eVb of the Fermi level, where Vb is the bias
voltage. However, the spin polarization deduced from different experiments
depends on what precisely is being measured. A generalized definition at low
bias is

Pn = vnF↑D↑ − vnF↓D↓
vnF↑D↑ + vnF↓D↓

, (14.12)

where vF is the Fermi velocity. The density of states at the Fermi level D↑,↓
is weighted by the Fermi velocity raised to a power n, which is 0 for electrons
ejected in a spin-polarized photoemission experiment, 1 for ballistic transport
and 2 for diffusive transport or tunnelling at low bias. The sense of the velocity
averaging is uniaxial for ballistic transport. Furthermore, transport measure-
ments reflect the electron mobility, so measurements in 3d metals are sensitive
to the polarization of 4s rather than 3d electrons. Table 14.2 lists some calcu-
lated spin polarizations for 3d ferromagnets, including a half-metal, CrO2, and
a semimetallic ferromagnet, Tl2Mn2O7. The interesting point is that different
definitions lead to completely different results, and they do not even necessarily
agree on the sign. Only for a half-metal are they all the same Pn = 1.

Some methods of measuring spin polarization are indicated in Fig. 14.6.
Photoemission probes the electron density at the Fermi level directly, weighted
by the photoemission cross section. The electrons are ejected from the surface
by ultraviolet light or soft X-rays and their spin polarization can be determined
from their scattering in a heavy metal foil – a Mott detector. The energy bands
can be mapped from the energy and angular dependence of the photoemitted
electrons, but the method is very surface-sensitive, and the energy resolution is
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Figure 14.6

Some experimental
configurations for deducing
the spin polarization of a
ferromagnet: (a)
photoemission with
polarization analysis, (b)
tunnel magnetoresistance,
(c) Tedrow–Meservey
experiment, (d) ballistic
point contact, (e) Andreev
reflection. (F –
ferromagnet; I – insulator;
SC – superconductor.)

poor (� 100 meV). Ferromagnetic samples are generally studied in the rema-
nent state.

The spin polarizations defined by (14.12) are intrinsic properties of the fer-
romagnet. However, in spin electronics we are more often interested in the spin
polarization of an electric current than that of the electrons themselves. There
can be a strong influence of the interfaces in a thin-film stack. Nevertheless,
the Jullière model (8.15) is often used to deduce P2, from the spin-dependent
tunnelling in a junction with two ferromagnetic electrodes and an amorphous
barrier. Spin filter effects depending on the symmetry of the transmitted wave
functions appear with crystalline barriers. If one electrode is superconducting,
spin polarization can be deduced by applying a magnetic field that is insuffi-
cient to turn the superconductor normal, as in the Tedrow–Meservey experiment
(§8.3).

Ballistic point contacts between two ferromagnets can be used to estimateP1,

but it may be difficult to avoid effects of magnetostriction when the magnetic
configuration changes from parallel to antiparallel. Finally, ballistic transport
across a point contact between a ferromagnet and a superconductor offers a
new possibility of determining the spin polarization at low temperature, from
Andreev reflection.

In Andreev reflection, Fig. 14.7, an electron injected into the superconductor
through the point contact with a normal metal must pair upto form a Cooper pair
if the bias voltage is less than the superconducting energy gap sc. As a result,
a hole with opposite spin is injected back into the metal. When V <  sc, the
conductance of the contact is doubled compared with the value when V >  sc,
on account of the current carried by the hole. For a half-metal, there are no
vacant states with opposite spin near the Fermi level, so the conductance should
be strictly zero when V <  sc. The polarization in the general case is

P1 = 1

2

{
1 − G(0) −G(V >  sc)

G(V >  sc)

}
. (14.13)
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Table 14.3. Spin polarization deduced from
Andreev reflection

Fe 0.40 Co50Fe50 0.50
Co 0.40 NiMnSb 0.45
Ni 0.35 Co2MnSi 0.55
Ni80Fe20 0.45 CrO2 0.95

Figure 14.7

Point-contact Andreev
reflection, showing typical
bias dependence of the
conductance for a normal
metal (left) and a
half-metal (right) (after R
Soulen, J. M. Byers, M. S.
Olovsky et al., Science,
282, 85 (1998).)

Some values of spin polarization deduced from Andreev reflection are given
in Table 14.3.
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In summary, there is no unique definition of spin polarization, except in a
half-metal. Results depend on the experimental method employed, as well as
on the electronic structure of the ferromagnet and the nonmagnetic materials
involved, as well as their interfaces.

14.1.3 Spin injection and spin accumulation

An important concept in spin-polarized electron transport, introduced in Chap-
ter 8, is spin accumulation. Spin populations are modified in the vicinity of
a contact between a ferromagnet and a normal metal, where spin-polarized
electrons diffuse into the normal metal and unpolarized electrons diffuse into
the ferromagnet. The equilibrium changes in spin population are very small,
∼kBT /εF , but the extent of the magnetic blurring on each side of the interface
is the spin-diffusion length.

Significant nonequilibrium changes in spin population are set up when a
current flows across the interface. Spin-polarized electrons are injected from
the ferromagnet into the normal metal, and diffuse away from it. The interface,
and associated changes of chemical potential are illustrated in Fig. 14.8 and in
Fig. 8.19(c).

The best way to sense the small, spin-dependent voltages associated with
nonequilibrium spin injection is in a nonlocal transport measurement. The
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m

fFigure 14.8

(a) Spin injection at an
interface, where electrons
flow from a ferromagnet
(F) into a normal metal (N).
(b) Spin-polarized electrons
accumulate in the normal
metal. (c) The
nonequilibrium chemical
potentials near the
interface.

spin-polarized electrons are injected into the normal metal from the ferro-
magnet, F1, and diffuse away from it. The potential of another ferromagnetic
electrode which is not in the current path, F2, is measured. The spin-polarized
electrons drift away from the injector, and a spin-polarized charge cloud is set
up on a scale of ls . The potential of the sensing electrode is slightly different
for the parallel and antiparallel configurations of F1 and F2, because the ↑
and ↓ electrons have different chemical potentials in the spin accumulation
region, as indicated on Fig 14.9. By measuring the spin-dependent potential as
a function of x, the spin diffusion length can be determined directly, although
it was challenging to do this on account of the short length scale, which is of
order 100 nm for a nonmagnetic metal at room temperature.

The decay of the spin accumulation voltage, −(µ↑ − µ↓)/e, on either side
of a ferromagnet–nonmagnet (F–N) metal interface is described by the spin-
diffusion equation, originally developed to describe the spreading of nuclear
polarization in NMR. The diffusion equations for the two spin populations
are

n↑,↓(x, t)

τ s
= De ∂

2n↑,↓(x, t)

∂x2
, (14.14)

whereDe is the electronic diffusion constant, and τ s is the spin relaxation time
which is related to the spin-spin relaxation time T2 determined in a conduction
electron spin resonance experiment. The surplus spin density produced by the
current flowing across the interface m(x, t) = n↑(x, t) − n↓(x, t) is obtained
by integrating the spin-split electronic density of states D(ε) up to the chemical
potential µ↑ or µ↓, and taking the difference. Hence

m(x, t) = D(εF )
[
µ↑(x, t) − µ↓(x, t)

]
.
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Figure 14.9

A nonlocal electrical
measurement to probe the
nonequilibrium spin
accumulation, without
passing a current through
the sensing electrode. p
and ap refer to the parallel
and antiparallel
configurations of
ferromagnets F1 and F2.
(After F. J. Jedema H. P.
Heerscher, A. T. Flub et al.,
Nature 416, 713 (2002).)

Applying (14.14) to the difference n↑ − n↓, the steady-state solution for the
spin voltage is

(µ↑ − µ↓)x = (µ↑ − µ↓)0 exp(−x/ls), (14.15)

where ls = √
Deτ s , and the subscript shows where the spin voltage is evaluated.

On the ferromagnetic side of the F–N junction, the spin polarization builds
up over a length scale determined by the s–d scattering in the ferromagnet
(Fig. 8.19(c)). In pure ferromagnetic metals, ls is about 40 nm and τ s is of
order 1 ps, but the values are smaller in alloys such as Ni–Fe or Co–Fe, where
the scattering is greater.

The chemical potentials for a GMR spin valve are shown in Fig. 14.10 for
the case where the nonmagnetic layer is thin enough for spin relaxation there to
be neglected. On flipping the free layer from parallel to antiparallel, there is a
change in spin-dependent potential and hence a change in the spin accumulation
voltage Vsa at constant current – in other words, magnetoresistance.

The interface resistance area product RAint is Vsa/j, which is expressed in
terms of the conductivity ratio α = σ↑/σ ↓ using (8.10):

RAint = (α − 1)

2ej (1 + α)
(µ↑ − µ↓)0. (14.16)

The GMR is

 R

R
= 2Rint
�f tf

,



507 14.1 Spin-polarized currents

NF1 F2 F2NF1

m = m m
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Figure 14.10

Chemical potentials for ↑
and ↓ electrons in a GMR
spin valve, with parallel or
antiparallel alignment of
the electrodes. The spacer
layer is supposed to be thin
compared to the spin
diffusion length. (F1, F2 –
ferromagnets; N – normal
metal.)

where �f is the resistivity of the ferromagnet and tf is the total thickness of the
two ferromagnetic layers. In the limit of a thin nonmagnetic spacer and thick
ferromagnetic layers, the result is

 R

R
= (α − 1)2

4α

lsf

tf
. (14.17)

where lsf is the spin diffusion length in the ferromagnet. The effect is max-
imized when the value of α is large, and the spin diffusion length in the
ferromagnet is long. If α = 5 and lsf /tf ≈ 0.25, the magnetoresistance would
be 20%. The order of magnitude of the spin accumulation voltage, even at very
high current densities j ≈ 1012 A m−2, does not exceed a millivolt.

In this analysis, we have assumed that the interfaces are transparent. In
fact, spin-dependent scattering and reflection at the interface play a crucial
role in the operation of GMR spin valves. The step in chemical potential at
the interface is  µ↑↓

i = −eI↑↓R↑↓
i , where Ri is the interface resistance. The

enormous gradient of the exchange field at the interface deflects the ↑ and ↓
electrons in the adiabatic limit, as in a Stern–Gerlach experiment (Fig. 3.3).
In the nonadiabatic limit of perfectly abrupt interfaces, nonadiabatic quantum
reflection is important.

Rm

RsRs

j j

Rm

The resistance mismatch
problem. Here Rm↑ �= Rm↓
but Rs↑ = Rs↓ and
Rs� Rm, hence j↑ ≈ j↓.

Spin lifetimes and diffusion lengths are much longer in semiconductors than
they are in metals, but electrical spin injection and detection of spin-polarized
electrons are problematic, because of the resistance mismatch between the
metal and the semiconductor. Considering the two spin channel resistances
adding in parallel, the metal plus contact resistance is spin-dependent, but the
much larger semiconductor resistance is not. The current in each channel is
almost the same, so the electrons are not significantly polarized. It is appro-
priate to treat scattering at interfaces in terms of resistance rather than resis-
tivity; the scattering is integrated over the junction region where the potential
changes.

One way to overcome this problem is to introduce a highly resistive Schottky
barrier or a tunnel barrier at the semiconductor–metal interface, and to inject
spin-polarized hot electrons over the barrier. The barrier has a spin-dependent
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Schematic band structure
of GaAs. The optical
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lines. The circled figures are
the relative transition
probabilities.

resistance, Rb↑,↓ > Rs. Alternatively, optical spin injection using circularly
polarized light is a solution for semiconductors with a direct bandgap, such as
GaAs. The band structure is illustrated in Fig. 14.11 and the bandgap is 1.52
eV. The As 4p valence band is split by spin-orbit coupling into a 4p1/2 and two
4p3/2 sub-bands, which have different effective masses. When the semiconduc-
tor is pumped with circularly polarized photons, which are sufficiently energetic
to excite electrons from all three valence sub-bands into the Ga 4s conduction
band, the electrons populate the mj = ± 1

2 states equally, giving no net spin
polarization. However, if the photon energy lies between 1.52 eV and 1.84 eV,
the mj = − 1

2 and mj = + 1
2 are populated in the ratio 3:1, so the net polar-

ization of the conduction electrons pc defined as (nc↑ − nc↓)/(nc↑ + nc↓) is
pc = (1 − 3)/(1 + 3) = −50%. The 4s electrons have a spin lifetime of order
nanoseconds, whereas the 4p holes depolarize more rapidly, due to spin-orbit
scattering, in about 100 ps. The spin-polarized carriers are detected by observ-
ing the circularly polarized luminescence emitted by recombination of electrons
and holes. The spin polarization can also be detected by using the Faraday or
Kerr effects.

A pump-probe experiment to determine the spin lifetime is illustrated in
Fig. 14.12. The spin-polarized carriers are injected with a pulse of circularly
polarized light from a laser, tuned to the semiconductor band edge. A bunch of
polarized spins excited from the valence band then begin to precess around the
applied fieldB at the Larmor frequency ωL = (ge/2me)B. A linearly polarized
probe pulse is sent to measure their polarization by Faraday rotation after a delay
τ . The g-factor in semiconductors may be quite different from 2. The density
of excited electrons is of order 1021 m−3, or fewer than one per ten million
atoms, but a measurable Faraday rotation θF is obtained by averaging repeated
pulses.The spin relaxation time is obtained from the envelope of the decay:

θF = exp(−t/τ s) cos [(ge/2me)Bt] . (14.18)
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A pump-probe experiment
to determine the lifetime
of spin-polarized electrons
in GaAs.

In order to determine the spin-diffusion length, the excited electrons drift under
the influence of an electric field, and the probe beam is scanned in space along a
line from the injection point. Since the spin-diffusion lengths in semiconductors
are of order 100 µm, it is quite feasible to resolve the position of the diffusing
packet of electrons optically. The constant Ds governing spin diffusion in
semiconductors may exceed that appropriate for electron transport.

Luc Berger, 1933–.

John Slonczewski, 1928–.

14.1.4 Spin-transfer torque

Besides the flow of charge j = −nevd C m−2 s−1, an electric current with spin
polarization 0 < Pe < 1 also carries with it a flow of angular momentum

js = n(�/2)pcvd = j�pc/2e, (14.19)

where the units are J m−2.Unlike charge, which is conserved in the total electric
current, the angular momentum can be absorbed by spin-dependent scattering
and other processes in a lattice, leading to a spin-transfer torque � which is
equal to the rate of change of angular momentum in the lattice. The total angular
momentum of the system electrons + lattice has to be conserved, so any loss
of angular momentum of the electric current has to be balanced by a gain of
angular momentum of the lattice. Even an initially unpolarized current can exert
torque, if it becomes spin polarized via a spin-dependent scattering process in
a ferromagnetic lattice. The spin-transfer torque is able to excite magnons and
microwaves, move domain walls and reverse the magnetization of nanoscale
magnetic free layers. The theory has been developed by Luc Berger and John
Slonczewski, who also envisioned some of the applications. In the nanoworld,
it is more effective to exert torque by spin transfer than by the magnetic fields
created by currents in nearby conductors, which are known in this context as
Oersted fields. Manipulation of magnetization by spin-polarized currents is one
of the most exciting developments in contemporary magnetism.
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Figure 14.13

Mechanisms contributing to
the absorption of the
transverse component of a
spin-polarized current
which is reflected or
transmitted at the interface
with a ferromagnetic layer.
(After M. D. Stiles and J.
Miltat, Spin Transfer Torque
and Dynamics, vol. 3,
Berlin: Springer (2006),
p. 205.) The field at the surface of a current-carrying wire of radius r has magnitude

H = jr/2, so the Oersted fields become increasingly ineffective, falling off as
r when the dimensions are reduced. The angular momentum associated with
the magnetization of the free layer in a nanopillar, which has thickness t and
radius r, is Mπr2t/γ . The rate of flow of angular momentum associated with
the current is j�pcπr2/2e. Hence the switching effect, which depends on the
ratio of these quantities, varies as jpc/Mt, independent of r . Spin-transfer
torque is scalable, although it only becomes effective at nanoscale dimensions.
Scalability is an essential requirement of any new technology which hopes to
make its way into mainstream electronics.

To follow the physics underlying spin-transfer torque, consider a spin-
polarized electron entering a ferromagnetic thin film which is magnetized in
the z-direction (Fig. 14.13). If the electron is moving in the x-direction and is
initially polarized in a direction making an angle θ with ez, it may be either
reflected or transmitted at the interface. For example, at a Cu–Co interface, the
majority-spin ↑ electrons are more easily transmitted than the minority-spin ↓
electrons. Reflection at the interface is a source of spin torque, especially in the
nonadiabatic case. The electrons that make it into the cobalt are then subject
to a huge exchange field Bex in the z-direction, which is of order 104 T. (The
exchange splitting of the 3d band is of order 1 eV.) They precess at the Larmor
frequency, completing many turns as they diffuse from site to site. By the time
they leave the cobalt film, the xy component of the moments is completely
dephased, as the electrons have followed paths of different lengths, but their z
component of magnetization is unchanged provided the thickness is less than
the spin-diffusion length. Angular momentum is therefore transferred from the
electron current to the cobalt at a rate (j�pc sin θ )/2e J m−2. All this has little
effect on a thick cobalt layer, but it can greatly modify the magnetization of
a thin one, which tends to rotate towards the direction of polarization of the
incoming current. The transverse angular momentum can be absorbed in a
distance which is less than the mean free path.

Another mechanism is also effective for transferring angular momentum
from the electron current. The mean free paths are different for ↑ and ↓ electrons
in a ferromagnet (Table 14.1), often with λ↑ > λ↓. The minority-spin electrons



511 14.1 Spin-polarized currents

F1 F2

F1 F2j

j

Figure 14.14

Spin-transfer torque
associated with flow of
angular momentum in a
nanowire or nanopillar. The
sense of the torque on the
thin free layer, F2, depends
on the current direction.
The unshaded layers are
nonmagnetic.

share their angular momentum with the lattice within the first nanometre or
so of the interface, while their majority-spin colleagues travel much further
before they are scattered. SS scattering at the interface can also contribute
to the torque. Scattering must be spin-selective, but spin-flip scattering is not
required. The spin-diffusion length ls is not a relevant lengthscale.

M

Damping

Antidamping

B

Precession of
magnetization with
antidamping due to
spin-transfer torque.

By whatever mechanism, an unpolarized electron current becomes spin
polarized after traversing about a nanometre of cobalt. The ability of ultra-
thin cobalt layers to effectively impart spin polarization is widely exploited in
the thin-film stacks used for spin electronics. A ballistic electron travelling at
106 m s−1 in a random direction completes a precession in a layer which is of
order a nanometre thick, so the transverse component of angular momentum is
very soon absorbed by the precession mechanism.

Next consider electron flow across the structure including a thick and a thin
ferromagnetic layer, as shown in Fig. 14.14. Think first of electron flow in
the direction from the thick layer to the thin one. The charge current is in the
opposite direction, of course, because the electron has a negative charge.

The initially unpolarized electron current will be polarized in the direction
of magnetization of the thick layer when it emerges. The spin polarization
is not perfectly efficient; for a Co/Cu stack pc is about 35%. The transverse
component of angular momentum is later absorbed in the thin layer as we have
just explained. A torque acts on F2, tending to turn the magnetization towards
the orientation of the incoming spins. A parallel configuration of F1 and F2 is
stabilized.

Now consider what happens when electrons flow in the opposite direction,
from the thin layer to the thick one. They cross F2 acquiring spin polarization,
and most of them go on to enter F1 where they ineffectually exert torque on
the thick pinned layer. But some, predominantly those with spin opposite to
F1, are reflected, and travel back to F1, where their transverse component of
an angular momentum is absorbed, this time tending to stabilize an antiparallel
configuration of F1 and F2. In summary, according to the direction of the
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Precession of a macrospin
with: (a) damping, (b) no
net damping and (c)
antidamping.

current, the spin-transfer torque tends to stabilize or destabilize the magnetic
configuration of the two ferromagnetic layers.

The shortest possible time t taken to switch a free layer of thickness t can
be estimated from the rate of flow of angular momentum (14.19). Equating the
angular momentum delivered in time t to the angular momentum MA�/2µB
associated with the magnetic moment of the free layer of cross-section a area
A gives

t = Mte
jµBPe

. (14.20)

This is independent of A, but the switching speed is effectively limited by the
maximum current density j that can be pumped through the device, which
is ultimately limited to about 1012 A m−2 by problems of electromigration. In
practice, the free layers must be only a few nanometres thick, which is well
within the capabilities of modern thin-film technology.

To treat the dynamics of the free layer in more detail, allowing for the
presence of an applied magnetic field, we make the macrospin approximation,
and assume that the free layer rotates coherently like a giant spin at T = 0 K.
The precession is described by the Landau–Lifschitz–Gilbert equation (9.23)
with an extra damping-like term α′ added to account for the spin-transfer
torque:

dm

dt
= γµ0m × Heff − (α + α′)em × dm

dt
. (14.21)

The effective field Heff is the sum of the applied, dipolar and anisotropy
fields. According to the direction of the current, the spin-transfer torque adds
to the damping torque, or subtracts from it. When the current flows in the
−ex-direction, the spin-transfer term simply reinforces the damping. However,
when the current flows in the +ex-direction, a dynamic instability arises when
the spin-transfer term overcomes the damping. Instead of relaxing towards ez,
the magnetization begins to spiral away from it, Fig. 14.15.
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Excitation of microwaves
from a GMR spin valve
nanopillar by spin-transfer
torque. (W. H. Rippard
et al., Phys. Rev. Lett. 92,
027201 (2004).)

The extra ‘damping’ term α′ due to spin-transfer torque may be of either
sign, according to the direction of spin-polarized current in the structure of
Fig. 14.14. The macrospin dynamics when −α′ > α can take several forms. In
one case, the free layer may spiral all the way to θ = π , and be damped in the
reverse direction. Switching by spin-transfer torque is particularly valuable for
magnetic memory because of the scalability.

Another possibility is that the free layer may not spiral all the way to θ = π,
but precess continually in a magnetic field at some intermediate angle. The
DC current thereby generates steady-state magnetic oscillations in the GHz
frequency range with a frequency proportional to j (Fig. 14.16). Easily tunable
on-chip microwave sources of this type offer new perspectives for magnetism
and interchip communications.

The dynamics of the two-layer structure of Fig. 14.14 is surprisingly complex.
The effect of temperature, which is normally to produce fluctuations in the
orientation of the free layer, is enhanced by spin-transfer torque. Figure 14.17(a)
shows switching of the free layer in a MTJ nanopillar structure like that of
Fig. 14.14 by current. There is a current jp, less than the switching current,
where the oscillations set in. A calculated phase diagram as a function of
current and applied field is shown in Fig. 14.17(b). Thermal fluctuations tend
to facilitate spin-torque switching, and reduce the critical switching current
density jc.

Spin Hall effect in a wire.

14.1.5 Spin currents

When an electric current passes through a conductor that contains spin-orbit
scatterers, there is a tendency for spin to accumulate at the surface of the
conductor. Intrinsic spin-orbit coupling may have a similar effect. This is known
as the spin Hall effect. The principle is the same as for the Mott detector, which
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Spin-torque switching of
the free layer in a
nanopillar tunnel junction
structure, with a
single-domain free layer. P
and AP refer to parallel and
antiparallel configurations
of the free and pinned
layers. Data courtesy Kaan
Oguz. (b) Calculated phaser
diagram. (S. I. Kiselev et al.,
Nature 425, 380 (2003).)

senses the polarization of an electron beam by passing it through a gold foil
where it undergoes spin-orbit scattering, which separates the ↑ and ↓ beams.
The effect is difficult to detect in a wire, because the Oersted field created by the
current has the same symmetry as that due to the accumulated spin. However,
the spin accumulation has been detected optically in a flat slab of GaAs, using
the Kerr effect, Fig. 14.18.

The spin current in these examples, and the one that flows when the device
in Fig. 14.9 is switched on, is driven by the charge current, although, unlike a
normal spin-polarized electric current, it flows in a different direction. In the
example of the flat slab, the transient spin current flows across the slab, and
equilibrium concentrations of ↑ and ↓ electrons accumulate at opposite edges.

It is possible for spin currents to be completely divorced from charge cur-
rents, for example, when domain wall motion occurs. AC spin currents are
associated with the propagation of spin waves. However, these pure spin cur-
rents can only be transient or alternating. The maximum possible transfer of
angular momentum is constrained by flipping all the spins in the system. It
is a challenge to devise a DC spin battery which could drive a steady flow
of angular momentum, unassociated with a steady flow of charge. New con-
cepts of spin-based computation seek to eliminate the charge current entirely,
and thereby bypass the mounting energy dissipation associated with CMOS
processors.

A spin current, due for example to a fully polarized charge current flowing
in a conductor, creates an electric field, but these fields are extremely weak
(Exercise 14.6).
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Exchange as a spin current.

Exchange interactions can also be thought of in terms of spin currents.
As an electron hops back and forth between two atoms, the momentum
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An experiment to detect
the spin Hall effect in a slab
of GaAs. The spin-up and
spin-down densities, n↑
and n↓ are indicated by the
light and dark regions.
(Y. K. Kato, Science, 306,
1910 (2004).)

transfer is non-reciprocal, tending to align the atomic spins along a common
z axis.

14.2 Materials for spin electronics

The generic spin electronic device, Fig 14.5, consists of a source of spin-
polarized electrons, a transport medium and an analyser. The ferromagnetic
polarizer and analyser are often Co, Fe, Co–Fe or Ni–Fe. Half-metallic Heusler
alloys with high TC such as Co2MnSi are also used. Other half-metals of
interest include oxides such as LSMO and CrO2, but room-temperature device
operation with these materials has yet to be demonstrated.

In principle, the spin transport medium can be almost anything that transmits
electrons without completely destroying their polarization. In all-metal thin-
film stacks, Cu or Al is often used. Heavy metals introduce spin-flip scattering,
due to their strong spin-orbit interaction. Semiconductors are very effective
spin transport media because there are few impurities or other electrons to
scatter the spin-polarized carriers. Electrical spin injection and detection are
problematic in semiconductors because of the problem of resistivity mismatch
between the metal and the semiconductor. Optical injection and magneto-optic
detection are feasible for semiconductors with a direct bandgap, such as III–V
materials. The problem of injection and detection is less accute for organic
semiconductors.

Insulators are useful as spin transport media only when they are thin enough
to permit tunnelling. Ballistic conductors such as graphene, and organic con-
ductors where spin transport is by hopping and injection is controlled by the
ferromagnet–organic interface, are also potentially interesting. The organics
have miserable mobility, but there is a very long spin lifetime which may find
an application.

Relevant electronic properties of some representative materials are summa-
rized in Table 14.4. There is a broad palette, with opportunities for innovation.
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Table 14.4. Some materials for spin electronics

Conduction ls (nm) µ (m2 V−1s−1) vF (m s−1) τ s(s)

Cu Diffusive 200 4 × 10−3 1.6 × 106 3 × 10−12

Co Diffusive 40 2 × 10−3 1.3 × 106 4 × 10−13

Si Diffusive 105–106 0.1 b 10−9–10−7

GaAs Diffusive 105 0.3 b 10−9–10−7

Carbon nanotubes Ballistic 5 × 104 10 1 × 106 3 × 10−8

Graphene Ballistic 1500 0.2 1 × 106 10−10

Rubrene (C42H28) diffusive 13 2 × 10−3 b 10−3

Hexathiophene Hopping 200 10−9 10−6

Alq∗
3 Hopping 45 10−14−10−12 10−2–10

aTris-(8-hydroxyquinoline) aluminium.
bDepends on the carrier concentration.

14.3 Magnetic sensors

A variety of different physical effects are exploited in magnetic sensors, which
are passive devices that detect the presence of a magnetic field. They deliver
an electrical voltage that is monotonic, and preferably proportional to one
component of the field B or H acting at the sensor. The sensors are usually
magnetoresistive structures or Hall bars, but occasionally it is advantageous to
use magnetoimpedance sensors or sensors based on NMR. The latter can pro-
duce a signal proportional to the scalar magnitude of B. The great advantage of
magnetic sensing is that it avoids the need for direct contact between the sensor
and the object sensed. Several billion magnetic field sensors are manufactured
each year, about a billion of them destined for hard-disc drives. Most of the rest
are low-cost proximity sensors (§13.4.4). A car may contain as many as 100 of
them, mostly integrated silicon Hall chips.

Characteristics of the main sensor types are summarized in Table 14.5.
Principles of operation have been discussed in earlier chapters. Here we focus
on aspects of thin film sensor design, and consider the critical issue of noise,
which ultimately limits their sensitivity.

H

y

x

A barber pole. The dark
bands are highly
conducting strips which
define equipotentials and
the current flows as
indicated by the arrows at
45◦ to the magnetization
direction.

If a thin-film sensor, which depends for its operation on the direction of mag-
netization of a responsive ferromagnetic layer, is to deliver a magnetoresistive
signal that is monotonic in field, the magnetization has to be able to respond
continuously, rather than flip between bistable configurations (‘high’ and ‘low’
resistance states).

In the case of a single-film AMR sensor, which is usually made of permalloy,
the magnetoresistive effect δ�(ϕ) = [�(ϕ) − �(0)] is equal to  �(cos2 ϕ − 1),
where ϕ is the angle between M and j (5.78). Sensitivity is greatest when
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Figure 14.19

(a) AMR, (b) planar Hall
and (c) anomalous Hall
effect sensor
configurations. The easy
direction is shown by the
dashed line.

ϕ = π/4. Ways of setting this angle are either to induce in-plane anisotropy
by depositing or annealing the permalloy film in a magnetic field, or else to
make a barber pole pattern overlaying the permalloy with stripes of a more
conducting metal such as gold, which defines equipotentials across which the
current flows. In either case, the sensor responds to the transverse component
of the field in the plane of the film. Using the equilibrium condition that there
is no net torque on the magnetization due to the internal field in the film, the
demagnetizing field −NyM sin δϕ balances the transverse applied fieldH ′

0. For
small rotations, δϕ = H0/NM, and the variation of resistivity with field is

δ�(H ) ≈  �H ′
0/NM. (14.22)

The response is linear for small fields.
A planar Hall sensor also uses a single film of a material like permalloy.

Here a transverse voltage is measured when a magnetic field is applied in-
plane, perpendicular to the current (5.81). The effect is closely related to AMR,
but the sensor design is a little simpler.

The anomalous Hall effect, measured in the standard Hall geometry,
Fig. 14.19, can be exploited for detection of higher fields, applied perpen-
dicular to the plane of the sensor, in which case Nz ≈ 1. Since the anomalous
Hall voltage is proportional to the out-of-plane magnetization M⊥ (5.79), and
the demagnetizing field is −NzM⊥, it follows from the condition that there is
zero torque due to the internal field that H ′

0 − NzM⊥ = 0. The signal is linear,
and proportional to H0 up to saturation.

The linearization of a GMR or TMR spin-valve sensor is slightly different
from the linearization of an AMR sensor. The free layer of a spin valve is
normally free to rotate in the plane. The rotation in a well-designed sensor
is coherent, and the free layer remains single-domain. The magnetoresistance
then varies as sin2φ/2, where φ is the angle between the magnetization of
the free and pinned layers. Hence, the sensitivity is optimized for the crossed
anisotropy configuration where φ = π/2. This can be achieved by setting the
exchange bias direction of the pinned layer perpendicular to the easy axis of
the free layer. The GMR or TMR sensors are only linear for small changes
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of φ,  φ ≈ 10 ◦, so only a fraction of the total magnetoresistance is actually
exploited in sensors such as read heads.

Giant magnetoimpedance (GMI) (§5.6.4) offers great sensitivity to low mag-
netic fields. In wire sensors, the circumferential anisotropy can be set by con-
trolling the magnetostriction, or by annealing a current-carrrying wire, which
creates a circumferential magnetic field. Excellent results, up to 1000%, are
achieved using wires with a nonmagnetic copper core, and an electroplated
permalloy sheath, about a micrometre thick. The noise sensitivity is compara-
ble to that of good tunnel junctions. The wires are used as direction sensors in
interactive computer games, for example.

A DC SQUID sensor is a superconducting ring with two weak links where
flux is quantized as a multiple of �0 = 2.1 × 10−15 T m2. Cooper-pair wave
packets propagate on either side of the ring, accumulating a phase offset propor-
tional to the penetrating flux, but opposite in sign. The resulting interference
gives rise to a transmission probability periodic in the flux. An RF SQUID
sensor contains only one weak link, often a metallic point contact. Its high-
frequency inductance is again periodic in the flux linking the ring. In each case,
linearization of the field sensor is achieved using a flux-locked loop.

14.3.1 Noise

Pinned layer

Free layer

Metal

A yoke-type spin-valve
sensor. The free and pinned
layers are perpendicular in
zero applied field.

Noise in a magnetic sensor can be electrical or magnetic in origin. It is manifest
as uncontrolled random fluctuations of the voltage V (t) across the device. The
frequency spectrum of the fluctuations V̂ (f ) is the Fourier transform of the time
series V (t). The average power dissipated (per unit resistance) in fluctuations
during a measuring time tm which tends to infinity is

P = lim
tm→∞

1

tm

∫ tm/2

−tm/2
|V (t)|2 dt = lim

tm→∞

∫ ∞

0

2|V̂ (f )|2
tm

df. (14.23)

The power spectral density of the fluctuating process is defined as

SV (f ) = lim
tm→∞

2|V̂ (f )|2
tm

(0 < f <∞), (14.24)

where V̂ = 2
∫∞

0 V (t) exp(−2πift)dt . The voltage spectrum can be measured
directly in a spectrum analyser. It is conventionally quoted for a bandwidth
 f of 1 Hz.

Electrical noise is of four main types. The first is thermal or Johnson noise,
which is a characteristic of any resistor R. The spectrum is frequency-
independent:

SV (f ) = 4kBT R, (14.25)

and the mean-square voltage fluctuation measured across a resistor, with no
imposed current, is V̄ 2 = 4kBT fR. For example, the root-mean-square
(RMS) voltage fluctuation across a 1 M� resistor in a 1 kHz bandwidth at
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log SV

−6

1/f noise

Random telegraph noise

−7
Johnson noise

Shot noise

0 1 2 log  f

Figure 14.20

Frequency dependence of
various contributions to the
noise in a sensor.

room temperature is 4 µV. Hence the incentive to make electrical measure-
ments in as narrow a bandwidth as possible at the frequency of the signal of
interest, in order to improve the signal-to-noise ratio. This is the principle of
the synchronous, phase-sensitive detector (lock-in amplifier), which is almost
universally used for precise electrical measurements.

Shot noise is a nonequilibrium phenomenon associated with electric currents
which is related to the discrete nature of electrical charge. It was first observed
in vacuum tubes, where the power spectral distribution is flat in frequency
SI (f ) = 2eI. The current noise in a bandwidth  f is

Isn =
√

2eI f . (14.26)

Shot noise can be observed in tunnel junctions at low temperature when suf-
ficient current passes through the junction for the shot noise to exceed the
equilibrium Johnson noise. It may determine the ultimate sensitivity of high-
frequency sensors such as read heads. Operating at too high a bias reduces
the TMR (Fig. 8.25), but it also increases the shot noise. Carrier lifetime may
influence shot noise at high frequency.

The signal-to-noise ratio is critical for sensor applications. Noise is
frequency-dependent, Fig. 14.20. At high frequency, the noise contributions
that limit performance are Johnson noise and shot noise, varying as

√
R and√

I , respectively. Both are known as white noise on account of their flat fre-
quency spectrum. Another contribution called pink noise, or 1/f noise, domi-
nates at low frequencies, where the power spectral density SV varies as 1/f α

with α ≈ 1. The fascination of 1/f noise is its ubiquity. There is an astonishing
range of different natural and man-made examples, ranging from the human
heartbeat (1/f below 0.3 Hz) to the water level of rivers and the musical out-
put of radio stations. The 1/f noise in electronic systems may be orders of
magnitude greater than thermal noise at 1 Hz. In magnetic sensors, it is related
to resistance fluctuations R(t), which translate into voltage fluctuations when
a constant current is passed. The current does not create the fluctuations, it
just reveals them above the white noise. The square of the voltage fluctuations
SV (t) varies as I 2, which permits the 1/f noise coming from a sample to be
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distinguished from that arising from other sources, such as the preamplifier.
In magnetoresistive sensors, there is also a magnetic contribution to 1/f noise
that is associated with domain walls.

The 1/f resistance fluctuations are conventionally parameterized in terms of
a phenomenological expression due to Hooge:

SV (f ) = γHV 2
a /Ncf, (14.27)

where Va is the applied voltage, Nc is the number of charge carriers in the
noisy volume (Nc = n�, where n is the carrier density and � is the volume)
and γ H is a dimensionless number known as the Hooge coefficient, which
allows a normalized comparison of different systems. Values of γ H ∼ 10−3

are found for well-crystallized metal films, and for semiconductors. The values
of γH for conducting magnetic sytems including GMR sensors, may be orders
of magnitude greater.

The origin of the 1/f noise remains an open question, but the noise can be
modelled in terms of an ensemble of elementary thermally activated fluctuators
with a broad range of energy barriers. The task for an engineer concerned with
magnetic sensors is to avoid it or reduce it as far as possible. One approach is to
ensure that thin films of excellent crystalline quality are used to reduce the elec-
trical contribution. A way to circumvent 1/f noise is to amplify the field and
modulate it at a frequency in the kHz range, with a microcantilever for exam-
ple, in order to shift the detected signal into the white noise region. beyond the
range where 1/f noise dominates. A tapered soft-magnetic flux concentrator
can be mounted onto a silicon microcantilever, for example. Another approach,
suitable for very low fields, is to use a mixed sensor. Here a superconducting
loop with a constriction responds to flux, which is quantized in the loop to be
a multiple of �0 = 2. 068 × 10−15 T m2. A current I flows around the loop to
maintain the flux, and it creates a field H = I/2πr at the constriction where a
sensitive spin-valve sensor is used to detect the field. The superconducting flux
to field converter can be modulated thermally by heating it above its supercon-
ductivity transition temperature, at a frequency f above the 1/f upturn. The
noise performance of a mixed sensor may be comparable to that of SQUID,
and it is easier to implement.

B0

Mechanical
 oscillation

Sensor

Soft magnetic flux
concentrator and
modulator. The signal is
modulated to avoid the
1/f noise.

A superconducting mixed
sensor. A current flows in
the superconducting loop
to maintain a constant flux,
and the field produced by
the current at the
constriction is detected by
a sensitive spin valve.
(Courtesy of M. Pannsetier)

V

B

B'

I

Iext

Wheatstone bridge with
magnetoresistors can be
used as (i) a null detector
to measure small changes
in B, (ii) a linear field
detector, by passing a
current Iext in the external
coil to maintain the bridge
in balance.

Finally, a type of noise which is sometimes encountered in conducting mag-
netic thin films is random telegraph noise, where a particular two-level system
is activated in a certain temperature window. This leads to a broad feature in the
noise spectrum, as indicated in Fig 14.20. Some examples of noise in different
magnetic structures are given in Fig. 14.21.

The magnetic noise, or electrical noise of magnetic origin, in AMR or spin-
valve sensors is related to fluctuations of the magnetization, which are reflected
in the magnetoresistance signal. These fluctuations can be severe when domain
walls are present, and they are mitigated by ensuring that the ferromagnetic lay-
ers are single-domain, and that the rotation of the free layer is coherent. One way
to achieve this is to build a permanent magnet into the sensor structure, which
creates a small bias field. Otherwise, domain formation can be discouraged
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Figure 14.21

Some examples of noise in
magnetic thin-film
samples: (a) 1/f noise in a
CrO2 film, (b) random
telegraph noise in a
La0.67Ca0.33MnO3 film and
(c) 1/f and white noise in a
CoFeB–MgO–CoFeB
magnetic tunnel junction.

by reducing the demagnetizing field and taking advantage of shape anisotropy
in a yoke-type configuration. When the sensor dimensions are very small, or
the free layer is so thin that it tends to break up into magnetically independent
regions, collective fluctuations of the magnetization, of the type described in
§8.5, may be a significant source of noise.

The other side of the signal-to-noise coin is signal. Besides the field ampli-
fication strategies just mentioned, the sensor signal can be optimized in other
ways. One is to form a Wheatstone bridge, where the four resistors are balanced
in the ambient field and the voltage signal is the response to any change in the
field. A linear field sensor can be constructed from such a null detector by
passing a current, Iext , through an external coil in such a way as to maintain the
bridge in balance. The external field is then proportional to Iext . Gradiometers
can be constructed where two field sensitive elements in the bridge are spatially
separated to detect local variations of the field against a spatially homoge-
neous background. With SQUIDs it is easy to wind a superconducting flux
transformer to act as a planar or axial gradiometer.

Planar and axial
gradiometers for a
superconducting flux
transformer.

14.4 Magnetic memory

Magnetic memory is as old as digital electronics. It has the incontrovertible
advantages of being nonvolatile and indefinitely rewritable. Mass memory for
computers has been provided by hard discs for over 50 years. A series of ideas
have been advanced for other, faster, schemes which can be addressed elec-
trically, rather than mechanically. These included ferrite core memory which
was dominant in the 1950s and 1960s, until it was superseded by semicon-
ductor memory, permalloy plated wire memory in the 1960s, magnetic bubble
memory in the 1970s and early 1980s, and magnetic random-access memory
(MRAM) which has been under development since the mid 1990s. In principle,
MRAM can combine the speed of SRAM with the density of DRAM and the
nonvolatility of flash, with radiation hardness and reduced power consumption.
The latter has always been an attraction of magnetic memory for military and
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Bit line

i

Magnetic field

Flux concentrating
cladding layer

Inlaid copper
interconnects

Isolation
transistor 
"OFF"

Word
line

Fixed layer
Tunnel barrier

Free layer

Digit line

Figure 14.22

A TMR spin-valve memory
cell operating on the
half-select principle, with
orthogonal bit and word
lines (M. Johnson, (2004).)

space applications – the computers in the Challenger space shuttle and the
Hubble Space Telescope include magnetic memory. With increasing minia-
turization radiation hardness could become an issue for civilian applications
because of the problems associated with unshieldable background radiation.

1.0

Measurement
Simulation
Operating region

1.0 Hx
Hhard

Hy

/ Hc
0

H
ea

sy
/ H

c0

0.5

0.50.0
0.0

Half-select pulses, shown
on the Stoner-Wohlfarth
asteroid.

14.4.1 Magnetic random-access memory

The tiny ferrite toroids a few hundred micrometres in diameter were the original
core memory threaded on write and sense lines; they operate on the half-

select principle. The same principle has been used in MRAM. Schemes under
investigation include those with current-in-plane based on GMR spin valves
and current-perpendicular-to-plane based on magnetic tunnel junctions. The
requirement is for a bistable device where the free layer can flip very quickly
between the parallel and antiparallel states, which represent the binary data, ‘0’
and ‘1’.

A 256-bit ferrite core
memory from 1960.

Half-select switching, Fig. 14.22, uses current pulses in orthogonal bit and
word lines to generate magnetic field pulsesHp.A single pulse does not disturb
the state of the free layers of a line of elements, but when two pulses arrive
simultaneously along the two perpendicular lines that cross at the selected
element, the resultant field

√
2Hp is sufficient to induce switching. This can be

nicely represented on the Stoner–Wohlfarth asteroid.
The margin of error for this switching is rather small, and immense reliability

is demanded of working memory devices. An improved pulse sequence known
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Toggle-mode sequence to
enhance the reliability of
half-select switching. (M.
Johnson 2004)

as toggle-mode switching (Fig. 14.23) greatly enhances switching reliability;
it was devised by Motorola for the first commercial MRAM chips, which
appeared in 2006.

We saw in §14.1.3 that half-select switching with Oersted fields does not
scale favourably as the dimensions are reduced. Possible ways around this dif-
ficulty are: (i) thermally assisted switching where the current passing through
the memory cell heats it sufficiently to reduce the anisotropy, making it easier
to switch and (ii) spin-transfer-torque MRAM, where the switching is accom-
plished by a spin-polarized current pulse surging through the spin-valve stack.
TMR devices with MgO barriers offer useful voltage changes (>0.1 V) and
a compact footprint with a single transistor switch, and the magnetic tunnel
junction added in a back-end metallization step. The magnetoresistance char-
acteristic of an exchange-biased TMR stack used for memory is illustrated in
Fig. 14.24. These devices may be able to replace the six-transistor SRAM cell.
It is a remarkable feat to be able to cover a silicon wafer 200 mm or 300 mm
in diameter with a thin-film stack that includes a uniform MgO barrier layer
barely 1 nm thick.

V

H

v

v

I

(b)

(a)

Movement of domain walls
in a magnetic nanowire by
(a) an applied field, and (b)
spin-transfer torque.

A proposed scheme for magnetic memory due to Stuart Parkin is based on the
movement of a pattern of magnetized domains around a permalloy track, which
constitutes a magnetic shift register. The head-to-head and tail-to-tail domain
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Magnetoresistance of an
exchange-biased TMR spin
valve with an MgO barrier
and a synthetic
antiferromagnetic pinned
layer. When used as a
memory element, the axes
of the free and pinned
layers are parallel, giving
an abrupt switch near zero
field, as shown. When the
device is used as a sensor,
these axes are
perpendicular, leading to a
linear R(B) transfer curve,
as the free layer rotates
coherently in the applied
field. (Data courtesy of Gen
Feng.)

walls would move in opposite directions in an applied field, thereby annihilating
the data, but the pattern of magnetization can be pushed around the track by spin-
transfer torque. A current passing through a magnetized track adopts the polar-
ization of the domain, so the walls are all pushed in the same direction. A string
of bits can be moved at velocities of order 100 m s−1 by a train of current pulses
in the magnetic racetrack memory (MRM). The scheme promises nonvolatile
solid state memory, without the mechanical inconvenience of a hard-disc drive.
Very high storage densities should be achievable if the registers can be built in
the vertical direction. The scheme has yet to be demonstrated in practice.

V

Magnetic racetrack
memory. (S. S. P. Parkin
et al., Science 320, 190
(2008).)

14.5 Other topics

14.5.1 Logic

A ferromagnetic thin-film element can be pressed into service for logic as well
as memory. Useful output voltages are achieved with MgO barrier magnetic
tunnel junctions. An alternative implementation scheme makes use of a switch-
able ferromagnetic film grown on a semiconductor Hall sensor, Fig. 14.25. The
stray field from a Co–Fe element acting on a two-dimensional electron gas
creates a useful Hall voltage which follows the Co–Fe magnetization, reversing
sign as the magnetization switches.

A generic nonvolatile magnetic switch may be applied in field-

reprogrammable gate arrays. These are applications-specific CMOS logic cir-
cuits which are reprogrammable at will in order to carry out a set of logic
operations required for some particular application. This avoids the need to
design and produce a custom chip for each purpose. The magnetic switch
delivers its output to the gate of an FET. Half-select input pulses at the termi-
nals A and B determine the state of the device. The output of the switch, of
order 0.1 V, is sufficient to pinch off the current in the channel of the FET.
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A nonvolatile magnetic
switch based on a
switchable thin film and a
Hall cross.
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Logic operations using the
third terminal C for clock
pulses. The steady-state
response to the input
pulses at A and B
demonstrate AB, A+B and
AB, A+B. (M. Johnson
(2004)).

The magnetic switch can also be applied for Boolean logic. As it stands,
the half-select switch acts as an AND gate, switching only when it receives
simultaneous pulses at A and B. Reset, and the other Boolean operations OR,
NAND and NOR can be conducted by adding a third terminal C, which is used
for clock and reset pulses. The reset pulses can be positive or negative, setting
the switch in either the high (1) or the low (0) state. All the operations can be
achieved in just two clock cycles, as illustrated in Fig. 14.26.

A B

A generic nonvolatile
magnetoelectric switch.
The output is applied to the
gate of a field-effect
transistor. Switching of the
magnetization is achieved
by simultaneous pulses at
A and B.

A key requirement for any implementation of logic is fanout. The digital
output from one logic gate must be sufficient to apply to the inputs of one or
more contiguous gates in the next stage. Normally, fanout requires power gain,
which is achieved with conventional CMOS.

An ingenious approach to magnetic logic due to Russel Coburn is based on
propagating domain walls in permalloy tracks. The clock is here provided by a
rotating magnetic field applied in the plane of the film, and readout is based on
the Kerr effect. Annihilation of the information in the applied field is avoided
by using long bits so that the head and tail of a bit are on opposite sides of
a curved track, and thus they move in opposite directions in an external field.
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(a)

(e)

(d)

(c)

(b)

Figure 14.27

Domain wall logic in
domain walls on permalloy
tracks: (a) a NOT operation,
(b) an AND gate, (c) fanout
and (d) crossover. These
operations are combined in
the demonstration four
element circuit (e).
(Courtesy of R. Coburn.)

The rotating magnetic field moves the bits around the track. The domain walls
are introduced at injection pads, and specific track shapes perform particular
logic operations. Some of the structures involved are illustrated in Fig. 14.27.
Generally, the four logic gates can be generated from any one of them, together
with the NOT operation. The cusp acts as a NOT operator, providing a rotation
of the magnetization byπ, as the wall moves up to the point of the cusp, and then
backs out of it. The AND gate is implemented by running two tracks together at
a small angle. Taken in the opposite sense, the same structure provides fanout,
creating two walls from one and taking the necessary energy from the external
field. Crossover is achieved by running one track across the other; the domain
walls are solitons which do not interfere with each other. Drawbacks of this
elegant scheme are the large footprint of the permalloy track, and the slow
clock rate available from an AC magnetic field.

Another logic scheme has been proposed which is based on three single-
electron nanodots coupled by antiferromagnetic exchange. There is a weak
bias field to define an easy direction. The two outer dots provide the input and
the central dot is the output. The four possible inputs illustrated in Fig. 14.28
show that the device operates as a NAND gate, from which the other logic
operations can be constructed.

Yet other magnetic logic schemes can be envisaged. One uses the phase of
spin waves, which have the advantage that they carry pure alternating spin
currents. The phase is shifted when the spin wave traverses a domain wall. By
passing the spin waves around parallel arms of a narrow loop and detecting the
signal at the point where they recombine, it is possible to make a logic gate based
on the presence of 360◦ domain walls in either or both of the arms. Attractive
features are that no transfer of charge is involved, and so there is no energy loss
due to Joule heating although there may be energy dissipation associated with
Gilbert damping. Futhermore, the spin waves could be generated on-board the
chip using spin-transfer torque (Fig. 14.14).
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Figure 14.28

Exchange logic. The
central single-electron
atom is coupled
antiferromagnetically to its
two neighbours. The four
states of the system
correspond to the NAND
operation shown in the
truth table.
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Figure 14.29

A two-q-bit structure
composed of two weakly
interacting single-electron
spins on adjacent quantum
dots.

Finally, among the many candidate systems that have been considered
for quantum computing, entangled q-bits based on weakly interacting spins,
Fig. 14.29, meet many of the requirements. A single-electron spin on a quan-
tum dot can be regarded as a q-bit in a state α|↑〉 + β|↓〉. The q-bits are
initialized in the |↑〉 state in a large magnetic field, and the individual bits are
then manipulated by varying the Zeeman splitting. The two-q-bit operations,
which are required for universal quantum computing are performed by tuning
the weak exchange coupling between two adjacent q-bits. The coherence of the
state tends to be destroyed by spin–orbit coupling and hyperfine interactions
which introduce longitudinal, spin-flip T1 relaxation processes and transverse
T2 processes which describe the decay of the superposition state.

Spin-wave logic. The spin
wave running through the
two branches acquires a
phase shift if it encounters
a domain wall.

14.5.2 Spin transistors

Spin electronics could enter a new phase if it proves possible to make a three-
terminal device with spin gain, which meets the fanout requirement in logic
circuitry. There have been several suggestions and demonstrations of physically
interesting devices.

The first three-terminal spin electronic device was the Johnson transistor
(Fig. 14.30(a)). Essentially a GMR spin valve, with the nonmagnetic metal as
base electrode, the base-emitter current injects polarized spins into the base
region. The floating collector samples a small voltage change depending on the
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Some possible
three-terminal spin
devices: (a) the Johnson
transistor, (b) the
Datta–Das transistor,
(c) the spin MOSFET.

configuration of the two ferromagnetic emitter and collector electrodes. The
Johnson transistor is equivalent to the device used in the nonlocal measurement
of spin accumulation.

An influential device proposal has been the Datta–Das transistor. This is
an FET-like structure, with ferromagnetic source and drain. Spins are injected
into the two-dimensional electron-gas channel, where transport is supposed to
be ballistic. They are subject to an electric field from the gate, which looks
like a magnetic field B∗ = (v × E)/c2 to electrons moving with velocity v
(3.70). This is known as the Rashba effect. The electrons undergo Larmor
precession, and the source-drain current depends on the number of turns they
have made by the time they arrive at the drain, which can be controlled by the
gate potential. Neither the Datta–Das device, nor the related spin MOSFET,
where the semiconductor channel is diffusive, made of Si or GaAs, and which
promises a combination of power amplification and nonvolatile memory via the
switchable ferromagnetic drain electrode, have yet been realized in practice.
Nevertheless there has been significant progress towards realizing electrical
spin injection and detection in these semiconductors.

A way to circumvent the resistance mismatch problem is to inject hot elec-
trons via a Schottky or tunnel barrier, which subsequently lose energy by
spin-dependent inelastic scattering in the base region of a device, Fig. 14.31.
In the Monsma transistor, the base is a GMR multilayer with two Schottky
barriers, at the source and drain. Another device is the magnetic tunnel tran-
sistor, where the base is a ferromagnetic electrode and there is injection from
a ferromagnetic source via a tunnel barrier, and a semiconductor collector
with a Schottky barrier serves as the drain. The device produces a significant
magnetoconductance, defined as

MC = (Icp − Icap )/Icap ,

where Icpand Icap are the collector current with parallel or antiparallel configu-
rations of the two electrodes. However, in no case has gain of the spin-polarized
current yet been achieved.

In summary, two grand challenges facing spin electronics are:

(i) to realize a spin amplifier – a device which can sense a spin-polarized
current, and then enhance the product of its intensity and spin polarization,
of either sign;
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Hot-electron spin
transistors: (a) the Monsma
spin-valve transistor and
(b) the magnetic tunnel
transistor. In (a), two
electron trajectories with
different energy losses are
illustrated.

(ii) to somehow separate the spin and charge currents so that logic operations
can be performed without the ohmic dissipation of electric currents.

An early inductive ring
head. Tape is magnetized
by the stray field produced
by the electromagnet near
the gap. During playback,
the flux changes in the ring
induce an emf in the
winding.

14.6 Magnetic recording

Magnetic recording has been with us for over a century. It is evolving rapidly.
The first working recorders were the ‘telegraphones’ invented by the Danish
telephone engineer Valdemar Poulsen, which date from 1898. Steel wire or a
steel disc was the recording medium, and DC bias was used to enhance sound
quality. The technology of analog tape recording was developed by AEG and
BASF in Germany in the 1930s. Innovations incorporated in their ‘magne-
tophon’ recorders were an inductive ring recording/playback head, AC bias
and cellulose acetate tape coated with a layer of fine particles of γFe2O3. The
AC bias, which greatly enhanced recording sound quality, had been invented
by Kenzo Nagai in Japan in 1938. Analog recording involves a signal of con-
tinuously varying amplitude and frequency, which must be mapped linearly
onto the remanent magnetization of the medium for high fidelity. But rema-
nence is not linear in applied field. To achieve a linear response, an AC bias is
applied at an inaudible frequency of 50–100 kHz to saturate the magnetization,
Fig. 14.32. The anhysteretic remanence is then proportional to the signal.

Video recording was introduced by AMPEX in the USA in 1956, and con-
sumer versions of audio and video recording followed with the compact cassette
of Philips in 1963 and the rotating head VHS system of Panasonic in 1976.

At a simpler level, records and security features can be printed on paper
using ink pigmented with ferrimagnetic iron oxide particles. Special fonts
giving characteristic magnetic signatures are used on cheques. Unaffected by
overstamps, the records are magnetized in a horizontal field and read with an
inductive read head.

Fonts used for printing
records with magnetic ink.

Digital computing demands digital recording. After some short-lived exper-
iments with rotating drums, IBM tried a rotating disc memory, which turned
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Table 14.6. Magnetic recording media

Tape Disc

Method Digital, analog Digital
Direction In-plane Perpendicular
Medium Particulate, metal film Metal film
Density 10 bits µm−2 1000 bits µm−2

Capacity 1–10 Tbyte 10–1000 Gbyte

Bias field

Signal field

t

H

+

Figure 14.32

Analog audio recording
with AC bias.

out to be a decisive innovation. Introduced in 1957, the original RAMAC (ran-
dom access method of accounting and control) was based on a stack of 50
two-sided 24-inch platters. It weighed a tonne and boasted a storage capacity of
4.4 megabytes. RAMAC is the direct ancestor of a modern 3 1

2 -inch hard-disc
drive, which weighs a few hundred grams, and provides a terabyte of stor-
age – an improvement in areal density and cost per byte of eight orders of
magnitude!

A personal stereo, ca 1935.
(Courtesy Orphée Cugat.)

Disc recording has been implemented in a sequence of different formats for
fixed and portable storage, such as the 8-inch floppy disc, which have come
and gone. This is a problem for archivists, who need a room full of obsolete
hardware to access their records, unless they periodically back them all up onto
ever more modern and ephemeral media. A hard copy of a book like this might
be taken down from a library shelf in 2100 and thumbed by someone interested
in the history of magnetism. It is doubtful that any electronically produced
version will be so accessible in its original format.

Magnetic records are now almost all digital. Data are mainly stored on the
hard discs that are used for mass memory in computers and servers – the
memory banks of the Internet – as well as in consumer devices like music
players and digital cameras. Tape recording retains a place for archival storage
of vast quantities of digital data, as well as for low-end consumer applications.
Disc and tape recording are compared in Table 14.6.
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Figure 14.33

A 3 1
2 -inch hard disc drive.

(Courtesy of Seagate
Technology.)

Regardless of whether it is done on tape or disc, magnetic recording transfers
information onto a moving magnetic medium. The information is coded into
the current passing through a miniature electromagnet – the write head. The
stray field produced by the head must be sufficient to switch the magnetization
of the medium4 by overcoming the coercivity. The recording medium is usually
a thin film composed of tiny, crystalline, single-domain grains or ‘particles’.
Digital information is written in elongated patches of width w and length l,
with w/l ≈ 5, which are arranged in circular tracks on a disc or linear tracks
on a tape. A single bit is recorded in the magnetization of N particles in the
patch. For a good signal-to-noise ratio, the individual grains should be more
or less magnetically decoupled. The signal-to-noise ratio in db is then of order
10 log N ; if a value of 30 db is required, N has to be about 1000.

Perpendicular tracks on a
hard disc imaged by
high-resolution magnetic
force microscopy. The
width of the tracts is
determined by the width of
the write head. The
recording density here is
300 bits µm−2 or 250
Gbit/square inch. (Courtesy
of Nanoscan AG.)

The head is fixed, and in contact with the lubrication layer of the medium
for tape recording, but for disc recording it is mounted on a voice-coil actuator
(Fig. 13.18), which scans it across the surface in a hard-disc drive, flying on an
air bearing about 10 nm thick. A sophisticated feedback mechanism keeps the
head on-track. The voice-coil actuator and the spindle motor driving the disc at
upto 15,000 RPM are both permanent-magnet motors making use of the best
grades of Nd2Fe14B. A 3 1

2

′′
drive is illustrated in Fig. 14.33.

4 Specialists in magnetic recording use the word media as if it were singular.
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Schematic of in-plane and
perpendicular magnetic
recording.

Two recording modes are implemented – longitudinal and perpendicular –
with the magnetic records magnetized respectively in-plane or perpendicular
to the plane of the medium. Prior to 2005, when perpendicular recording
was introduced on hard discs, all magnetic recording, other than magneto-
optic recording, was longitudinal. Perpendicular recording permits higher areal
densities of the magnetic records, but requires uniaxial anisotropy in a direction
normal to the plane of the disc that is sufficiently strong for the anisotropy field
to exceed the demagnetizing field:

2K1/µ0Ms > NMs. (14.28)

The medium is not a uniform thin film, for which N = 1, but it is composed of
magnetically isolated columnar grains with a much smaller effective demagne-
tizing factor, Neff ≈ 0.2.

For decades, inductive heads were used both to write and to read the data,
but since the 1990s the recorded information has been read by a separate
thin-film magnetoresistive sensor, which responds to the stray field created
by the magnetic records. Actually it is the magnetization transitions between
the recorded bits, where the stray field is greatest, that are detected. These
transitions are irregular on account of the discrete nature of the particulate
medium. The general scheme for magnetic recording is illustrated in Fig. 14.34.
The reader and writer are merged into single thin-film stack. The reader is placed
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between two magnetically soft shields, one of them shared between the reader
and the writer.

Increasing data density means reducing the size of the single-domain parti-
cles in the medium, while maintaining the signal-to-noise ratio. Reducing the
size pushes the particles towards the superparamagnetic limit where spontaneous
thermal fluctuations destroy the recorded information. The stability criterion
used for recording is

K1V/kBT > 40,

in other words, K1V > 1 eV. As the particle volume V decreases, stronger
uniaxial anisotropy is needed to maintain stability, implying the need for harder
magnetic material. But harder materials are increasingly difficult to switch with
the limited flux density available from the writer. The problem of simultaneously
optimizing the conflicting demands of signal-to-noise ratio, thermal stability
and writeability is known as the trilemma of magnetic recording.

Data densities on commercial hard discs have been increasing at a rate of 60–
100 % per year, as illustrated in Fig. 14.3. Laboratory demonstrations run two
or three years ahead of the trend. The superparamagnetic limit, which should
somehow put an end to this progress, can be estimated; the critical volume for a
hard material withK1 = 106 J m−3 is V = 160 × 10−27 m3, corresponding to a
particle size of about 5 nm. Optimistically, if we can takeN = 100, there would
be about 400 bits per µm2 or 260 Gbits per square inch. The state of the art in
2009 was 1000 bits µm−2 (600 Gbits per square inch)! The superparamagnetic
limit has been circumvented, for the time being, by skilful magnetic engineering.
The lithographic feature sizes that now have to be implemented in recording
heads are similar to those in CMOS circuits.

We will consider each component of the recording process in turn.

14.6.1 Write heads

The writer is a miniature electromagnet with an airgap. First we consider a ring
head producing a horizontal field for writing on in-plane media. If the gap has
width g, the horizontal and vertical components of the stray field from the ring
are given by the Karlquist equations, valid when z > 0.2g:

Hx = Hg

π

[
arctan

(
g/2 + x
z

)
+ arctan

(
g/2 − x
z

)]
, (14.29)

Hz = Hg

2π
ln

[
(g/2 − x)2 + z3

(g/2 + x)2 + z2

]
, (14.30)

where Hg is the field deep in the gap.
The equations can be deduced by considering two sheets of surface charge on

the writer. As the medium moves past the head, there is a ‘write bubble’ where
the horizontal field Hx exceeds the threshold for switching the magnetization
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A thin-film write head for
perpendicular recording.

of an in-plane record. To write effectively, a rule of thumb is that the field deep
in the gap should be about three times the coercivity of the medium.

Switching the recorded bit is done with a current pulse in the inductive
writer. Williams and Comstock developed a model for the recording process
which predicts the width a of the recorded transition in a material with a square
hysteresis loop to be

a =
√
Mr td
πHc

, (14.31)

where t is the medium thickness and d is the head–medium spacing. Hence the
need to reduce these distances and increase coercivity for the highest recording
densities. In hard-disc drives, the head–medium separation is 10–20 nm, and
the head flies on an air bearing. In tape and floppy-disc drives, the head is in
direct contact with the medium.

The thin-film write head for longitudinal data recording on hard discs is
a modified ring consisting of a pancake coil sandwiched between two films
of a soft material such as permalloy or Fe94Ta3N3, shaped to form the yoke
and poles of the miniature electromagnet. The written bits are narrow bands
oriented across the track, which are magnetized by the stray field at the edges
of the two flat poles. The gap is less than 100 nm.

A slightly different type of head is needed to write on perpendicular media,
Fig. 14.35. The flux generated by the flat coil is guided by the soft material
to a single magnetic pole with its charged surface parallel to the medium in
order to generate flux in the correct direction. The flux is focussed in what is
effectively a narrow airgap by incorporating a soft magnetic underlayer which
is physically part of the recording medium, but magnetically belongs to the
head. The underlayer is separated from the medium by a thin nonmagnetic layer
which breaks the exchange coupling. An image of the write pole is created in the
underlayer, and the medium therefore lies at the centre of this airgap. The flux is
provided with a return pole having much greater cross section than the write pole
so that the flux density below it is insufficient to disturb the written information.
Flux conservation requires that BwpAwp = BrpArp = BklAkl , where wp, rp
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and kl refer to the write pole, the return pole and the soft underlayer.5 If
Msw and Msk are the magnetization of the writer and the soft underlayer, and
the dimensions of the writer are w × l, then an expression for the minimum
thickness of the underlayer tk needed to avoid saturation is

tk = Mswwl

Msk2(w + l) . (14.32)

If, for example, w = 50 nm, l = 10 nm, µ0Msw = 2.4 T and µ0Msk = 1.0 T,
then tk = 10 nm. The writer is made from the soft material having the largest
possible polarization permitted by the Slater–Pauling curve, usually a nanocrys-
talline Fe–Co or Fe–Co–Ni alloy with µ0Ms = 2.4 T. An estimate of the field
produced at the medium is Hw = Msw�/4π , where � is the solid angle sub-
tended by the write pole and its image at the centre of the medium. Thanks to
the effect of the image pole, it is possible to achieve values of Hw approaching
1500 kA m−1. Taken together, the writer and its image can be thought of as a
ring head, with the medium running through the gap.

+ + + + + +

The solid angle subtended
by the medium at the write
pole and its image.

14.6.2 Magnetic media

Magnetic media are made of semihard materials with sufficient hysteresis to
maintain a permanent record of the data, but not so much as to impede remag-
netization in the field produced by the write head. The recorded information
must be erasable if the medium is to be reused. Digital information is encoded
in the direction of magnetization of domains located at identifiable spots on
tracks in the magnetic medium. A square hysteresis loop is desirable. The
emphasis in magnetic recording is therefore on controlling the nucleation of
reverse domains, whereas in permanent magnetism the emphasis is on avoiding
nucleation altogether.

For many years, media consisted of dispersions of single-domain particles
in a polymer matrix, with an easy direction of magnetization parallel to the
substrate. Commonly used materials for particulate media on tapes and floppy
discs were acicular (needle-shaped) γFe2O3, especially with Co surface-doping
to increase coercivity, CrO2 and iron metal. Acicular particles were a few
hundred nanometres in length with an aspect ratio of 5:1 or 10:1 so as to
provide shape anisotropy. Coercivity was about 50 kA m−1.

C overcoat
CGC* layer 

Main layer

Growth layer

SUL

(* continuous granular composite)

50 nm

Magnetic recording
medium consisting of
sub-10-nm metallic grains
with oxide-rich grain
boundaries. The bit is
recorded on a patch of
grains along the track. The
cross section shows the
layer structure of the
recording layer.

The thin-film media on hard discs are now generally hcp cobalt-based Co–Pt
alloys, with Cr, B or Ta additives to help create a regular granular nanostructure.
Coercivity is about 500 kA m−1. As recording densities increase, there is a need
for media with higher coercivities, which can be still achieved in the Co–Pt
or Fe–Pt systems. The stray field from the writer limits the usable coercivity.

5 The soft underlayer is sometimes called the ‘keeper layer’, in an allusion to the obsolete practice
of bridging the poles of a horseshoe magnet with a soft iron bar in order to prevent self-
demagnetization.
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Permanent-magnet materials like BaFe12O19 are suitable for certain magnetic
records like those on credit cards or identity cards which are not intended to be
erased.

In order to circumvent the superparamagnetic limit when the bit size
decreases, two approaches have been adopted. One is to increase the anisotropy
of the medium, while finding a way to switch it in the limited field of the writer.
The other is to increase the magnetic mass of the bits.

Simplest, is to use tall slim grains which are ideal for perpendicular record-
ing. Perpendicular media are thin-film stacks with a soft underlayer and seed
layers to control grain size in the Co–Pt–Cr recording layer. The grains have
a diameter of less than 10 nm, and an aspect ratio of about 3. The magnetic
mass can be increased by taking two ferromagnetic layers, which are coupled
antiferromagnetically via a thin ruthenium spacer. This produces the antiferro-
magnetically coupled bilayer (AFC) medium, which was introduced in 2001.
The effective Mr t is the difference for the two layers, which leads to sharper
transitions (14.31), and the magnetic mass is doubled. It is also possible to
exchange-couple the recording layer to an antiferromagnetic underlayer.

TEM micrograph of a
self-assembled array of
6 nm FePt particles which
could serve as a patterned
medium for N = 1
magnetic recording. (S. H.
Sun, C. B. Murray, D. Weller
et al., Science 287, 1989
(2000).)

In order to write on hard material, one solution is to exploit the decrease
of coercivity with increasing temperature. A scheme of heat-assisted mag-
netic recording (HAMR) has been developed where the bits are written on
the medium which is locally heated by a miniature laser. Another trick is to
use graded media which are soft at the surface, but have a coercivity which
increases with depth. Reversal is initiated in the topmost, softer, layer, and
propagates through the thickness.

Ultimate densities may demand patterned media, where single-domain par-
ticles lying at precisely determined positions along a track are individually
addressed. The patterned discs are made by nanoimprint lithography from tem-
plates with a nanostructured quartz or diamond surface.

Recording densities are lower for tape recording, but the quantity of data
stored in a tape casette may exceed that on a hard disc by an order of magnitude,
as there is plenty of surface to write on. The cost per Gbyte is a factor of 5–10
lower. Track widths are about a micrometre. Particulate media are based on
acicular particles of Co–γFe2O3 or iron, or else BaFe12O19 platelets.

14.6.3 Read head

In all early magnetic recording systems, the reader was the same electromagnet
structure that served to write the data. The flux change in the yoke, due to
changing stray field in the airgap as the medium sped by, induced an emf in the
winding. This scheme, which remains in use in some simple tape recorders,
was implemented in thin-film inductive heads for hard-disc recording in 1980,
but it was replaced by a merged head with a separate thin film permalloy AMR
read sensor in 1991.
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(a) (b)                             (c)

Af F1Cu F2Figure 14.36

An AMR read head, a GMR
spin valve read head and a
TMR spin-valve read head
For the first two,
longitudinal magnetic
records are written in the
plane of the medium and
the current flows in the
plane of the film (CIP),
whereas for the third case,
the records are
perpendicular to the plane
of the medium, and the
current flows perpendicular
to the stack (CPP).

Magnetoresistive read heads are optimized linear thin-film sensors set per-
pendicular to the medium and the track, which respond directly to the vertical
component of the stray field, rather than its time derivative as in an inductive
reader. Successive generations of readers have enabled the continual miniatur-
ization that has produced the exponential growth in storage density shown in
Fig. 14.3. GMR spin valves were introduced in 1997, and TMR spin valves came
with the transition to perpendicular recording in 2006. Each new generation
offered an adequate signal-to-noise ratio in a smaller package.

The reader is part of the merged thin-film head, a complex multilayer struc-
ture nowadays patterned on a length scale of a few tens of nanometres. The
reader must be as close to the medium as possible, no more than a bit width
away in order to detect the stray field that arises at the transition from one
bit to the next in longitudinal media or from the magnetized bits themselves
in perpendicular media. Considering the recorded bit as a long, transversely
magnetized wire, the readback signal varies as the stray field (13.7) which is
proportional to the magnetic moment per unit length λ = Mrlt, where l is the
bit length and t is the medium thickness, and inversely proportional to r2.

The reader is sandwiched between two relatively thick permalloy shield
layers, which absorb the flux from adjacent bits. It is generally shorter than
the track width. The reader itself is a complicated stack of sequences of seed
layers, exchange bias layer, ferromagnetic pinned and free layers with a spacer,
and cap layers on top.The pinned layer may be a synthetic antiferromagnet. The
stack shown in Fig. 14.24 is a comparatively simple one! A bias field produced
by segments of hard magnetic Co–Cr–Pt eliminates domain structure in the free
layer, and leads to a single-domain sensor with no Barkhausen noise. The writer
layers are deposited on top of this stack. A single wafer may include 20 000
heads, which have to be cut out, lapped and mounted at the tip of the slider arm
of the voice-coil actuator (Fig. 13.18). Structures of different magnetoresistive
readers are shown schematically in Fig. 14.36. The magnetic axes of the pinned
and free layers in the spin valves are perpendicular, in zero external field.

Large current densities flow in the reader. The voltage signal in a CPP
structure is

V = j
(
 R

R

)
�t, (14.33)
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Figure 14.37

Magneto-optic recording.
The principles of Curie point
and compensation-point
writing are illustrated in (a)
and (b), respectively, and
the recording method on a
perpendicular medium is
shown in (c).

where j is the current density, � is the resistivity and t is the thickness of
the TMR layer. Low resistance is required to minimize Johnson noise in any
magnetoresistive sensor, which in a nanoscale tunnel junction means that the
resistance-area product RA = ρt must be less than 10 � µm2. For this, the
MgO barrier layer in Fig. 14.24 has to be less than a nanometre thick. An
unwanted side effect is spin-transfer torque on the free layer.

GMR heads are still used in tape recording, which tends to lag a generation
behind hard disk recording.

The hard-disc drive is a marvel of technology that helps to sustain our data-
hungry way of life, at least for the moment. It is a triumph of sophisticated
magnetics, mechanical design, nanoscale fabrication, signal processing and
value engineering, which owes its persistent success to the scale invariance of
the magnetic field from a magnetized element. Scaled up, magnetic recording
is like a jumbo jet flying across a landscape with its nose wheel extended to
count the blades of grass a few millimetres below, missing only a few of them
as it crosses the country. Scaled down, it has met our needs for nonvolatile data
storage for over half a century.

14.6.4 Magneto-optic recording

A scheme which enjoyed some success at the end of the twentieth century
was based on the magneto-optic readout of perpendicularly written media,
Fig. 14.37. In thermomagnetic recording, the medium was heated locally by a
pulsed laser to a temperature where the coercivity is small, and then cooled in a
weak bias field. A thin film with perpendicular anisotropy is used in combination
with readout based on the polar Kerr effect – the plane of polarization of light
of a reflected semiconductor diode laser beam is rotated by an angle ±θK on
reflection from a ↑ or ↓ domain, where θK ≈ 1◦.
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Suitable magneto-optic media are amorphous R1−xTx films, where R is
a rare-earth such as terbium or gadolinium and T is a transition metal
such as cobalt or iron. They are deposited on a transparent substrate. The
rare-earth provides a substantial Kerr rotation on account of its strong spin-
orbit coupling. Recording is achieved by heating either above the Curie point,
or above the compensation point which is near room temperature when x ≈ 0.7
in this system. Coercivity becomes large near Tcomp, because the anisotropy
field 2K1/Ms diverges. The anisotropy is mainly provided by the rare-earth
subnetwork. Use of an amorphous medium eliminates grain-boundary noise.
Multiple-layer media with separate, exchange-coupled recording and read-
out layers were developed. Unfortunately physical limitation is imposed on
magneto-optic recording by the wavelength of light, which means that a bit
cannot be much smaller than a micrometre, limiting the density to a few bits
per µm2. For this reason, magneto-optic recording is no longer competitive.

FURTHER READING

M. Ziese and M. Thornton (editors), Spin Electronics, Berlin: Springer (2001). A mul-
tiauthor volume which treats topics at an introductory level, with some emphasis on
oxide spin electronics. The best starting point for beginners.

U. Hartmann (editor), Magnetic Multilayers and Giant Magnetoresistance, Berlin:
Springer (1999). Readable articles focussed on magnetic multilayers and giant mag-
netoresistance, including one on magneto-optic recording.

M. Johnson (editor), Magnetoelectronics, Amsterdam: Elsevier (2004). Covers mag-
netoelectronics in a series of articles, including chapters on logic, tunnelling and
biochips.

J. D. Stiles and J. Miltat, Spin transfer torque and dynamics in Spin Dynamics in Con-
fined Magnetic Structures (B. Hildebrands and A. Thiaville editors), Berlin: Springer
(2006), pp. 225–308. An up-to-date review.

S Maekawa (editor), Concepts in Spin Electronics, Oxford: Oxford University Press
(2006). A monograph focussed on theoretical aspects.

S. Bandyopadhyay and M. Cahay, Introduction to Spintronics, Reiss: CRC (2008). A
comprehensive introduction with emphasis on theory.
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EXERCISES

14.1 Deduce the Einstein relation (14.3) in the free-electron model.
14.2 Show that the definition of spin polarization (14.12) with n = 2 is equivalent

to the polarization of the electric current, provided the spin relaxation times τ↑
and τ ↓ are the same.

14.3 Derive (14.22). Show that the field sensitivity of a planar, tall sensor is the same
as an AMR sensor with p ≈ π/4.

14.4 Estimate the dimensions below which it becomes preferable to rely on spin-
transfer torque rather than Oersted fields to switch the magnetization of a
ferromagnet.

14.5 Estimate the maximum thickness of a ferromagnetic free layer which can be
switched in a nanosecond. Assume it is possible to pass a current of 1011 A m−2

without encountering severe problems of electromigration. Assume Pe = 0.5.
14.6 Give an expression for the electric field E at a perpendicular distance R from a

wire carrying a flow of (fictitious) magnetic charge qm constituting a magnetic
charge current Im. Check the dimenions of your answer. Use an analogy with
the answer to Exercise 2.10 to give an expression for the electric field due
to a spin current flowing in a conductor, at a perpendicular distance R from
the conductor. If the spin current is due to a perfectly spin-polarized electronic
charge current flowing in the conductor, estimate the maximum possible electric
field that can be produced if the greatest admissable current density is j =
1011 A m−2.

14.7 Design a magnetic field sensor that makes use of the planar Hall effect. Compare
its sensitivity with an AMR sensor made of the same material.

14.8 Estimate the recording density that might be achieved if SmCo5 were used as
the magnetic medium. What problems can you envisage in using this material?

14.9 Why is the blocking condition for magnetic recording K1V/kBT > 40 rather
than K1V/kBT > 25 (8.22)?

14.10 Show that the polarization of the φ+ photoluminesence excited by bandgap
radiation in GaAs is 1/4.



15 Special topics

Disciplines grow at their boundaries. The interdisciplinary topics considered here
fall into three groups. One is mainly concerned with liquids: paramagnetic liquids,
ferrofluids, magnetic levitation and confinement, and magnetoelectrochemistry.
The second relates to life sciences: magnetism in biology and medicine, magnetic
imaging and magnetically aided diagnostics. Finally there is planetary and stellar
magnetism, covering the magnetism of rocks and the Earth’s magnetic field, as well
as and those of other planets, the Sun and stars.

Magnetism has been a spur to human curiosity for centuries. The force field
with its attractive and repulsive interactions led to dreams of levitation and
perpetual motion, and hopes for cures of illness, as well as a striving for
understanding. These hopes and dreams have been realized in unexpected ways.
Magnetism is a mature discipline with a secure physical foundation, which
allows it to engage in interdisciplinary joint ventures with other branches of
science.

If perpetual motion has proved to be a pipe dream – periodically revived to
peddle to gullible investors – it nevertheless finds an echo in the stationary states
of quantum mechanics where the electrons occupy quantized orbits. There, they
enjoy undiminished motion, at least until they exchange a quantum of energy
with their environment. But they can do no work in their stationary states.
Energy conservation is inviolate.

The levitated island of
Laputa, from Gulliver’s
Travels. The island was
supposed to contain a huge
embedded lodestone.

Levitation is a more practical proposition, but again not as people imagined
long ago – for example, Jonathan Swift’s island of Laputa, the ‘coffin of the
Prophet’ in Medina or the golden idol in the temple of Somnath. Static levitation
is possible, but it is severely limited in its applications at room temperature by
the feebleness of the diamagnetism of solids (Table 3.4).

Magnets are worn by golfers and tennis players; they are sold to treat ailments,
drinking water, cocktails and crude oil. Seeds are reputed to germinate faster
and broken bones mend better in the presence of magnetic fields. There are
supposed to be malign influences as well. Paracelsus, the sixteenth-century
Swiss alchemist and physician, believed the benefit of a magnet depended on
which pole was presented to the patient – a belief echoed on numerous websites,
and one which has caused much anguish to cancer sufferers concerned about
the ‘correct’ definitions of the North and South poles. Yet for as long as fanciful
beliefs about magnetism have flourished, they have been vigorously debunked
by rational sceptics, beginning with William Gilbert himself.
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Here we tread on firmer ground, looking at some interdisciplinary appli-
cations of magnetism in medcine, biology and electrochemistry, as well as
phenomena in liquids. Finally, we step outside the laboratory, casting a glance
on a much larger scale – planets, stars and galaxies. These special topics are a
mixed bag, but many of them involve fluids, and somehow relate to magneto-
hydrodynamics.

15.1 Magnetic liquids

Although stable, homogeneous ferromagnetic liquids are known to exist, metal-
lic glasses demonstrate that a crystal lattice is not a prerequisite for ferromag-
netic order. It just seems that melting points always happen to exceed Curie
points in metallic systems. The closest approach is the supercooled eutectic
Co80Pd20, which does show signs of superparamagnetism. Interactions in non-
metallic sytems tend to be antiferromagnetic, and they are frustrated in the
liquid state.

15.1.1 Paramagnetic liquids

Paramagnetic solutions of magnetic ions can be prepared with susceptibility
χ ranging from effectively zero up to about 10−3 for multimolar solutions
of Dy3+ or Ho3+, the 4f ions with the greatest moments (Table 4.6). The
3d ions have smaller values of p2

eff with the maximum for Mn2+ and Fe3+

(Table 4.7). Nitrates and chlorides are the most soluble salts. Concentrated
paramagnetic solutions can be used for levitation, as discussed below. The
susceptibility is sufficiently small for the demagnetizing field −NχH ′ to be
negligible.

h

 Pole
pieces

H'

The Gouy method for
measuring the
susceptibility of a liquid.

A traditional method used by chemists to measure the susceptibility of liquids
is the Gouy balance. A U tube of cross section a containing the liquid is placed
with one arm between the poles of an electromagnet which produces a fieldH ′

in the gap, while the other arm is well away from the field. When the magnet is
switched on, a paramagnetic liquid of density d is attracted into the field, and
a change of level of h/2 is observed. A magnetic force FmδV , known as the
field-gradient force, acts on any volume element δV of the liquid subjected to a
magnetic field gradient, where the force density from (2.105) is

Fm = (χ/2µ0)∇B2. (15.1)

Integrating from x1 where the applied field is zero to x2 where B is uniform
and equal to µ0H

′, since the induced magnetization is negligible, gives the
force, which supports the column of liquid of height, h, and mass had. Hence
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hadg = (χ/2µ0)B2a.

h = χB2

2µ0dg
. (15.2)

The result for a 1 molar solution of CoCl2, χ = 60 × 10−6, in a field of 1.5 T
is h = 5 mm. For pure water, which is diamagnetic with χ = −9 × 10−6, the
level is slightly depressed as the water is repelled by the field.

The effect is quadratic in field, and therefore independent of field direction.
For example, if an extended open container is placed in the horizontal bore
of a superconducting solenoid, the water level is depressed in the field region
relative to that outside the field. This is known as the Moses effect (although the
susceptibility of the Red Sea differs little from that of pure water). For a field
B0 = 10 T, the depression of the water level is 37 mm.

Another curious effect of the field-gradient force is the stabilization of param-

agnetic liquid tubes in water. When a drop of ink is released into a glass of water
and it will disperse rapidly; this has nothing to do with atomic-scale diffusion
which is a slow process at room temperature, where diffusion constants are of
order 10−9 m2 s−1. The dispersion is due to convection imposed by the initial
velocity distribution and density differences. It is possible to inhibit convection,
but not diffusion, by modest magnetic field-gradient forces. The force per unit
volume on a solution of concentration c mol m−3 and susceptibility χmol is

Fm = 1

2µ0
[cχmol + χwater ]∇B2. (15.3)

A field of 1 T with a gradient of 10 T m−1 produces a force of up to about
104 N m−3 for multimolar solutions, which is similar to the magnitude of the
gravitational force acting on the liquid. The diamagnetic susceptibility of water
may be neglected for concentrated solutions of paramagnetic ions.

Consider now a thin iron wire stretched horizontally in a beaker of water,
which is placed in a uniform vertical magnetic field. An injected paramagnetic
solution forms a tube which follows the iron wire in one of two stable positions.
One is above it, the other below. In a horizontal field, perpendicular to the wire,
the stable positions of the injected liquid tube are at either side of the ferro-
magnetic wire. The behaviour is explained by the dipole–dipole interaction of
the induced magnetic moment of the tube and the moment of the ferromagnetic
iron wire. The paramagnetic liquid acts as if it were surrounded by an elastic
membrane. The tube’s surface is a contour of constant energy density, hence of
constant B2. The magnetic force, proportional to ∇B2, then acts perpendicular
to the surface.

Paramagnetic liquid tubes can be made to follow a track embedded in the
base of a vessel, along which they flow almost without friction, Fig. 15.1. This
is quite unlike normal pipe flow, where the flow velocity v is restricted by the
radius r of the pipe according to Poiseuille’s equation v = r2 P/4ηl, where
 P/l is the pressure gradient and η is the dynamic viscosity of the liquid in
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(a) (b)

Liquid tubes

Figure 15.1

Paramagnetic liquid tubes
of 1 M solutions of:
(a) ErCl3 suspended below
an iron wire in a bath of
water and (b) CoCl2
following an iron track in
the base of a vessel
containing water. The
insert shows the cross
section.

N s m−2. The zero-velocity boundary condition does not apply at the wall of the
paramagnetic liquid tube since the liquid wall is moving. The effective radius
is determined by the size of the vessel, which is many times the radius of the
tube. This leads to a greatly enhanced volume flow rate, which varies as the
fourth power of the radius. A consequence is the possibility of rapid mixing in
magnetically confined microlitre volumes.

15.1.2 Ferrofluids

A ferromagnetic
nanoparticle coated in
surfactant to make it
soluble in water.

A ferrofluid resembles a ferromagnetic liquid, but it is really a colloidal sus-
pension of tiny superparamagnetic particles in oil or water. Chemical tech-
niques were developed in the 1960s to disperse nanoparticles of magnetite or
maghemite 3–15 nm in diameter in such a way that they do not agglomerate
into chains under the influence of dipole–dipole interactions, when subject to
an external magnetic field. In order to stabilize the colloid, it is necessary to
weaken the dipole–dipole forces, which fall off as r−3. Ways to keep the parti-
cles apart are to coat or embed each particle in polymer. A sheath of surfactant
molecules on the surface of the oxide particles helps make them soluble in
water. Otherwise charged nanoparticles can be dispersed in an ionic liquid.

Each particle has a thermal energy of order kBT , or 4 × 10−21 J at room
temperature. Besides the Néel-type superparamagnetic relaxation, described
in §8.5, the particles are subject to normal Brownian motion, which helps to
stabilize the colloid. A stable ferrofluid should be impervious to sedimentation
under the influence of gravity, and it should neither drift in a magnetic field gra-
dient nor agglomerate under the influence of dipole forces. These requirements
impose a particle size of order 10 nm. Particles this small are single-domain.

Magnetic nanoparticles make up a fraction f of the total volume of the
ferrofluid, which is at most 20%. The magnetization of magnetite is
480 kA m−1, so the saturation magnetization of a commercial, magnetite-based
ferrrofluid does not exceed 100 kA m−1. A typical value is 50 kA m−1. On
account of their energy, size and separation, the particles behave like weakly
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Figure 15.2

Magnetization curves for:
(a) a ferrofluid and
(b) magnetic nanobeads.
(Data courtesy of Fiona
Byrne.)

interacting paramagnetic macrospins, each with a moment m ∼ 103–105 µB .
Magnetization of the particle is given by the Langevin function (4.21) M =
M0(coth x − 1/x), where x = µ0mH/kBT , and the susceptibility in small
fields, x < 1, given by the classical expression (4.22) χ = µ0nm

2/3kBT , is in
the range 5 × 10−3–5 × 10−1. The magnetization of the ferrofluid is fM. It is
much larger than the susceptibility of paramagnetic liquids because of the giant
moment that couples to the internal fieldH.Demagnetizing effects cannot now
be neglected. The susceptibility in the externally applied field H ′ is limited by
the demagnetizing field to 1/N (§2.2.6). For well-dispersed spherical particles
(N = 1

3 ), the external susceptibility is 3. Hence 90% of saturation (x = 10) is
achieved in a field of 0.05–5 T.

A dish of ferrofluid in a
vertical field adopts a
peaked structure to
minimize the sum of its
demagnetizing and
potential energies.

Ferrofluids exhibit some weird properties. One is the peaked structure they
adopt in a field applied perpendicular to the surface as they try to minimize
their energy in the demagnetizing field, which becomes significant as the mag-
netization approaches saturation. The ability of a magnetic field to control the
buoyancy of objects immersed in ferrofluid is discussed in §15.3.

The main application area for ferrofluids is in seals. An oil-based fluid is held
in place by a suitable magnet, and if oil with a low vapour pressure is chosen, a
rotary vacuum seal can be obtained. Applications include bearings for turbop-
umps and rotary feedthroughs for vacuum systems. Ferrofluid seals around the
voice coils of loudspeakers provide damping and a path for dissipating heat.
Other uses are as magnetic inks, and in magnetic levitation or separation.

A different use is made of oil-based dispersions of ferromagnetic particles
in magnetorheological fluids. Here the particles are micrometre-size and mul-
tidomain, and the loading is much higher, f ∼ 70%. Dipolar forces become
strong as the particles are magnetized. The viscosity of the fluid can therefore
be increased by orders of magnitude by an applied field. These magnetorheo-
logical fluids are used in mechanical clutches and suspension systems. Some
typical properties are included in Table 15.1.
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Table 15.1. Properties of some commercial ferrofluids and nanobeads

Bead size Particle size Ms Viscosity
(µm) (nm) (kA m−1) χ (Pa S)

Oil-based ferrofluid 10 36 2.2 1
Water-based ferrofluid 10 16 0.7 0.005
Magnetorheological fluid 1000 200 ∼0.5 100
Dynal. M280 2.8 7 13 0.32
Myone 1.0 6 28 0.05
Micromod 0.25 8 18 0.48

Special ferrofluids are colloidal suspensions of acicular or plate-like ferro-
magnetic particles in a liquid crystal. It is then possible to influence transitions
between various ordered phases in the liquid crystal with a modest magnetic
field.

15.2 Magnetoelectrochemistry

There are two distinct aspects of the interdisciplinary field where magnetism
and electrochemistry meet. One is the use of electrodeposition as a means of
producing magnetic films and coatings. The other is the use of magnetic fields
to influence electrochemical processes.

15.2.1 Electrodeposition

A simple electrochemical
cell.

Electrodeposition is a convenient and well-established means of producing thin
films of ferromagnetic metals and alloys such as Co–Fe or Ni–Fe. Permalloy
is a favourite. Aqueous solutions of the metal ions, including special chemical
additives to promote smoothness of the plated films, are used in an electro-
chemical cell which is agitated to ensure efficient plating when the current at a
given potential is mass-transport limited. Conditions are chosen to ensure that
any hydrogen evolved at the cathode due to the reduction of water does not
spoil the quality of the deposit. Metal is deposited on the cathode, provided the
applied voltage exceeds the reduction potential. For example, the reduction of
nickel according to the reaction Ni2+ → Ni + 2e occurs at −0.25 V relative
to a reference hydrogen electrode reaction. Some standard reduction potentials
are listed in Table 15.2.

Metals which are not too electronegative to plate include the late transition
metals from Fe to Zn, Rh, Pd, Pt as well as the noble metals Cu, Ag, Au and
several others, but unfortunately not the early transition metals or the
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Table 15.2. Standard reduction potentials (volts) in aqueous solutiona

Mg2+ −2.38 Mn2+ −1.18 Co2+ −0.28 Cu2+ 0.34
La3+ −2.37 Zn2+ −0.76 Ni2+ −0.25 Pd2+ 0.83
Al3+ b −1.66 Fe2+ −0.44 Ag+ 0.22 Au3+ 1.42

a Relative to hydrogen reference electrode
b 0.1 M NaOH

rare-earths. The deposition rate depends on the overpotential, and it is pos-
sible to deposit alloy films such as permalloy Ni78Fe22 from a bath containing
appropriate concentrations of Fe2+ and Ni2+. The atomic composition of the
bath will be quite different from the target composition of the alloy. An easy
direction of magnetization of the soft magnetic film can be achieved by apply-
ing a magnetic field during deposition. The effect is similar to magnetic field
annealing – a slight texture is established with Fe–Fe pairs aligned parallel to
the applied field direction.

Nanowires can be obtained by plating into a porous insulating membrane
which is metallized on the back, as described in Chapter 8. Microporous alumina
with a dense hexagonal array of parallel pores is often used. Multilayers can
be obtained from a single bath by toggling the deposition potential between
two values. For example, Co–Cu layers can be deposited from a bath that is a
25 mM solution of Cu2+ and a 1 M solution of Co2+.At 0.1 V, for example, only
copper will be deposited, whereas at −0.4 V both Co and Cu will be reduced.
However, the concentration of Cu in the bath is so low that the alloy is then
predominantly Co.

Magnetically hard rare-earth alloys such as SmCo5 cannot be plated from
aqueous solutions. At the large negative voltages required, the current will
consist almost entirely of protons from the water. However, phases such as
CoPt can be obtained. As deposited, these alloys have a disordered fcc structure,
but they only adopt the tetragonal L10 structure and develop hysteresis after
annealing at about 900 K (§11.2.1).

15.2.2 Magnetic field effects

A magnetic field can influence electrochemical processes in two ways. The first
is via the Lorentz force which acts on the current density j in the cell to give a
body force density:

FL = j × B. (15.4)

Whenever a field is applied parallel to the electrode of an electrochemical cell,
this force leads to convective stirring of the electrolyte. The transport of ions to
the cathode, where they are reduced to metal, is governed by the concentration
gradient ∇c, where c is the ionic concentration in moles per cubic metre. The
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current density j = D∇c, where D is the diffusion constant and ∇c = c0/δ

with δ the thickness of the diffusion layer, a region a few hundred micrometres
wide near the cathode where the ionic concentration falls from the average
concentration c0 in the bath to zero at the cathode surface. The stirring action
of the Lorentz force reduces the thickness of the diffusion layer, and it therefore
increases the mass-transport-limited current density. For typical plating current
densities j = 1 mA mm−2, the Lorentz force in 1 T is 103 N m−3. Corrosion
currents, which flow from cathodic to anodic sites some micrometres apart on
the surface of a corroding electrode can be similarly influenced by magnetic
fields.

The other way magnetic fields can influence the action in electrochemical
cells is by means of field gradients. The force on an electrolyte containing a
concentration cmol m−3 of ions of susceptibility χmol is given by (15.3), which
follows from (2.104) when demagnetizing fields are negligible, as they always
are in the solutions used in electrochemistry. The field-gradient force can be
much enhanced at ferromagnetic microelectrodes, where significant forces are
exerted on paramagnetic ions in solution. Values of ∇B can be as high as
105 T m−1.

15.3 Magnetic levitation

15.3.1 Static levitation

Dreams of levitation were apparently dashed in 1842, when Samuel Earnshaw
proved that levitation of a charged particle by a static configuration of electric
fields was impossible. Earnshaw’s theorem can be generalized to a statement
that no stationary object made of charges, magnets or masses can be held in
place by any fixed combination of electric, magnetic and gravitational forces.
Magnets can be regarded as static distributions of magnetic charge qm. The
theorem applies whenever the energy ε of an object satisfies Laplace’s equation
∇2ε = 0, whose solutions include no isolated maxima or minima, but only
saddle points.

In the magnetic case, the energy of a pre-existing dipole in free space is

εm = −m · B. (2.72)

The force on the dipole is f = −∇εm, and ∇ · f = −∇2εm. To show that
this is zero, we take m, which has constant magnitude, outside the deriva-
tive; ∇ · f = −(m/µ0)∇2 B. Using the vector identity ∇2 A = ∇(∇ · A) −
∇ × (∇ × A) and the facts that ∇ · B = 0 in free space and ∇ × B = 0 in the
absence of electric currents, it follows that ∇ · f = 0. Hence the energy εm
obeys Laplace’s equation.
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Figure 15.3

The Transrapid maglev
train.

Imagine a small sphere around the point O where the dipole is located and
use the divergence theorem.

∫
V

∇ · f d3r = ∫
S

f · dA = 0. (15.5)

The force on the dipole integrated over the surface of the sphere is zero, so if in
some directions it experiences a negative, restoring, force, in others the force
must be positive, tending to carry the dipole away from the position of unstable
equilibrium at O.

It is a feature of the permanent magnet bearings discussed in Chapter 13 that
a mechanical constraint (or active electromagnetic servo system) is generally
required in one direction. The stiffness of the bearing K is defined as a vector
with components −∂fx/∂x,−∂fy/∂y,−∂fz/∂z, which sum to zero (13.14).
An alternative scheme is employed in the ‘Transrapid’ maglev trains, which
are capable of speeds of up to 500 km h−1, namely attraction between on-board
electromagnets and the base of the guideway which the cars wrap around,
Fig. 15.3. The cars require a little lateral support to keep them on track.

A sumo wrestler standing
on a magnetic plate
levitated above a large disc
of cuprate superconductor.

Yet despite Earnshaw’s theorem, passive levitation was not just a dream. His
prohibition can be circumvented. What is needed is a magnetic field that is
not fixed, but responds to the position of the moment m. This can be achieved
by introducing diamagnetic material in the vicinity of the magnet; the dia-
magnet provides passive repulsive feedback, the field increasing as the magnet
approaches it. Superconductors are the strongest diamagnets, having χ = −1.
The magnet creates an image in the superconductor, as shown in Fig. 2.15(b),
and the force between the magnet and its image is repulsive. The repulsive force
is self-regulating, increasing as the magnet approaches the superconductor, and
decreasing as they move apart. Substantial masses can be levitated in this way.

The strongest nonsuperconducting diamagnets, graphite and bismuth, have
a dimensionless susceptibility that is more than 1000 times smaller than a
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Figure 15.4

Stable levitation with
diamagnetic material: (a) a
sheet of oriented graphite
floats above a permanent
magnet array and (b) a
small permanent magnet is
suspended in a gradient
field produced by the upper
magnet. The equilibrium is
stabilized by two graphite
plates. In (c), a similar
arrangement with a
superconducting magnet,
equilibrium is stabilized by
two diamagnetic fingers.
(A. K. Geim, M. D. Simon,
M. I. Boemfa et al. Nature
400, 324 (1999).)

superconductor (Table 3.4). The weak magnetic image nevertheless enables
a sheet of oriented graphite to float about a millimetre above a rare-earth
permanent magnet. More generally, sheets of graphite can be used to stabilize
a magnet at a position of unstable equilibrium, where Kz is negative but Kr
is positive. Such passive levitation devices which operate entirely at room-
temperature are illustrated in Fig. 15.4.

In principle, any diamagnet can be levitated by an appropriate combination of
magnetic field and magnetic field gradient. The energy of a sample of volumeV
is −(1/2µ0)V χB2, where the factor 1

2 arises because the moment is induced by
the field. The force in a vertical field gradient must balance the weight −dVg,
which leads to the condition for levitation in terms of the mass susceptibility

B∇zB = dgµ0/χ. (15.6)

The levitation condition for polycrystalline graphite (χm = χ/d = −50 ×
10−9 m3 kg−1) is B∇zB = 250 T2 m−1, whereas for water (χm = −9 × 10−9

m3 kg−1) the requirement is 1400 T2 m−1. The former condition is satisfied
close to the surface of a permanent magnet producing a field of 1 T, whereas the
latter is obtainable near the end of a Bitter magnet or superconducting solenoid
producing 10 T or more. It is in high-magnetic-field laboratories that it has been
possible to levitate all manner of objects composed mainly of water – frogs,
strawberries and spheres of salt solution, to name just a few, Fig. 15.5.

Permanent magnets can also be used to levitate watery objects, but the nec-
essary conditions can only be achieved very close to the surface by structuring
the magnets on a submillimetre scale. On another scale, it is possible to support
atoms with unpaired electrons against gravity in magnetic atom traps.

We know that susceptibilities of diamagnets are relatively feeble compared
with those of local-moment paramagnets. The Curie-law susceptibility of a
paramagnet is χ =Cmol/T , whereCmol = 1.571 × 10−6 p2

eff (4.16). For exam-
ple, the susceptibilities of a mole of Co2+ (peff = 4.8) or Dy3+ (peff = 10.6) at
room temperature are 120 × 10−9 and 590 × 10−9 m3 mol−1, respectively. The
dimensionless susceptibility of 1 M solutions of these ions is approximately
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Figure 15.5

The frog that flew for
science – levitated near the
top of a Bitter magnet,
where the field is 10 T,
and the field gradient is
140 T m−1. (Courtesy of L.
Nelemans.)

C

Si

Ti

Figure 15.6

Magnetic levitation of
graphite, silicon and
titanium in the fringing
field of a 100 mm
electromagnet. They are
immersed in a 2 M DyCl3
solution. The field at the
centre is 1 T. (Courtesy of
Peter Dunne)

the same as their mass susceptibility in m3 kg−1 because 1 litre of solution
has a mass of approximately 1 kg. Evidently the paramagnetism χsol of these
solutions is much greater than χm the Pauli mass susceptibility of metals or
the mass susceptibility of any diamagnetic element or compound (Table 3.4).
Immersion in paramagnetic solution is therefore a way of levitating a wide
range of materials in modest fields, and separating them if necessary (Fig.
15.6). The material in the cavity behaves as if it has susceptibility χm − χsol ,
and the condition for buoyancy now becomes

B∇zB = −gµ0(d − dsol)/(χm − χsol). (15.7)

For example, to levitate silicon (χm = −1.8 × 10−9 m3 kg−1, d = 2330
kg m−3) in air would require an enormous B∇zB of 6840 T2 m−1, whereas
the same job in a 1 M DyCl3 solution requires a mere 22 T2 m−1.
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Ferrofluids have even larger susceptibilities than ionic solutions, of order
10 × 10−6 m3 kg−1, so they can be used to levitate and separate practically
anything in a modest inhomogeneous magnetic field. Conversely, a magnet,
which produces its own inhomogeneous magnetic field, will levitate sponta-
neously when placed in a beaker of ferrofluid (although ferrofluids are opaque
so you are unable to see it).

The use of diamagnetic materials and paramagnetic liquids by no means
exhausts the ways of circumventing Earnshaw’s theorem. Roy Harrison discov-
ered in 1983 that a spinning magnet in a field gradient had a small zone where
it can be stably levitated. Of more practical use, however, is the levitation of
a molten metal by radio-frequency eddy currents in a suitably designed cold

crucible.

15.3.2 Radio-frequency levitation

High-frequency magnetic fields allow us to levitate, heat and stir conducting
liquids without contact. All are handy capabilities. Together with the ability of
static fields to damp motion in conducting liquid, and thanks to the action of
the Lorentz force on the induced current

FLi = σ (v × B) × B, (15.8)

where v is the velocity of the liquid, they provide the foundations for the
technology of electromagnetic processing of materials. This technology has
flourished in recent decades. Magnetic damping is used to control eddies during
casting of steel slabs, and convection during growth of semiconductor crystals
from the melt. Heating and stirring are exploited in the induction furnace, which
has changed little from the first design of Sebastian Ferranti in 1887. Interest in
radio-frequency levitation is more recent, with commercial applications dating
from the 1960s.

The transport equation for B in a moving conducting fluid, known as the
advection–diffusion equation, is a basic equation of magnetohydrodynamics. It
is obtained by combining Ohm’s law, including the Lorentz force, j = σ (E +
v × B) with Faraday’s law ∇ × E = −∂B/∂t to give ∂B/∂t = −∇ × ( j/σ −
v × B) and then using Ampère’s law ∇ × B = µ j to write j in terms of B.
Since ∇ · B = 0, ∇ × (∇ × B) = −∇2 B, the result is finally

∂B

∂t
= ∇ × (v × B) + η∇2 B, (15.9)

where the magnetic diffusivity η = 1/(σµ) appears as a diffusion constant, with
units of m2 s−1. The terms in Maxwell’s equations involving charge density and
displacement current are negligible. Solutions of (15.9) are governed by the
characteristic dimension l of the system and the value of a dimensionless
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quantity

Rm = vl/η, (15.10)

known as the magnetic Reynolds number. In liquid metals, whereB is practically
uninfluenced by v, we are in the limit Rm � 1, (15.9) then reduces to a simple
diffusion equation:

∂B

∂t
= η∇2 B. (15.11)

The solution for an oscillating magnetic field bz(0) = b0 sinωt excited parallel
to a metal surface by external currents is

bz(x) = b0 exp(−x/δs) cos(ωt − x/δs),
where the penetration depth δs = √(2λ/ω) is just the skin depth (12.2), since
µ = µ0µr, ω = 2πf and � = 1/σ . The penetrating magnetic field excites
eddy currents within the skin depth of the conductor, and by Lenz’s law the
force between the exciting and induced currents is repulsive. These are the
forces exploited for radio-frequency levitation.

The induced current is given by Ampère’s law ∇ × B = µ j , which simpli-
fies to jy = −(1/µ)∂Bz/∂x for a field applied in the z-direction. Thus

jy = (b0/µδs) exp(−x/δs)[cos(ωt − x/δs) − sin(ωt − x/δs)].
The Lorentz force in the skin depth is j × B = jyBzex. Averaging over time,
and using the fact that 〈cos2 ωt〉 = 1

2 , the force density is given by Fm(x) =
(b2

0/2µδs) exp(−2x/δs). Integrating over the thickness of the metal finally gives
the expression for the force per unit area, known as the magnetic pressure

Pm = b2
0

4µ
ex. (15.12)

The heating effect of the electric current density is
∫∞

0 ( j2/σ )dx =
(b2

0/4µ)ωδs W m−3.

Crucible

MeltRadio-frequency
coil

 Water 
cooling

b

A high-frequency magnetic
field penetrates the skin
depth of a metal, and the
Lorentz force on the
induced currents creates a
force normal to the metal
surface, which may be used
for levitation in a
radio-frequency induction
furnace.

In a radio-frequency levitation furnace, Fig. 15.7, the radio-frequency coil is
wound into the form of a basket in which a molten metal drop is supported by
magnetic pressure normal to its surface. The surface shape is determined by the
balance of gravitational, magnetic and surface-tension forces. There is a limit to
the size of the drop that can be levitated because there is no magnetic pressure
at the centre of the base. There the pressure due to the height of the drop has to
be balanced by the surface tension alone. For this reason, large levitated drops
tend to drip out along the vertical axis. If material is continuously fed from
above, the effect can be exploited to create a liquid metal jet, where the flow
rate can be controlled by varying the radio-frequency power.

On quite another scale, magnetic fields generated by superconducting mag-
nets are used to confine conducting plasmas at temperatures of order 108 K in
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Figure 15.7

A radio-frequency
induction furnace.
(Courtesy of Ambrell Co.)

toroidal tokamak reactors such as ITER, which are the vanguard of advanced
fusion research.

15.4 Magnetism in biology and medicine

15.4.1 Magnetotaxis

Life on Earth has evolved in the presence of a weak magnetic field of 10–
100 A m−1. Inevitably, some creatures besides ourselves have learned to take
advantage of this field. The clearest examples are magnetotactic bacteria,
unicellular organisms which manufacture particles of ferromagnetic iron oxides
(magnetite or maghemitite) or sulphides (greigite). The particles grow in chains
in the microbe’s body. Each one is of a size which would make it superparam-
agnetic if it stood alone, but the anisotropic dipole–dipole interaction in a chain
of particles stabilizes the magnetization direction along the chain. Thus, every
bacterium has a built-in compass needle, which is handed on to the next gener-
ation with the polarization direction intact, by cellular division. New particles
added to the ends of the half-chain grow in the stray field there, and become
magnetized parallel to their neighbours. In the language of rock magnetism,
they acquire chemical remanent magnetization.

The value of magnetotaxis for bacteria is that it allows them to orient with
the Earth’s magnetic field lines; they swim along them at about 100 µm s−1,

upwards or downwards according to the polarity of their built-in magnet.
Polarity is of vital importance. Anaerobic bacteria swim downwards along the
field lines, reaching mud where they flourish. Those with magnets of opposite
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Figure 15.8

The magnetic sense organ
in pigeons. It consists of
three different structures,
each containing magnetic
material. (G. Fleissner
et al., Ornithology, 148,
5663 (2007).)

polarity swim upwards to the surface where they perish in the toxic oxygen-rich
environment, a beautiful example of natural selection. Magnetotactic bacteria
can be extracted from mud and made to dance in circles in a petri dish with a
rotating magnetic field.

A magnetotactic bacterium.
The scale bar is 1 µm.

As many as 50 other creatures, including pigeons, salmon, bats, bees and
deer are thought to have a magnetic sense. The magnetotaxis is more subtle, and
it may operate in conjunction with other senses to find direction. In pigeons, for
example, it was thought that the force between two magnetic particles attached
to nerve endings is sensed, and the direction of the axis of the magnet pair
relative to the field is distinguished by its attractive or repulsive force. There
is no distinction between North/South or East/West but a maximum effect is
perceived when the pigeon turns through 90◦. The pigeon’s magnetic sense
organ has been identified (Fig. 15.8). It is obviously complex, but it is not yet
known exactly how it works.

Other than force or torque exerted on ferrimagnetic particles, there are two
other mechanisms that might be involved in magnetotaxis. One is induced emf
in large moving conducting circuits, which may operate in sharks. The other
is a possible effect on radical pair reactions, where a weak magnetic field may
influence the singlet–triplet interconversion rate.

Epidemiologic studies of human exposure to low-frequency fields from
power lines or domestic wiring have proved inconclusive. Large static mag-
netic fields seem to be innocuous, with exposure provoking little response
at the level of the organism.1 Pigeons soon recover their magnetic sense,
even after a spell in the bore of a 15 T magnet. Studies of the influence of
high-frequency fields from mobile phones have provided no clear evidence
of harm.

15.4.2 Cellular biology

Many reports can be found in the literature on effects of static or low-frequency
magnetic fields on cellular processes, but very few have been reproducibly
established.

1 There is an EU directive that prescribes limits for human exposure to magnetic fields
(2004/40/EC).



557 15.4 Magnetism in biology and medicine

Figure 15.9

Differentiated THP1
macrophages, which have
internalized nickel wires
20 µm long and 200 nm in
diameter (Courtesy of
A. Prina-Mellor).

However, magnetic methods are beginning to make a contribution to the
study of cells, and subcellular structures such as proteins and biomolecules.
Generally, these studies make use of magnetic micro- or nanoparticles whose
sizes are compatible with the sizes of the biological structures they are
used to manipulate (10–100 µm for cells, 10–100 nm for proteins). The
microparticles normally incorporate many superparamagnetic nanoparticles
in a biocompatible polymer microbead, with a fill fraction 0.1 < f < 0.8
(Table 15.1). The surface of the bead can be functionalized for a specific
biochemical reaction, with an antibody for example. A single coated magnetic
nanoparticle may be used to manipulate protein or similar structures. The
response of the magnetic label is usually linear in the gradient of applied fields,
which are of order 10–100 kA m−1 for miniature electromagnets, and may be
larger if permanent magnets are used. Magnetic nanowires, Fig. 15.9, have
the advantage that information can be recorded along the length of the label
if it is segmented and the segments are permanently magnetized in opposite
directions. Such magnetic barcodes can be used to label cells or proteins, and
they can be detected via the characteristic patterns of stray field they produce,
by using magnetoresistive sensors in a microfluidic channel, for example.

When a magnetic microbead or nanowire is attached to a cell or biomolecule,
the object can be manipulated by field gradient force

f ≈ ∇(m · B), (15.13)

where m is the induced moment of the bead. The studies are interesting because
mechanical stress and morphology can regulate cellular functions, and it is
important to be able to measure mechanical properties on the appropriate
scale. Controlled stresses and forces can be applied via the magnetic labels
in biological micromanipulators known as magnetic tweezers. One arrange-
ment has three or four miniature electromagnets arranged in a circle, and the
field is varied by the electric currents in microcoils, Fig. 15.10. The force
needed to manoeuvre a bead through the cytoplasm of a living cell is of
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Figure 15.10

Magnetic tweezers. The
currents in the coils are
used to create a magnetic
field that exerts force on a
microbead in the cell.

order 1–10 piconewtons. For a particle of diameter 200 nm and magnetiza-
tion 100 kA m−1, a field gradient of order 104 T m−1 is needed to deliver
the required force. Using lithographically patterned Co–Fe poles, these field
gradients can be achieved over dimensions of order 10 µm.

Larger field gradients are available with small permanent magnets. The
mechanical properties of individual biomolecules such as coiled DNA can be
determined by attaching a magnetic bead to one end, and applying force with
permanent magnet tweezers.

15.4.3 Labelling and assay

Magnetic immunoassay is a method of detecting very low concentrations of
biomolecules in solution. There are two established assay procedures, both of
which use magnetic microparticles. The more sensitive, two-step method uses
two antibodies which attach to the molecule to be analysed. One antibody – spe-
cific antibody is attached onto the magnetic particle. The other is labelled by an
optically active tag. The functionalized particles are incubated with the analyte
where binding with the species in the anlyte occurs. The unbound molecules are
then washed away, and in the second step the labelled antibody is incubated with
the magnetic beads. The analyte is now sandwiched between two antibodies;
the unreacted labels are washed away and the number of labels is measured by
fluorescence or chemiluminescence. The signal increases monotonically with
the quantity of analyte present, as shown in Fig. 15.11(a).

In the second, single-step, method, the solution is spiked with a known
quantity of analyte which is tagged with the optically active label. The func-
tionalized magnetic beads are incubated with the solution, and the tagged and
untagged analyte molecules compete for the available antibody sites. The mag-
netic microparticles are then immobilized and the unbound ones are washed
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Figure 15.11

Magnetic immunoassay.
(a) In the two-step
method, magnetic
microbeads with attached
antibodies which capture
the analyte, are
immobilized and rinsed.
Then optical markers with
the same antibody are
captured by the analyte,
rinsed again, and the
optical signal is measured.
(b) In the single-step
method, a known quantity
of optically labelled analyte
is added which competes
with the analyte in solution
for the antibodies on the
microbeads. The beads are
immobilized, rinsed and
the optical signal is
measured.

Figure 15.12

A magnetic biochip with a
spin-valve sensor whose
surface is functionalized
with antibodies. The
analyte and magnetic
microparticles are captured
in an incubation phase and
after rinsing, a vertical
magnetic field magnetizes
the microbeads, creating a
stray field, which can be
detected by the spin valve.

out. The measured optical signal now decreases monotonically with analyte
concentration (Fig. 15.11(b)).

An all-magnetic version uses a linear thin-film magnetic sensor (§14.3) rather
than an optical method to detect the microbeads. The surface of the sensor is
functionalized with a specific antibody, and the analyte is added, together with
the functionalized magnetic beads. They are incubated together so that beads
are immobilized on the sensor surface, rinsed, and the stray field of the beads is
detected by the sensor, Fig. 15.12. A spin valve, AMR ring or planar Hall effect
device is used, and the beads are magnetized in a perpendicular field, to which
the sensor is insensitive. A linear response over several orders of magnitude,
extending down to single-bead detection may be achieved. By using multiple
sensor arrays, each of which is functionalized with a different antibody, it is
possible to conduct many assays in parallel, with single-molecule resolution.
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The sensors in a magnetic biochip can be built into microfluidic channels.
Compared to a competing optical system with multiwavelength optical detec-
tion, the magnetic biochip offers benefits of cost and sensitivity. No optical
spectrometer is needed, and single-molecule detection is achievable.

A variant of the method for biomolecular recognition uses complementary
strands of DNA to make the attachment of the magnetic particle. A specific
probe gene strand is attached to the sensor. The complementary target strand is
tagged with a magnetic label, and passed over the surface of the detector, where
it hybridizes with the probe. Field gradients produced by current-carrying con-
ductors are used to hold the target near the sensor and to speed up the hybridiza-
tion stage, which is the slow step in the procedure. Small beads containing a
single magnetic nanoparticle are used to detect smaller biomolecules.

15.4.4 Therapy and treatment

Claims of beneficial effects of static or low-frequency magnetic fields in pain
relief and treatment of inflammation are controversial. It is thought that broken
bones may set more quickly if they are exposed to a magnetic field. Unfortu-
nately, no plausible explanation of such effects has yet been advanced.

A pulsed field generator for
magnetic stimulation.

Pulsed magnetic fields can be used to induce electric fields and drive cur-
rents in conducting tissue. The effects of transcranial magnetic stimulation
of the brain using trains of pulses with dB/dt ≈ 103−106 T s−1 are under
investigation, and there is evidence that it may be beneficial in the treatment
of neurological and psychiatric conditions such as Parkinson’s disease and
depression. The pulses can induce weak emfs (nV–µV) at a cellular level, but
the effects on the scale of an organ are more significant, because the induced
electric fields increase in proportion to the dimensions (see §13.6). From (10.3),
the magnitude of the induced electric field around a circuit is

E ≈ −l dB
dt
, (15.14)

where l is the dimension of the circuit. Electric fields in excess of 200 V m−1,
needed to induce firing of neurons, are induced in circuits some millimetres
or centimetres in size. Gradient coils can be used to help confine the induced
electric stimulus to some region of the brain, or some other part of the body.

Better established is the use of magnetic microparticles for hypothermia. Here
the magnetic material in the bead should be conducting or exhibit hysteresis, so
that it can be heated by eddy-current or hysteresis loss (§12.1) in an externally
applied high-frequency field. If the beads accumulate in an area of interest,
such as a tumour, heat can be applied locally to raise the temperature to about
45◦C, thereby destroying the tumour.
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(a) (b)

Figure 15.13

Equipment for (a)
magnetoencephalograpy
(MEG) and (b) whole-body
magnetic resonance
imaging (MRI). (Courtesy of
Elekta AB and Booth
Radiology PLC.)

Magnetic nanoparticles may also be useful for localized drug delivery. The
drug is attached to the particle surface, and they are then manipulated to the
site of interest using magnetic field gradients.

15.4.5 Medical applications

Prosaic magnet applications include the use of forces between permanent mag-
nets to secure dentures or protheses and to aid feeble muscles in the eyelids or
bladder. Catheters can be guided with permanent magnets and artificial heart
valves are activated by them.

Magnetic imaging is the main application area of magnetism in medicine. The
magnetic field patterns produced by the electric currents flowing in muscles in
the heart are detected in magnetocardiography, whereas those due to neurons
in the brain are detected in magnetoencephalography (MEG). The currents are
respectively of order µA and nA and the fields a few centimetres from the
organs are therefore only of order of 10−6 or 10−9 Am−1. The electrical activity
can be measured with extended sensor arrays in magnetically shielded rooms.
For example, helmets with arrays of 128 SQUID detectors have been developed
for magnetoencephalograpy, Fig. 15.13(a). The main use of this technique is to
pinpoint areas of the brain where abnormal electrical activity builds up during
epileptic fits, as an aid in surgical treatment of the severe disorder.

Magnetic resonance imaging (MRI) is undoubtedly the most important and
best-established clinical application of magnetism in medicine. Three Nobel
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An object viewed along the
z axis, which is subject to a
field gradient in the
x-direction. The frequency
plot ρ(ω0) recording the
number of resonant spins is
shown. An image may be
constructed from gradients
imposed in different
directions. prizes have been awarded for it, in chemistry and medicine. There are about

20 000 MRI scanners installed in hospitals worldwide, and roughly 100 million
examinations are carried out every year. The technique combines NMR with
sophisticated signal processing to yield two-dimensional tomographic images
or three-dimensional views of a solid object, usually a part of the human
body. The analysis is based on the 1H resonance. Radio-frequency radiation
is absorbed at a frequency corresponding to the nuclear Zeeman splitting of
protons in the body. Fortunately, some 63% of the atoms in the human body are
hydrogen, mainly in fat and water.

The instrument consists of a magnet, shimmed to produce a highly uniform
magnetic field, a set of three-dimensional gradient coils and radio-frequency
coils to excite and detect the resonace. The magnets are usually superconducting
solenoids, cooled with liquid helium or a cryocooler, which generate fields of
1.0–1.5 T. Higher fields of 3 T or more provide improved resolution and contrast.
Permanent magnet systems are simpler, but bulky and limited to fields of about
0.4 T.

A simplified account of the imaging principles follows. The static field in
the bore of the magnet B0 is in the z-direction, along the length of the body.
The gradient coils provide linear variations of B0 in the x-, y- and z-directions,
which make the resonant frequency position-dependent. For example, ifω(x) =
γ (B0 +Gxx), the free-induction decay (Fig. 9.12) will contain components
from each slice in the yz-plane, and the number of nuclear spins in the slice is
deduced from the frequency spectrum. Initially, images were constructed from
slices taken with gradients established at different directions in the xy-plane,
normal to the length of the body.

A slice of spins prepared by
the 90◦ radio-frequency
pulse and the Gx gradient
pulse.

Currently MRI depends on sophisticated Fourier transform imaging tech-
niques, introduced in the 1970s. Use is made of a slice-selection gradient
and a phase-encoding gradient as well as the frequency-encoding gradient.
The simplest sequence is illustrated in Fig. 15.14. It consists of a 90◦ radio-
frequency pulse which coincides with the slice-selection gradient pulse. This
flips all the resonant spins in the xz-plane by 90◦. The phase-encoding gradi-
ent pulse follows, which has its gradient in the y- (or z)-direction. The final,
frequency-encoding, pulse is applied in the remaining direction z (or y). The
phase-encoding pulse imparts a slightly different Larmor precession frequency
to the spins across the slice, and therefore endows them with a phase which
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(a) (b) (c)Figure 15.15

MRI images of the head
based on: (a) T1 contrast,
(b) T2 contrast and
(c) spin density. (Courtesy
of Y. I. Wang)

depends on its intensity or duration. Finally, the phase-encoding gradient is
switched off, and the frequency-encoding gradient is applied along z, while the
free-induction decay signal is recorded. The sequence is repeated 128 times
with different magnitudes of the phase-encoding gradient to collect the data
necessary for an image. The image is constituted by fast Fourier transforming
in the x-direction to extract the frequency-domain information, and then in the
y-direction to extract spatial information.

Many different pulse sequences have been devised to yield images which map
T1, T2, T

∗
2 or the local spin density n. As many as ten different sequences may

be used in a single MRI examination. The technique is particularly useful for
imaging soft tissue and interfaces such as bone–tissue. It is useful for diagnosing
soft-tissue injuries such as slipped discs and sports injuries and it is also good
at identifying tumours. Some MRI images are shown in Fig. 15.15. Specific
regions can be highlighted by means of magnetopharmaceutical contrast agents

containing iron, manganese or gadolinium ions, which reduce the relaxation
time in their vicinity. Magnetic resonance imaging is also feasible with 31P and
13C (Table 9.3), but these isotopes are much less abundant in human tissue
than 1H.

Functional magnetic resonance imaging (fMRI) is a technique that provides
real-time images of the response of areas of the brain to external stimuli.
It contributes to knowledge of basic neuroscience and helps in the clinical
diagnosis of conditions such as stroke.

When nerve cells are active, they consume oxygen. Unlike muscles, nerves
have no reserves, so the oxygen must be provided by the haemoglobin from red
blood cells in nearby capillaries. There is a flow of oxygen to the active area,
which peaks 2–5 seconds after the stimulus, and is known as the haemodynamic
response. This leads to spatial and temporal variations in the oxygenated and
deoxygenated forms of haemoglobin, which influence the proton resonance.
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The heme group.

Haemoglobin is a large protein, with a molecular weight of about 68 000
which incorporates an iron ion in each of four subunits. The iron in the heme
group is coordinated by four nitrogens at the centre of a porphyrin ring. Another
protein oxygen is strongly bound at the site below the ring, and the remain-
ing site of the coordination octahedron is occupied by the transported oxygen
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Principle of the BOLD
technique, showing the
blood vessels at rest and
after activation, with the
corresponding difference in
the T2 relaxation for the
two states.

molecule in oxyhaemoglobin, or a weakly bound water molecule in deoxy-
haemoglobin. Haemoglobin makes up 97% of the dry weight of red blood cells,
and 0.3% of that weight is iron.

Haemoglobin is of interest magnetically, because the reduced form has Fe2+

in a high-spin state, 3d6; t42ge
2
g with S = 2. There is just enough paramagnetic

ferrous iron to overcome the diamagnetism of the rest of the protein. However,
in the oxidized state, the iron is low-spin FeIII, 3d5; t52g with a single unpaired

spin S = 1
2 . The oxygen molecule is bound as O−

2 , which means that it too has
an unpaired spin. The two form a covalent bond, resulting in no net moment.
Hence haemoglobin is diamagnetic when oxygenated, but paramagnetic when
deoxygenated.

The difference in magnetic properties is the basis for blood oxygen-level
dependent (BOLD) imaging, introduced in 1992, Fig. 15.16. The contrast with
the surroundings depends on the balance of changes of cerebral blood flow and
the oxygen level of the blood itself. Imaging is based on T2 or T ∗

2 contrast, and
shows moderate spatial resolution of about 3 mm and temporal resolution of
a few seconds. The strength of the signal varies as the square of the magnetic
field, and more of the signal arises from smaller, capillary blood vessels in large
fields. Hence there is a push to use high frequencies and fields of 7 T or more
to improve these images.

Dramatic as images of a brain lighting up as it goes to work may be, they
offer only an indirect representation of neural activity, Fig. 15.17. fMRI may be
regarded as a first step towards the distant goal of explaining human cognition
in terms of physical mechanisms. A much faster response with similar spatial
resolution is available with magnetoencephalography, which has the advantage
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Figure 15.17

Activation of the brain of a
sighted subject (top) and a
blind subject (bottom)
during tasks similar to
reading braille. The fMRI
response is superposed on
surface-rendered
high-resolution MRI images
of the two brains. (Courtesy
of N. Sadato.)

of responding directly to the neural currents. However, there are far fewer MEG
systems installed worldwide than MRI systems.

15.5 Planetary and cosmic magnetism

Magnetic fields spanning 15 orders of magnitude are associated with stars and
planets. These fields provide clues regarding the internal structure and history
of the bodies that produce them. We know more about the magnetism of our
own planet than any other, yet the Earth’s magnetic field remains imperfectly
understood, and we cannot predict its future course.

15.5.1 Rock magnetism

Iron represents about 5% of the mass of the continental crust, and it is present
in most rocks (Fig. 1.11). Other magnetic elements are far scarcer, Table 15.3.
Taking account of the fact that the atomic weight of iron is 2.2 times the crustal
average we have the 40:40 rule: iron represents about 1

40 th of the atoms of the
crust, and it is 40 times as abundant as all the other magnetic atoms together.
Rocks are normally diamagnetic when they contain less than about 0.2 wt%
iron, and paramagnetic otherwise, due to the presence of Fe2+ and Fe3+ ions
in the crystal lattices of the mineral phases at concentrations well below the
percolation threshold.
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Table 15.3. Average abundances of magnetic
elements in rocks (ppm)

Fe 50 000 Nd 30
Mn 950 Co 25
Cr 100 Sm 6
Ni 70 U 2

Nevertheless, rocks are heterogeneous mineral assemblages. Different sili-
cate and oxide phases segregate at different stages in an igneous cooling process.
These phases are frequently solid solutions, such as the fosterite–fayalite series
of olivines (FexMg1−x)2SiO4. Collective magnetic order can arise in iron-rich
phases, where percolation paths connect the cations via common oxygen ions,
forming superexchange bonds. Iron-rich oxides, which often include titanium,
are found in basalts. The common phases are titanomagnetite and titanohe-

matite. Crystallite sizes range from a few nanometres to several micrometres.
Two critical numbers are the superparamagnetic particle size 2Rb and the single
domain size 2Rsd , which are around 25 and 80 nm respectively (Table 8.1).
These magnetic grains may be present in quantities of order 10–100 ppm, and
they impart a spontaneous magnetization of order 10 A m−1 to the rock.

Other iron-rich oxide phases which are magnetically ordered at room tem-
perature are maghemite and some antiferromagnetic hydroxides, which occur
in soils and sedimentary rocks. They are unstable on heating. Iron sulphides are
formed by hydrothermal processes in the presence of H2S or by the action of
sulphate-reducing bacteria at the surface. Many economically valuable metal
ores (Fe, Co, Ni, Cu, . . .) are sulphides, and pyrite, FeS2, is most common of
all. It forms golden crystals but the iron is low-spin FeII 3d6; t62g with S = 0,
so pyrite is diamagnetic.

Iron-rich oxide and sulphide minerals which are magnetic at room tempera-
ture are listed in Table 15.4. Native iron, iron–nickel Fe1−xNix with x ≈ 0.07
and FeS are very rare on Earth, but they are found in iron meteorites. Other
iron-rich silicate and carbonate phases listed in Table 15.5 order antiferromag-
netically at temperatures near or below 100 K. Iron has hardly any solubility in
feldspars, the framework silicates which are the most common rock-forming
minerals.

Applications of rock magnetism are based on measurements of the natural
remanence, which can be acquired in several ways. Most important is the
thermoremanent magnetization, acquired when igneous or metamorphic rocks
cool through the superparamagnetic blocking temperature of the titanomag-
netite grains. Rocks often have complex thermal and geological histories, and
components of the remanence with differing stability can be acquired at dif-
ferent times in their past. Natural remanent magnetization can range from
10−5 to 102 A m−1. Weaker remanence is acquired when grains sediment in
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Table 15.4. Natural minerals, magnetically-ordered at
room temperature

Mineral Ideal formula TC, TN (K) σ s (A m2 kg−1)

Iron Fe 1038 218
Magnetite Fe3O4 853 92
Titanomagnetite Fe2.4Ti0.6O4 520 25
Jacobsite MnFe2O4 570 77
Trevorite NiFe2O4 860 51
Magnesoferrite MgFe2O4 810 21
Maghemite γFe2O3 950 84
Hematite αFe2O3 980 0.5
Titanohematite αFe1.4Ti0.6O3 380 20
Goethite αFeO(OH) 400 <1
Lepidocrocite γFeO(OH) 470 <1
Ferroxyhite δFeO(OH) 560 ≈10
Troilite FeS 578 <1
Pyrrhotite Fe7S8 598 17
Greigite Fe3S4 600 31

Table 15.5. Natural minerals, antiferromagnetically-ordered below room temperature

Mineral Ideal formula Structure type TN (K)

Fayalite Fe2SiO4 Olivine; isolated SiO4 tetrahedra 65
Andradite Ca3Fe3+

2 (SiO4)3 Garnet; isolated SiO4 tetrahedra 12
Almandine Fe2+

3 Al2(SiO4)3 Garnet; isolated SiO4 tetrahedra 4
Ilvaite CaFe2+

2 Fe3+O(Si4O7)(OH) Pairs of SiO4 tetrahedra 118
Ferrosilite FeSiO3 Orthoyroxene; silica chains 37
Hedenbergite CaFeSi2O6 Pyroxene; silica chains 38
Grunerite Fe7Si8O22(OH)2 Amphibole; double silica chains 45
Greenalite Fe3Si2O5(OH)4 1:1 layer sheet silicate 17
Minnesotaite Fe3Si4O10(OH)2 2:1 layer sheet silicate 28
Ulvospinel TiFe2O4 Spinel 120
Ilmenite FeTiO3 Ordered corundum 40
Siderite FeCO3 Calcite 38
Rhodochrosite MnCO3 Calcite 34

the Earth’s field, or when they grow to exceed the critical blocking size as a
result of some low-temperature chemical process. Since we are concerned with
geological time scales, 10–100 Ma, the criterion for superparamagnetic block-
ing, KV/kBT > 60, is larger than that used for magnetic recording (>40) or
laboratory measurements (>25).

The natural remanence of rocks is measured in a SQUID, or in a spinner
magnetometer, where standard drill-core samples of diameter 25 mm and length



568 Special topics

20 mm are spun in a pickup coil which is shielded from any external field. The
sensitivity of the spinner is 10−4–10−5 A m−1. Elaborate thermal treatments
may be employed to eliminate remanence acquired after the original cooling
of the rock. In this way, the direction and magnitude of the magnetic field
experienced by the rock at the time when it cooled can be determined. Provided
no folding has occured, the colatitude of the rock at that time is derived from
(2.11) as θ = arccot( 1

2 tan I). Radioactive dating of the rock by the K–Ar, Rb–
Sr or Pb isotope methods then allows us to add a date stamp, and begin to tell
the history not only of the Earth’s magnetic field, but of the surface of the Earth
itself.

Horizontal and vertical
components H , Z of the
Earth’s field, which has
magnitude F , and direction
defined by the declination
(variation) D and
inclination (dip) I .

15.5.2 The Earth’s field

The Earth’s magnetic field is dynamic. It is a vector, specified by any three of
its five components, which fluctuates on time scales ranging from seconds to
millions of years. The short-term fluctuations are due to currents in the upper
atmosphere. They average to zero (<1 nT) over the course of a year, but on a
given day a similar time sequence can be recorded at widely separated sites.
This was first noticed in 1825 when daily records of magnetic observations in
Kazan and Paris, cities some 4000 km apart, were compared. Gauss was then
inspired to establish the Magnetische Verein, a world-wide association of 50
magnetic observatories coordinated from Göttingen which made meticulous
measurements of the magnitude and direction of the Earth’s field following
a common schedule. The hope was that if enough high-quality data could be
collected, an understanding of the origins of the Earth’s field would follow.

Carl Friedrich Gauss,
1775–1855.

The magnetical observatory
established at Trinity
College, Dublin, in 1835.

An early success of the network was the proof of an internal source for the
main field, which ranges today from 30 to 60 µT in magnitude at different spots
on the globe; the average H -field is about 40 Am−1. The internal origin had
been postulated by Gilbert in 1600, based on his experiments with lodestone
terellas. Gauss developed spherical harmonic analysis to reduce the mass of data
pouring out of the magnetic observatories. Assuming that no electric currents
are present at the Earth’s surface, the field there can be derived from a magnetic
scalar potential ϕm which satisfies Laplace’s equation ∇2ϕm = 0. Solutions are

ϕm =
∞∑
l=1

l∑
m=0

[
Aml r

l + Bml r−(l+1)
]
Yml (θ, φ), (15.15)

where Yml are the spherical harmonics, which are related to the Legendre
polynomials Pml (cos θ ).

Here θ and φ are the colatitude and longitude. The Aml coefficients describe
the contribution of sources outside the terrestrial sphere of radius r = a =
6371 km, whereas the Bml coefficients give contribution of internal origin. It
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Table 15.6. Spherical harmonic coefficients of the Earth’s
magnetic field (1985) in nanoteslas

Order (n)

Coefficient Degree (m) 1 2 3 4

4 169
gmn 3 835 −426

2 1691 1244 363
1 −1903 2045 −2208 780

gon 0 −29877 −2073 1300 937
1 5497 −2191 −312 233
2 −309 284 −250

hmn 3 −296 68
4 −298

turns out2 that the As are negligible in comparison to the Bs. The potential due
to internal sources is

ϕmi = a

µ0

∞∑
l=1

l∑
m−0

(a
r

)l+1
Pme (cos θ )

{
gme cosφ + hml sinφ

]
, (15.16)

where ϕ is in amperes and gml and hml are in teslas. Some values for the leading
harmonics are given in Table 15.6. About 90% of Earth’s field is accounted

for by a dipole of magnitude (4a3/µ0)
√
g02

1 + g12
1 + h12

1 ; m =7.9 × 1022 A m2

inclined at an angle θ = tan−1
{
g0

1

/√
g12

1 + h12
i

} = 15◦ to the Earth’s axis, with

φ = arctan
(
h1

1

/
g1

1

)
. The first eight harmonics, or thereabouts, reflect the field

produced in the Earth’s core, whereas the higher terms reflect the contribution
of magnetized rocks in the first 30 km of the Earth’s crust, where temperatures
do not exceed the Curie point of the ferromagnetic phases in minerals.

Some features of the secular variation (time dependence) of the Earth’s field
are quite rapid. The magnetic North pole, where the angle of dip is 90◦, is
moving North at an alarming rate of about 40 km y−1, the magnitude of the
field is decreasing by 0.1% y−1 and the point of zero variation on the equator
has drifted westwards from the coast of Gabon to the coast of Ecuador in less
than 400 years. The ‘discovery’ of the magnetic North pole in 1831 was an
ephemeral achievement.

Edward Sabine, 1788–1883.

The other important outcome of the nineteenth-century Magnetic Crusade, as
the Magnetische Verein became known after the addition of sites in the far-flung
British Empire, was the realization by Edward Sabine in 1852 that the intensity
of the short-term fluctuations followed the 11-year sunspot cycle. The short-
term magnetic activity of the Earth has its origin on the Sun! Nowadays, in the

2 A similar analysis is used in magnetoencephalography, where a is the radius of the skull.
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Figure 15.18

A record of fluctuations of
the Earth’s magnetic field,
taken at Sitka in Alaska on
1 May 2007. A magnetic
observatory has existed on
this site since 1842. Units of
H , Z and F are nanoteslas,
the units of D are degrees.
(Courtesy of USGS
Geomagnetism program.)

International Real-time Magnetic Observatory Network (INTERMAGNET), a
fully automated successor stations to those established nearly 200 years ago,
monitor the Earth’s field with fluxgates and proton magnetometers, Fig. 15.18.
This serves mainly to keep an eye on the solar weather, which influences our
own. Very occasionally, magnetic storms are so severe that the emfs they induce
can disable our electrical distribution networks.

The Magnetische Verein was one of the very earliest examples of international
collaboration to solve a scientific problem; it can be regarded as a forerunner
of CERN, ITER and the European Framework Programmes. Unfortunately,
those involved were not to know that the origin of the Earth’s field could not
be inferred from a massive collection of data on its chaotic behaviour. Most of
their painstaking observations were futile.

15.5.3 The Earth’s dynamo
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The scalar variation of the
Earth’s field deduced by
combining observations in
Paris (>1600) with
measurements of the
remanence of baked clay
(<1600).

It is generally admitted that the magnetic fields of the Earth and other heavenly
bodies are produced by motion of a conducting fluid core, although the details
are mired in controversy. In the Earth’s case, Fig. 15.19, the liquid core has
inner and outer radii of 1220 and 3485 km, respectively, and is made of molten
iron with minor amounts of nickel and other elements which have no strong
affinity for oxygen. Less electronegative elements form oxides, which end up
in the mantle.

The problem is a difficult one in magnetohydrodynamics, for which there
may be no deterministic solution. The motion of the core is chaotic. We are
unable to predict the secular variation. Velocities in the liquid core are thought
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Internal structure of the
Earth. Radii of the main
structures, mean densities
and temperatures at the
centre and surface are
given.

to be of order 0.2 mm s−1 and the magnetic diffusivity η = 1/σµ is about
2 m2 s−1, so the magnetic Reynolds number is given by Rm = vl/η ≈ 100.We
are in an advection regime, where the magnetic field is carried along by the fluid
medium. However, electric currents including those associated with any primor-
dial magnetic field that was trapped when the Earth condensed from the solar
nebula would decay on a timescale of 15 000 years due to resistive losses, so the
currents that generate the field must somehow be sustained by dynamo action.
The flows in the liquid core are driven by internal heating due to mass segrega-
tion, latent heat of crystallization and residual radioactivity of 40K and U and
their isotopes. Altogether about 4 × 1013 W is dissipated in these processes.

I

B

A mechanical model of a
self-exciting dynamo.

B

B

j

j

Poloidal field

Azimuthal field

Azimuthal currents create
poloidal fields, and vice
versa.

An important step towards understanding the origin of the Earth’s magnetic
field was the concept of a self-sustaining fluid dynamo suggested by Joseph
Larmor in 1919. A mechanical model of a self-exciting dynamo is a spinning
conducting disc connected to a single-turn coil. If there is some small field to
begin with, an emf is generated between the axle and the rim of the spinning
disc, which drives current around the circuit, thereby building up the field. The
basic idea is that the fluid motion somehow stretches and twists the flux lines,
thereby intensifying the magnetic field, Fig. 15.20. Just how this applies to
the Earth is a matter for debate, but some constraints have been established.
One is that the dynamo cannot be axially symmetric. Another is that the field
in the core is quite different from the poloidal, dipolar field observed at the
surface. It is thought to have a pronounced azimuthal character, generated by
differential rotation between the liquid core and the mantle. The azimuthal
field is generated by poloidal currents in the liquid core. In one model of the
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Figure 15.20

Magnetic field is intensified
in a fluid core by a process
of stretching and twisting
flux lines. u is the fluid
velocity.

geodynamo, turbulence leads to small-scale reorganization of the azimuthal
field which creates the dipolar field.

Large-scale liquid-metal dynamos have been built in laboratories in Riga
and Karlsruhe with sufficiently high Rm to exhibit self-excitation. Further-
more, coupled mechanical dynamo models have been found to show chaotic
fluctuations and spontaneous random field reversals, which we know from the
paeleomagnetic record to be salient features of the Earth’s magnetic field. Homo
sapiens has yet to experience one.
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15.5.4 Paeleomagnetism

The ancient record of the Earth’s field has been inferred from the natural rema-
nence of dated basalts. A first observation is that the direction of magnetization
of young rocks indicates a magnetic pole direction that scatters randomly around
the geographic axis (Fig. 15.21). ‘Young’ for rocks is a few million years. The
secular variation of the Earth’s field has been measured in Paris since 1600, but
the record can be extended back to Roman times by measuring the thermorema-
nence of baked clay in the hearths of pottery kilns, which retain a record of the
field direction on the last day they were used – a nice example of archaeometry,
the use of quantitative physical methods in archaeology. Radiocarbon dating is
used for these comparatively recent events. The secular variation seems to be a
random wander around the Earth’s axis of rotation.

The most remarkable fact is that the polarity of the Earth’s field has flipped
randomly over geological time. Half the points in Fig. 15.21 are normal
(present-day) polarity and half are reversed. The last reversal took place 700 000
years ago, and the polarity of the Earth’s field is subject to more-or-less ran-
dom changes on timescales of 105−106 years. A sequence of lavas shows a
characteristic pattern of normal and reversed polarity, providing the record of
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Figure 15.21

Position of the Earth’s
magnetic pole deduced
from measurements of
recently formed ingeneous
rocks. Half of the points
have the present polarity,
while the other half are
reversed. On average the
magnetic field is that of a
geocentric axial dipole.
(After D. H. Tarling.)

recent reversals. Altogether some 400 reversals have been recorded in the rock
records. The dipole field at a reversal changes sign over a period of a few
thousand years, during which time the nondipole, higher-order harmonics are
thought to be dominant. We are unable to predict these reversals. As with stock
markets, past record is no guide to future performance.

Apparent polar wander
paths which are used to
reconstruct the past
positions of plates on the
globe. Data from rocks in
Europe (open circles) and
North America (solid
circles) can be made to
coincide by closing up the
Atlantic ocean.

The particular significance of measurements of thermoremanent magnetiza-
tion of rocks is that they have established the theory of global plate tectonics.
The ocean floor behaves like a giant tape recorder as new crust spreads out
from the mid-ocean ridge at a rate of a few centimetres per year, Fig. 15.22.
The Earth’s crust is formed of plates with oceanic and continental segments.
New oceanic crust forms at the mid-ocean ridges, and the plates jostle for
place on the surface of the Earth, colliding where one rides over another in
a subduction zone, which are regions of volcanism and earthquake activity.
The random sequence of reversals provides a unique time signature. Fur-
thermore, the magnetic colatitude θ of the ancient rocks can be collated to
construct apparent polar wander paths. We know the pole does not wander
far, but the plates do. These peregrinations over the face of the Earth can
be reconstructed over periods of hundreds of millions of years. For example,
250 My ago there was a supercontinent, named Pangea, which split up into
two fragments, Gondwana and Laurasia, which then broke into the continents
we know today. This process has been repeated several times in the Earth’s
4.5 Gy history. The scientific history of the Earth is as strange as any creation
myth.
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Schematic representation
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Magnetic moments of
planets and moons in the
solar system, plotted
against their angular
momentum. (After
P Rochette.)

15.5.5 Planetary magnetism

The planets and moons of our solar system have been investigated with the help
of magnetometers on board spacecraft. Measurements show that their magnetic
moments are mostly proportional to their angular momenta, a relation known
as Busse’s law (Fig. 15.23). The moments are almost always directed along the
axis of rotation which suggests a dynamo effect in a conducting core. The core
in the gas giants is likely to be a high-pressure metallic form of hydrogen rather
than molten Fe–Ni, as in Earth. The magnetic field at the surface of Jupiter is
ten times as strong as that at the surface of Earth, and its magnetic moment
is roughly 20 000 times as large. The weak fields of the Moon and Mars are
probably related to the absence of any liquid core.
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The internal structure of
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centre and surface are
given.

15.5.6 Solar and stellar magnetism

The ambient magnetic field in interplanetary space is 1–10 nT, whereas in
interstellar space it is estimated to be 0.1 nT. The average field at the surface of
the Sun is 100 µT, comparable to that at the surface of the Earth, but it can rise
to over 100 mT in sunspots.

The surface of the Sun, Fig. 15.24, is less dense than air on Earth but
it is seething with activity. It has a granular appearance, due to a network
of convection cells, each about 103 km in diameter. The cells are bright at the
centre, where hot plasma rises to the surface, and dark at the edges, where cooler
plasma descends. The average surface temperature is 5800 K. Solar flares are
spectacular displays leaping 105 km out from the surface. They are accompanied
by ejection of bursts of energetic particles, boosting the solar wind which
streams outwards from the Sun, Fig. 15.25, taking about two days to reach Earth.
Particle fluxes here are 1012–1013 m−2 s−1. Thankfully, these energetic charged
particles are deflected by the Earth’s magnetic field high above the surface, but
some find their way towards the Earth at high latitudes where they dissipate their
energy in collisions in the ionized upper atmosphere. The green glow of the
Aurora Borealis is a manifestation of ionization of atmospheric oxygen. Sudden
showers of particles provoke short-term fluctuations of the Earth’s field of up
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The 11-year sunspot cycle
from 1760–2000.

to 1 µT which can induce voltage spikes in electrical distribution networks that
have led to catastrophic power failures, as well as generating intense interference
at rf and microwave frequencies. The Sun’s weather concerns us directly, and
solar observatories provide two days warning.

Sunspots are dark patches about 10 000 km in diameter which appear in pairs
near the solar equator, and last for about a week. The number of sunspots
present at any one time varies from zero at the trough of the 11-year cycle
to about 100 at the peak, Fig. 15.26. Sunspots were known in predynastic
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China, where systematic records were kept by court astronomers from 28 BC.
Galileo’s observations of them, published in 1613, led to his troubles with the
Roman Catholic Church. We now have some understanding of their magnetic
nature. The 11-year sunspot cycle is associated with regular reversals of the
Sun’s magnetic field driven by the rotation of the sun. The average value of
the Sun’s field is ≈0.1 mT in the photosphere, but it is greater at the edge of
the convection cells. Magnetic reversals occur for other stars as well.

The structure of the Sun is illustrated in Fig 15.24. The seat of thermonuclear
fusion, a core of radius 200 × 103 km, is surrounded by a hydrodynamically
stable radiative zone of radius 500 × 103 km, where heat diffuses by radiation
into the outer, convective, zone. This is a 200 × 103 km thick shell which is
in a state of ceaseless convective motion. The Sun’s surface is a thin dense
layer known as the photosphere, above which lies the 2500 km thick chro-
mosphere. Finally, the chromosphere gives way to the outer layer of the solar
atmosphere, known as the corona, which extends outwards to form the solar
wind.

A flux tube which gas been
pushed out through the
surface of the Sun, forming
two sunspots.

Velocities in the convective zone are about 1 km s−1 and the magnetic
Reynolds number Rm = vlσµ (15.10) is huge, ∼108. Here the characteris-
tic length scale is 105 km. Magnetic field is trapped by the fluid motion, and
some of the primordial field may still persist. However it is believed that there is
a solar dynamo, and differential rotation of the radiative and convective zones
generates an azimuthal field. The flux is amplified in flux tubes, up to about
100 mT by differential rotation. These tubes are pushed upwards towards the
surface, and from time to time they burst through into the chromosphere.
Sunspots are the footprint areas where the intense magnetic fields suppress
convective fluid motion and the temperature falls to about 4000 K. The sunspots
are often accompanied by solar flares, which may be related to collapse of the
flux tubes.

Interstellar space is so vast that the dimensionless magnetic Reynolds number
Rm can be very large indeed. There, magnetic field lines are frozen into the
sparse conducting medium. The magnetic field threading a loop containing
the same particles is conserved during the motion of the medium. As a cloud
of interstellar matter collapses to form a star, there are three invariants, the
massM = 4

3πr
3d, the angular momentum and the flux traversing the the cloud

� = 4πr2B. It follows that

Bstar/Bspace ≈ (dstar/dspace)2/3. (15.17)

This equation tends to overestimate the stellar fields, which are of order
1–100 mT in many stars. The origin of the magnetic fields in the interstellar
medium is an open question.

Magnetic fields of 108 T, a billion times that found on the Sun exist in
neutron stars, which rotate at precisely defined frequencies, acting as pulsars.
These extraordinary objects are composed of dense nuclear matter; they form



578 Special topics

following the rapid collapse of a star in a supernova explosion. As angular
momentum is conserved when the radius of the star collapses from hundreds
of thousands of kilometres to about 10 km, the rotation frequency can be as
high as 1 kHz. The pulsed electromagnetic radiation we detect on Earth is
produced by electrons accelerating in the rapidly changing magnetic field. The
largest fields known to man, an amazing 1011 T, appear in a class of neutron
stars known as magnetars which emit intense bursts of gamma radiation when
their field is amplified by a dynamo effect during the few seconds following
collapse.

Light propagating through the sparse interstellar medium undergoes Faraday
rotation, where the rotation angle θF ∝ �2, where� is the wavelength of light.
The constant of proportionality is

e2

8π2ε0m2
ec

3

∫ d

0
neBdl,

where the product of the electron density ne and B is integrated along the line
of sight. By making some assumptions about ne, in the vicinity of a pulsar, for
example, it is possible to deduceB.Likewise, electromagnetic radiation passing
through the Earth’s ionosphere is subject to Faraday rotation. For example,
UHF radiation (0.6 GHz,� = 0.5 m) completes one entire turn as it passes the
Earth.

It is fitting to end with the stars. They are the source of all the iron, cobalt
and nickel, and every other atomic constituent of magnetic materials, as well
as all the atoms in our own bodies, except hydrogen. What felicitous miracle of
organization allows one to contemplate the other, telling a story and transmitting
some knowledge that will be useful for a while!
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EXERCISES

15.1 Calculate the molarity of a solution of Cu2+ which has a susceptibility that is
precisely zero. The diamagnetic susceptibility of water is −9.1 × 10−9 m3 kg−1.

15.2 Discuss the stability of a tube of water injected into a bath of paramagnetic
solution in the configuration of Fig. 15.1(b).

15.3 A long line of spherical magnetite particles of radius r are in contact. What
is the minimum value of r necessary to form a magnetically stable chain, in
which their separation is equal to their radius.

15.4 Make estimates of the minimum sizes of colloidal particles which will not
aggregate: (a) under the influence of gravity in a vessel 10 cm deep, (b) under
the influence of differences of magnetic field of 0.1 T and (c) as a result of
dipole-dipole interactions.

15.5 Estimate the electric current flowing in the levitated frog, and explain why it
does not kill the creature.

15.6 Design an axial magnetic bearing which will support a mass of 200 g.
15.7 Estimate the mass of Nd2Fe14B permanent magnet that is required to levitate a

140 kg sumo wrestler above a large superconducting disc with χ = −1. What
is the screening current flowing in the superconductor?

15.8 What is the range of density of objects that can be floated in a water-based
ferrofluid containing 20 volume % of Fe3O4, by applying a magnetic field.

15.9 Deduce the expression F = σv × B × B for the force per unit volume on a
liquid of conductivity σ , moving with velocity v in a magnetic field B. Show
that this force acts to damp the motion, except when v and B are parallel.

15.10 What is the size of the largest liquid metal drop that can be supported by
radio-frequency levitation?

15.11 Estimate the magnetic susceptibility of red blood cells. What is the field
gradient required for high gradient magnetic separation of red blood cells?
Is this realistic? Assume the cells have radius 4.25 µm and that they move at
0.3 mm s−1 in a medium of viscosity 10−3 N s m−2.

15.12 The Earth’s surface is negatively charged due to lightning strikes to the extent
that there is an electric field of 100 V m−1 at the surface. How does this influence
the Earth’s magnetic field?

15.13 Esimate the magnitude of the electric currents that create the Earth’s magnetic
field.

15.14 Estimate the energy, in electron volts, of the particles in the solar wind.
15.15 By equating the energy density of particles in the solar wind to that in the Earth’s

magnetic field, estimate the extent of the sheath in Fig. 15.26 as a multiple of
the Earth’s radius.
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Appendix A Notation

Roman symbols

a acceleration m s−2

a interatomic spacing, lattice parameter m
a0 cubic lattice parameter m
a transition width m
A vector potential T m
A exchange stiffness J m−1

Amn crystal-field coefficients J m−n

A hyperfine coupling constant J
A, a area m2

b scattering length (nuclear), lattice parameter m
b AC flux density T
B B-field, flux density T
B0 free-space flux density, resonance field T
Bα anisotropy field T
Bg airgap flux density T
Bhf hyperfine field T
Bm flux density in a permanent magnet T
Br remanent flux density T
Bs spontaneous flux density T
Bmn crystal-field coefficients J
(BH )max energy product J m−3

(BH )u recoil product J m−3

BJ (x) Brillouin function

c concentration mol m−3

c latttice parameter m
C Curie constant K
C ′ sublattice Curie constant for an antiferromagnet K
CA,CB sublattice Curie constants for a ferrimagnet K
Cm specific heat of magnetic origin J K−1 m−3

CM specific heat at constant magnetization J K−1 m−3

Cmol molar Curie constant mol K
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d distance m
d effective spin dimensionality
d interplanar spacing m
dhkl spacing of a set of reflecting planes of Miller indices (h, k, l) m
d density kg m−3

D electrical displacement C m−2

D dimensionality
De electron diffusion constant m2 s−1

Dsw spin-wave stiffness parameter J m2

D uniaxial crystal-field parameter J
D↑,↓ density of states per spin per unit volume m−3 J−1

e unit vector
eK ellipticity
E electric field V m−1

E′ electric field in free space V m−1

E energy density J m−3

E enthalpy (per unit volume) J m−3

E Young’s modulus Pa
Ea anisotropy energy J m−3

EA surface energy J m−2

E energy J
E electromotive force V

f force N
f frequency Hz
fc cyclotron frequency Hz
fdip geometric factor
fi atomic scattering function m
fL Larmor frequency Hz
fL orbital form factor
fM recoilless fraction
fS spin form factor
F force density N m−3

FL Lorentz force density N m−3

Fm magnetic force density N m−3

F energy functional
F Helmholtz free energy (per unit volume) J m−3

F (ξ ) RKKY function
Fhkl structure factor m
f volume fraction, packing fraction, fill fraction
fm fill factor

ĝ anisotropic g-tensor
ghkl reciprocal lattice vector m−1
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g Landè g-factor
gn degeneracy of nth Landau level, nuclear g-factor
G reciprocal lattice vector m−1

G conductance �−1

G de Gennes factor
G Gibbs free energy (per unit volume) J m−3

GL Landau free energy J m−3

G(r) radial distribution function m−3

h AC magnetic field A m−1

h height m
H H -field, magnetic field strength A m−1

H ′ magnetic field strength in free space A m−1

Ha anisotropy field A m−1

Hc coercive field A m−1

Hd demagnetizing field, stray field A m−1

Hdip dipole field A m−1

He Earth’s magnetic field A m−1

Hex Exchange field A m−1

Hg gap field A m−1

HK saturation field A m−1

Hm field in a permanent magnet A m−1

Hn nucleation field A m−1

Hp pulse field, pinning field A m−1

Hsw switching field A m−1

BHc coercivity on B(H ) loop A m−1

H Hamiltonian

I, i electric current A
I unit tensor
Icp collector current (parallel arrangement) A
Icap collector current (antiparallel arrangement) A
I, MI nuclear spin quantum number
I angle of dip rad
I Stoner exchange parameter J

j electric current density A m−2

jc conduction current density, critical switching-current
density A m−2

jm Amperian magnetic current density A m−2

js flow of angular momentum J m−2

J magnetic polarization T
j · J total angular momentum kg m2 s−1

j.J total angular momentum quantum number
J exchange constant, exchange integral J
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JRKKY RKKY exchange J
Jsd ,Jsf exchange between localized and conduction electrons J

k electron wavevector m−1

kc curling factor
kF Fermi wavevector m−1

kV Verdet constant T−1 m−1

K wavector of light/neutron/incident beam
(of particles) m−1

K ′ wavevector of reflected beam
(of particles or radiation) m−1

K torque constant of a motor V s
Ki stiffness constant N m−1

Ks surface anisotropy J m−2

Ku,K1,K2,Keff anisotropy constants J m−3

Kσ stress anisotropy J m−3

K Knight shift, geometric factor

l̂ orbital angular momentum operator J s
�, L orbital quantum number
�, L orbital angular momentum J s
lex exchange length m
l length m
la absorption length m
lB magnetic length m
lg airgap length m
lm magnet length m
ls , lsf spin-diffusion length m
L inductance H
L(x) Langevin function

m mass kg
ml,s,.j ,ML,S,J magnetic quantum numbers
mw Döring mass kg m−2

m∗ effective mass kg
m magnetic moment A m2

m0 maximum value of mz A m2

meff effective moment A m2

mn nuclear magnetic moment A m2

M magnetization A m−1

MC magnetocurrent
MR magnetoresistance
M0 saturation magnetization (at T = 0) A m−1

MA,MB sublattice magnetizations A m−1



584 Appendices

ML,MS,MJ ,MI magnetic quantum numbers
Mr remanent magnetization, remanence A m−1

Ms spontaneous magnetization A m−1

Mtr thermoremanent magnetization A m−1

M atomic weight kg mol−1

n number density of particles m−3

n order of reflection
n principal quantum number
n turns per unit length (of a solenoid) m−1

n particle density m−3

nc carrier electron density m−3

nS Stoner coefficient
nW , nAA, nBB, nAB Weiss coefficients
N number of particles
N demagnetizing factor
N↑,↓ density of states per atom J−1

Ô
m

n Stevens operators

p electric dipole moment C m
p momentum kg m s−1

p̂ momentum operator kg m s−1

p magnetic scattering length m
pc net polarization of conducting electrons
peff effective Bohr magneton number
P electric polarization C m−2

Pm magnetic pressure Pa
P,P power density W m−3

P pressure Pa
P probability
P spin polarization
Pan anomalous energy losses J s−1 m−3

Ped eddy-current energy loss J s−1 m−3

Phy hysteresis energy loss J s−1 m−3

Pm permeance Wb A−1

Pv acoustic power J s−1

P
m�
� (θ ) Legendre polynomials

q spin wave magnon wavevector m−1

q electric charge C
qm magnetic charge A m
Q spin density wavevector
Q nuclear quadrupole moment m2

Q heat (per unit volume) J m−3
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Q magneto-optic parameter
Q Q-factor of resonance
Qm magnetic quality factor
Qn multipole moment C mn

r distance m
R̂(θ ) rotation operator
R resistance �

R Sternheimer shielding factor
Rb superparamagnetic blocking radius m
Rcoh coherence radius m
Rh Hall coefficient C−1 m3

Rint interface resistance � m−2

Rm reluctance A Wb−1

RM Maxwell resistance �

RS Sharvin resistance �

Rsd single-domain radius m
R shielding ratio
Rm magnetic Reynold’s number

s, S spin angular momentum kg m2 s−1

s, S spin quantum number
S entropy (per unit volume) J m−3 K−1

Sv magnetic viscosity coefficient A m−1

S cross sectional area of a Fermi surface m2

t tolerance factor
t time s
t transfer integral J
t 1

2
lifetime of an excited state s

tm measuring time s
t thickness m
T temperature K
T1 longitudinal relaxation time s
T2 transverse relaxation time s
T ∗

2 combined time constant s
T inho

2 dephasing time in an inhomogeneous field s
T ∗ spin temperature K
Tb blocking temperature K
Tc ferrimagnetic Néel temperature K
TC Curie temperature K
Tcomp compensation temperature K
Tf spin freezing temperature K
TF Fermi temperature K
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Tg glass transition temperature K
Ti transmission of the ith mode
TK Kondo temperature K
TM Morin transition temperature K
TN Néel temperature K
Tsc superconducting transition temperature K
TV Verwey transition temperature K
T kinetic energy of a single electron J
T tunnelling probability

U Coulomb potential energy J
U internal energy (per unit volume) J m−3

U Hubbard’s U J
U two-electron interaction J

v velocity m s−1

vd electron drift velocity m s−1

vF Fermi velocity m s−1

vSW spin-wave velocity m s−1

vw domain wall velocity m s−1

V (r) potential energy J
V voltage/potential V
V volume m3

Vb bias voltage V
VH Hall voltage V
Vij electric field gradient V m−2

V �n Laguerre polynomials
Vsa spin accumulation voltage V
V potential energy of a single electron J
V Verdet constant rad m−1

w width m
w work J
W bandwidth J
W power per unit mass W kg−1

W work density J m−3

Ymn spherical harmonics

Z atomic number, nunber of formula units in a unit cell,
coordination number

Z impedance �

Ze number of valence electrons
Z partition function
Zm magnetic valence
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Greek symbols

α Gilbert damping parameter, conductance ratio
α thermal expansion coefficient K−1

α magnet ideality factor

β fluxloss factor

γ gyromagnetic ratio C kg−1

γ∞ Sternheimer antishielding factor
γ H Hooge coefficient
γ n nuclear gyromagnetic ratio C kg−1

γ w domain wall energy J m−2

� torque N m

δ diffusion layer thickness m
δ loss angle rad
δB Bloch wall width nm
δp,q Kronecker delta
δs skin depth m
δw domain wall width m
 crystal-field splitting J
 ex exchange splitting J
 i impurity-level width J
 oct crystal-field splitting in octahedral coordination J
 sc superconducting energy gap J
 tet crystal-field splitting in tetrahedral coordination J

ε strain
εij permittivity/dielectric tensor C V−1 m−1

ε efficiency
ε, εM energy J
εF Fermi energy J
εg primary landgap eV
εso spin-orbit interaction energy J
εZ Zeeman energy J

η asymmetry parameter
η dynamic viscosity N s m−2

ηw wall mobility m s−1 T−1

θ colatitude rad
θ polar angle rad
θF Faraday rotation rad
θK Kerr rotation rad
θp paramagnetic Curie temperature K
θ out of plane angle rad
!D Debye temperature K
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κ magnetic hardness parameter

λ Landau damping parameter
λ diffusion constant m2 s−1

λ dipole moment A m
λ mean free path m
λ,� spin-orbit coupling constant J
λ wavelength (of spin waves, magnons and AC

field quanta) m
λe de Broglie wavelength of electron m
λel inelastic scattering length m
λs spontaneous linear magnetostriction
� wavelength of light/incident particle beam m

µ magnetic interaction vector
µ chemical potential J per particle
µ mobility m2 V−1 s−1

µ permeability T m A−1

µ′ real component of permeability T m A−1

µ′′ imaginary component of permeability T m A−1

µi initial permeability T m A−1

µr relative permeability
µR recoil permeability T m A−1

ν em radiation frequency Hz
ν off-diagonal AC susceptibility
ν reluctivity

ξ correlation length m
ξ scaling factor

ρ (electric) charge density C m−3

ρ radius ratio
ρm magnetic charge density (bulk) A m−2

ρX X-ray density m−3

� resistivity � m
�xy planar Hall resistivity � m

σ conductivity S m−1

σ exchange bias coupling constant J m−2

σ magnetic moment per unit mass A m2 kg−1

σ specific moment A m2 kg−1, J T−1 kg−1

σ stress N m−2

σ total cross section
σa absorption cross section m2

σd dipolar coupling J m−2

σ diff differential scattering cross section



589 Appendix A Notation

σ ex exchange coupling J m−2

σm surface (magnetic) charge density A m−1

σ s scattering cross section m2

τ relaxation time, period s
τ 1

2
half-life s

τ s spin relaxation time s

φ azimuthal angle rad
φ colongitude rad
φ potential V
φH Hall angle rad
ϕab magnetic potential difference A
ϕc, ϕe electric potential J C−1, V
ϕm magnetic scalar potential A
ϕ field/current angle rad
� magnetic flux Wb, T m2

χ (volume) susceptibility
χ ′ external susceptibility
χ ′ real component of susceptibility
χ ′′ imaginary component of susceptibility
χe electrical susceptibility
χhf high-field ferromagnetic susceptibility
χL Landau susceptibility
χm mass susceptibility m3 kg−1

χmol molar susceptibility m3 mol−1

χP Pauli susceptibility

κ scattering vector m−1

κ diagonal AC susceptibility

ψ,� wave function m−3/2

ω angular frequency rad s−1

ω atomic volume m3

ω0 resonance frequency rad s−1

ωc cyclotron frequency rad s−1

ωq angular frequency for phonons and magnons rad s−1

ωs spontaneous volume magnetostriction
� angular frequency of em beam/incident particle beam rad s−1

�′ angular frequency of reflected beam of em
radiation/particles rad s−1

� solid angle sterad
� volume m3
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Appendix B Units and dimensions

B.1 SI units

We use SI throughout with the Sommerfeld convention

B = µ0(H + M). (B1.1)

Engineers prefer the Kennelly convention

B = µ0 H + J . (B1.2)

Both are consistent, compatible SI units since J = µ0 M.
The international system is based on the five basic quantities: mass (m),

length (l), time (t), current (i) and temperature (θ) with corresponding units of
kilogram, metre, second, ampere and kelvin. Derived units include the newton
(N) = kg m s−2, joule (J) = N m, coulomb (C) = A s, volt (V) = J C−1,
tesla (T) = J A−1 m−2 = V s m−2, weber (Wb) = V s = T m2 and hertz
(Hz) =s−1.

Recognized multiples are in steps of 10±3, but a few exceptions are admited
such as centimetre (cm = 10−2 m) and angstrom (Å = 10−10 m). Multiples
of the metre are fm (10−15), pm (10−12), nm (10−9), µm (10−6), mm (10−3),
m (100) and km (103).

Flux density B is measured in telsas (also mT,µT). Magnetic moment is
measured in A m2 so the magnetization and the H -field are measured in
A m−1. From (2.73) it is seen that an equivalent unit for magnetic moment
is J T−1, so magnetization can also be expressed as J T−1 m−3. The mag-
netic moment per unit mass, σ , in J T−1 kg−1 or A m2 kg−1 is the mag-
netic quantity most often measured in practice in a vibrating-sample or
SQUID magnetometer. The quantity µ0 is exactly 4π× 10−7 T m A−1 and
ε0 is deduced from the speed of light c = 2.998 × 108 m s−1 using c2 =
1/(µ0ε0).

The SI system has two compelling advantages for magnetism: (i) it
is possible to check the dimensions of any expression by inspection and
(ii) the units are directly related to the practical units of electricity. It is
the system used for undergraduate education in science and engineering
world-wide. A quantitative understanding of physical phenomena requires
a good grasp of the magnitudes of physical quantities. Such understand-
ing is not fostered by confusing different unit systems. SI is the mother
tongue of science. It is sensible to master your mother tongue before tackling
another language. Hence the exclusive use of SI in Magnetism and Magnetic
Materials.
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B.2 Cgs units

Most of the primary literature on magnetism is still written using cgs units, or
a muddled mixture of units where large fields are quoted in teslas and small
ones in oersteds, one a unit of B, the other a unit of H ! Basic cgs units are
cm, g and s. The electromagnetic unit of current is equivalent to 10 A. The
electromagnetic unit of potential is equivalent to 10 nV. The electromagnetic
unit of magnetic dipole moment (emu) is equivalent to 10−3 A m2. Derived cgs
units include the erg (10−7 J), so that an energy density of 1 J m−3 is equivalent
to 10 erg cm−3.

The convention relating flux density and magnetization in cgs is

B = H + 4πM, (B1.3)

where the flux density or induction B is measured in gauss (G) and field H in
oersteds (Oe). Magnetic moment is usually expresed as emu, and magnetization
is therefore in emu cm−3, although 4πM is considerd a flux-density expression,
frequently quoted in kilogauss. The magnetic constant µ0 is numerically equal
to 1 G Oe−1, but its general omission from the equations makes it impossible
to check their dimensions.

The most useful conversion factors between SI and cgs units in magnetism
are:

1 T = 10 kG 1 G = 0.1 mT
1 kA m−1 = 12.57(≈12.5) Oe 1 Oe = 79.58 (≈80) A m−1

1 A m2 =1000 emu 1 emu =1 mA m2

1 MJ m−3 =125.7 MG Oe 1 MG Oe =7.96 kJ m−3

1 A m2 kg−1 =1 emu g−1 1 kA m−1 =1 emu cm−3

SI phrase CGS translation

B = µ0(H +M) = µ0H + J B = H + 4πM = H + I
B = 1 T B = 10 kG
M = 1 kA m−1 M = 1 emu cm−3

J = 1 T 4πM = 10 kG
H = 1 kA m−1 H = 4π (≈12.5) Oe
Hd = −NM (0 ≤ N ≤ 1) Hmd = −4πNM = −DM

(0 ≤ N ≤ 1, 0 ≤ D ≤ 4π)
m = 1 J T−1(≡A m2) m = 1000 emu (≡erg G−1)
σ = 1 J T−1 kg−1 σ = 1 emu g−1

χ = ∂M/∂H χ = 4π∂M/∂H
(BH )max = 1 kJ m−3 (BH )max = 40π kG Oe (≈0.125 MG Oe)
K1 = 1 kJ m−3 K1 = 104 erg cm−3

ε = −Vµ0 H · M J ε = −V H · M erg
ϕm = qm/4πr A χ = qm/r Oe cm

A = µ0m × r/4πr3 T m. A = m × r/r3 G cm
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B.3 Dimensions

Any quantity in the SI system has dimensions which are a combination of the
dimensions of the five basic quantities, m, l, t , i and θ . In any equation relating
combinations of physical properties, each of the dimensions must balance, and
the dimensions of all the terms in a sum have to be identical.

B3.1 Dimensions

Mechanical

Quantity Symbol Unit m l t i θ

Area A m2 0 2 0 0 0
Volume V m3 0 3 0 0 0
Velocity v m s−1 0 1 −1 0 0
Acceleration a m s−2 0 1 −2 0 0
Density d kg m−3 1 −3 0 0 0
Energy ε J 1 2 −2 0 0
Momentum p kg m s−1 1 1 −1 0 0
Angular momentum L kg m2 s−1 1 2 −1 0 0
Moment of inertia I kg m2 1 2 0 0 0
Force f N 1 1 −2 0 0
Force density F N m−3 1 −2 −2 0 0
Power P W 1 2 −3 0 0
Pressure P Pa 1 −1 −2 0 0
Stress σ N m−2 1 −1 −2 0 0
Elastic modulus K N m−2 1 −1 −2 0 0
Frequency f s−1 0 0 −1 0 0
Diffusion coefficient D m2 s−1 0 2 −1 0 0
Viscosity (dynamic) η N s m−2 1 −1 −1 0 0
Viscosity ν m2 s−1 0 2 −1 0 0
Planck’s constant � J s 1 2 −1 0 0

Thermal

Quantity Symbol Unit m l t i θ

Enthalpy H J 1 2 −2 0 0
Entropy S J K−1 1 2 −2 0 −1
Specific heat C J K−1 kg−1 0 2 −2 0 −1
Heat capacity c J K−1 1 2 −2 0 −1
Thermal conductivity κ W m−1 K−1 1 1 −3 0 −1
Sommerfeld coefficient γ J mol−1 K−1 1 2 −2 0 −1
Boltzmann’s constant kB J K−1 1 2 −2 0 −1
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Electrical

Quantity Symbol Unit m l t i θ

Current I A 0 0 0 1 0
Current density j A m−2 0 −2 0 1 0
Charge q C 0 0 1 1 0
Potential V V 1 2 −3 −1 0
Electromotive force E V 1 2 −3 −1 0
Capacitance C F −1 −2 4 2 0
Resistance R � 1 2 −3 −2 0
Resistivity � �m 1 3 −3 −2 0
Conductivity σ S m−1 −1 −3 3 2 0
Dipole moment p C m 0 1 1 1 0
Electric polarization P C m−2 0 −2 1 1 0
Electric field E V m−1 1 1 −3 −1 0
Electric displacement D C m−2 0 −2 1 1 0
Electric flux � C 0 0 1 1 0
Permittivity ε F m−1 −1 −3 4 2 0
Thermopower S V K−1 1 2 −3 −1 −1
Mobility µ m2 V−1 s−1 −1 0 2 1 0

Magnetic

Quantity Symbol Unit m l t i θ

Magnetic moment m A m2 0 2 0 1 0
Magnetization M A m−1 0 −1 0 1 0
Specific moment σ A m2 kg−1 −1 2 0 1 0
Magnetic field strength H A m−1 0 −1 0 1 0
Magnetic flux � Wb 1 2 −2 −1 0
Magnetic flux density B T 1 0 −2 −1 0
Inductance L H 1 2 −2 −2 0
Susceptibility (M/H) χ 0 0 0 0 0
Permeability (B/H) µ H m−1 1 1 −2 −2 0
Magnetic polarization J T 1 0 −2 −1 0
Magnetomotive force F A 0 0 0 1 0
Magnetic ‘charge’ qm A m 0 1 0 1 0
Energy product (BH ) J m−3 1 −1 −2 0 0
Anisotropy energy K J m−3 1 −1 −2 0 0
Exchange stiffness A J m−1 1 1 −2 0 0
Hall coefficient RH m3 C−1 0 3 −1 −1 0
Scalar potential ϕ A 0 0 0 1 0
Vector potential A T m 1 1 −2 −1 0
Permeance Pm T m2 A−1 1 2 −2 −2 0
Reluctance Rm A T−1 m−2 −1 −2 2 2 0
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B3.2 Examples

(1) Kinetic energy of a body: ε = 1
2mv

2

[ε] = [1, 2,−2, 0, 0] [m] = [1, 0, 0, 0, 0]

[v2] = 2[0,−1,−1, 0, 0]

[1,−2,−2, 0, 0]
(2) Lorentz force on a moving charge; f = qv × B

[f ] = [1, 1,−2, 0, 0] [q] = [0, 0, 1, 1, 0]
[v] = [0, 1,−1, 0, 0]

[B] = [1, 0,−2,−1, 0]

[1, 1,−2, 0, 0]
(3) Domain wall energy γ w = √

AK (γ w is an energy per unit area)
[γ w] = [εA−1] [

√
AK] = 1/2[AK]

= [1, 2,−2, 0, 0] [
√
A] = 1

2 [1, 1,−2, 0, 0]

−[ 1, 1, −2, 0, 0] [
√
K] = 1

2

[1,−1,−2, 0, 0]

[1, 0,−2, 0, 0]
= [1, 0,−2, 0, 0]

(4) Magnetohydrodynamic force on a moving conductor F = σv × B × B
(F is a force per unit volume)
[F ] = [FV −1] [σ ] = [−1,−3, 3, 2, 0]

= [1, 1,−2, 0, 0] [v] = [0, 1,−1, 0, 0]

− [0, 3, 0, 0, 0]

[1,−2,−2, 0, 0]
[B2] = 2[1, 0,−2,−1, 0]

[1,−2,−2, 0, 0]
(5) Flux density in a solid B = µ0(H + M) (note that quantities added or

subtracted in a bracket must have the same dimensions)
[B] = [1, 0,−2,−1, 0] [µ0] = [1, 1,−2,−2, 0]

[M], [H ] = [0,−1, 0, 1, 0]

[1, 0,−2,−1, 0]
(6) Maxwell’s equation ∇ × H = j + dD/dt .

[∇ × H] = [Hr−1] [j ] = [0,−2, 0, 1, 0] [dD/dt] = [Dt−1]
= [0,−1, 0, 1, 0] = [0,−2, 1, 1, 0]

−[ 0, 1, 0, 0, 0] −[0, 0, 1, 0, 0]
= [0,−2, 0, 1, 0] = [0,−2, 0, 1, 0]

(7) Ohm’s Law V = IR
= [1, 2,−3,−1, 0] [0, 0, 0, 1, 0]

+ [1, 2,−3,−2, 0]
= [1, 2,−3,−1, 0]

(8) Faraday’s Law E = −∂�/∂t
= [1, 2,−3,−1, 0] [1, 2, −2, −1, 0]

−[0, 0, 1, 0, 0]
= [1, 2,−3,−1, 0]
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Appendix C Vector and trigonometric relations

Two products can be formed from vectors A and B:

scalar product: A · B = AxBx + AyBy + AzBz = AB cos θ ;

vector product: A × B =
∣∣∣∣∣∣

ex ey ez
Ax Ay Az

Bx By Bz

∣∣∣∣∣∣
= (AyBz − ByAz)ex − (AxBz − BxAz)ey + (AxBy − BxAy)ez

= AB sin θen,

where the unit vector en is normal to the plane containing A and B in a
direction given by the corkscrew rule, and ex, ey, ez are unit vectors along
the coordinate axes.

Triple products are

A · (B × C) = B · (C × A) = C · (A × B),
A × (B × C) = (A · C)B − (A · B)C.

∇ is the vector derivative (∂/∂x, ∂/∂y, ∂/∂z). It acts on a scalar field ψ to
produce gradψ , a vector field:

∇ψ = (∂ψ/∂x, ∂ψ/∂y, ∂ψ/∂z).

It acts on a vector field a vector A to produce divA, a scalar field:

∇ · A = ∂Ax/∂x + ∂Ay/∂y + ∂Az/∂z,
∇ · r = 3.

It acts on a vector field A to produce curlA, a vector field given by the
determinant

∇ × A =
∣∣∣∣∣∣

ex ey ez
∂/∂x ∂/∂y ∂/∂z

Ax Ay Az

∣∣∣∣∣∣ :

∇ × r = 0,
∇ · ∇ψ = is a scalar: ∇2ψ = ∂2ψ/∂x2 + ∂2ψ/∂y2 + ∂2ψ/∂z2.

In polar coordinates,

∇ψ =
(
∂ψ

∂r
,

1

r

∂ψ

∂θ
,

1

r sin θ

∂ψ

∂φ

)
,

∇ · A = 1

r2

∂

∂r
(r2Ax) + 1

r sin θ

∂

∂θ
(sin θAy) + 1

r sin θ

∂

∂φ
Az,

∇2ψ = 1

r2 sin θ

[
∂

∂r
r2 sin θ

∂ψ

∂r
+ ∂

∂θ
sin θ

∂ψ

∂θ
+ ∂

∂φ

1

sin θ

∂ψ

∂φ

]
.

∇ × ∇ψ = 0,
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∇ · (∇ × A) = 0,
∇ × (∇ × A) = ∇(∇ · A) − ∇2A,
∇(A · B) = (B · ∇)A + (A · ∇)B + B × (∇ × A) + A × (∇ × B),
∇ · (A × B) = B · (∇ × A) − A · (∇ × B),
[A × (∇ × B)]j =∑i[Ai∇jBi − Ai∇iBj ] =∑i Ai∇jBi − (A · ∇)Bj ,
∇ · (ψA) = A · ∇ψ + ψ∇ · A,
∇ × (ψA) = ∇ψ × A + ψ∇ × A,∫
V

∇ · Adr3 = ∫
S

A · endr2 (divergence theorem),∫
V

∇ψdr3 = ∫
S

ψendr2,∫
V

∇ × Adr3 = ∫
S

en × Adr2,∫
S

(∇ × A) · endr2 = ∮ A · d� (Stokes’ theorem),∫
S

en × ∇ψdr2 = ∮ ψd�.

Useful trigonometric relations are:

sin2 θ + cos2 θ = 1;
sin 2θ = 2 sin θ cos θ ;
cos 2θ = 2 cos2 θ−1 = cos2 θ − sin2 θ ;
tan 2θ = 2/(cot θ − tan θ );
sin(A+ B) = sin θ cosφ + cos θ sinφ;
cos(A+ B) = cos θ cosφ − sin θ sinφ;
eiθ = cos θ + i sin θ ;
sin θ = (eiθ−e−iθ )/2i;
cos θ = (eiθ+e−iθ )/2;
sinh x = (ex−e−x)/2;
cosh x = (ex+e−x)/2.

Appendix D Demagnetizing factors for ellipsoids
of revolution

α N α N α N α N

0 1.000 0.20 0.749 1.40 0.249 7.00 0.035
0.01 0.985 0.25 0.703 1.50 0.232 8.00 0.029
0.02 0.968 0.30 0.661 1.60 0.219 9.00 0.024
0.03 0.953 0.40 0.588 1.70 0.207 10.0 0.020
0.04 0.940 0.50 0.526 1.80 0.194 15.0 0.010
0.05 0.925 0.60 0.476 2.00 0.173 20.0 0.0069

(cont.)
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α N α N α N α N

0.06 0.912 0.70 0.431 2.50 0.135 30.0 0.0034
0.07 0.899 0.80 0.394 3.00 0.109 40.0 0.0021
0.08 0.886 0.90 0.361 3.50 0.090 50.0 0.0014
0.09 0.873 1.00 0.333 4.00 0.076 70.0 0.0008
0.10 0.861 1.10 0.315 4.50 0.064 100 0.0004
0.125 0.829 1.20 0.286 5.00 0.056 200 0.0001
0.167 0.783 1.30 0.266 6.00 0.043 ∞ 0.0000

Appendix E Field, magnetization
and susceptibility

The conversion tables are printed inside the back cover. B–H conversions are
valid in free space only.

Examples

An H -field of 1000 A m−1 is equivalent to 1000 × 4π 10−3 = 12.5 Oe.
A material of molecular weight M = 449 with a moment of 8.6 µB has a

specific magnetization σ = 8.6× (5585/449) = 107 A m2 kg−1.
A magnetization M = 1.76 × 106 A m−1 in a material of density 7870 kg

m−3 is equivalent to a specific magnetization σ = 1.76 × 106/7870 =
224 A m2 kg−1 or 224 emu g−1.

A dimensionless SI susceptibility χ = 2.5 × 10−6 in a material of den-
sity 4970 kg m−3 is equivalent to a dimensionless cgs susceptibility
of 2.5 × 10−6 ÷ 4π = 2.0 × 10−7 and a cgs mass susceptibility χm =
2.5 × 10−6 × 103 ÷ (4π × 4970) = 4.0 × 10−8 emu g−1.

Susceptibility of representative materials

Susceptibility Units H2O Al CuSO4·5H2O Gd2(SO4)3·8H2O

χ −9.0 × 10−6 2.1 × 10−5 1.41 × 10−4 2.6 × 10−3

χm m3 kg−1 −9.0 × 10−9 7.9 × 10−9 6.2 × 10−8 8.7 × 10−7

χmol m3 mol−1 −1.62 × 10−10 2.1 × 10−10 1.57 × 10−8 6.5 × 10−7

χ 0 J T−2 kg−1 −7.2 × 10−3 6.3 × 10−3 4.9 × 10−2 6.9 × 10−1

κ −7.2 × 10−7 1.70 × 10−6 9.1 × 10−6 2.4 × 10−4

χm emu g−1 −7.2 × 10−7 6.3 × 10−7 4.0 × 10−6 7.0 × 10−5

χmol emu mol−1 −1.29 × 10−5 1.70 × 10−5 1.00 × 10−3 5.2 × 10−2
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Appendix F Quantum mechanical operators

To every observable in classical mechanics, there corresponds a linear, hermi-
tian operator in quantum mechanics. An operator Â is hermitian if Â = Â†,
where A†

ij = A∗
ji :

position r;
canonical momentum −i�∇;
kinetic momentum −i�∇ − qA;
angular momentum −i�r × ∇;
angular momentum (z-component) −i�∂/∂φ;
energy (1/2m)(i�∇ + qA)2 + qϕe.

The angular momentum commutation relations are:
[L1, L2] = −[L2, L1]
[L1 + L2, L3] = [L1, L3] + [L2, L3]
[L2

1 + L2] = L1[L1, L2] + [L1, L2]L1

Appendix G Reduced magnetization of ferromagnets

Reduced magnetization deduced from molecular field theory

T /TC
1
2 1 3

2 2 5
2

7
2 ∞

0 1.00000 1.00000 1.00000 1.00000 1.000000 1.00000 1.00000
0.1 1.00000 1.00000 1.00000 0.99998 0.99992 0.99964 0.96548
0.2 0.99991 0.99944 0.99833 0.99655 0.99428 0.98902 0.92817
0.3 0.99741 0.99297 0.98688 0.98019 0.97359 0.96179 0.88730
0.4 0.98562 0.97337 0.96043 0.94853 0.93815 0.92166 0.84157
0.5 0.95750 0.92657 0.01752 0.90169 0.88881 0.86006 0.78889
0.6 0.90733 0.87923 0.85599 0.83791 0.82383 0.80375 0.72588
0.7 0.82863 0.79624 0.77122 0.75262 0.73856 0.71904 0.64739
0.8 0.71041 0.67766 0.65365 0.63637 0.62358 0.60616 0.54455
0.85 0.62950 059852 0.57629 0.56051 0.54892 0.53325 0.47864
0.9 0.52543 0.49806 0.47880 0.46528 0.45543 0.44218 0.39660
0.95 0.37949 0.35871 0.34435 0.33436 0.32713 0.31747 0.28455
0.99 0.16971 0.16042 0.15400 0.14953 0.14631 0.14196 0.17198
1.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
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Appendix H Crystal field and anisotropy

The general expression for the anisotropy of an ion in terms of the 2n-pole
moments is:
εa = 1

2Q2A
0
2(3 cos2 θ − 1) + 1

2Q2A
2
2 sin2 θ cos 2φ + 1

8Q4A
0
4(35 cos4 θ

− 30 cos2 θ + 3) + 1
8Q4A

2
4(7 cos2 θ − 1) sin2 θ cos 2φ

+ 1
8Q4A

4
4(sin4 θ cos 4φ) + 1

16Q6A
0
6(231 cos6 θ − 315 cos4 θ + 105 cos2 θ

− 5) + 1
16Q6A

2
6(33 cos4 θ − 18 cos2 θ + 1) sin2 θ cos 2φ+

1
16Q6A

4
6(11 cos2 θ − 1) sin4 θ cos 4φ + 1

16Q6A
6
6(sin6 θ cos 4φ).

The diagonal crystal-field parameters which describe the lattice environment
of an ion are:

A0
2 = − e2

16πε0

∫
(3 cos2!− 1)

R3
ρ(R)d3R,

A0
4 = − 9e2

1024π2ε0

∫
(35 cos4 θ − 30 cos2 θ + 3)

R5
ρ(R)d3R,

A0
6 = − 13e2

4096π2ε0

∫
(231 cos6 θ − 315 cos4 θ + 105 cos2 θ − 5)

R7
ρ(R)d3R.

The Stevens operators are:

Ô0
2 = [3 Ĵ

2
z − J (J + 1)],

Ô2c
2 = 1

2 ( Ĵ
2
+ + Ĵ

2
−),

Ô0
4 = [35 Ĵ

4
z − 30J (J + 1) Ĵ

2
z + 25 Ĵ

2
z − 6J (J + 1) + 3 Ĵ

2
(J + 1)2],

Ô2
4 = 1

4 {[7 Ĵ
2
z − J (J + 1) − 5]( Ĵ

2
+ + Ĵ

2
−) + ( Ĵ

2
+ + Ĵ

2
−)

[7 Ĵ
2
z − J (J + 1) − 5]},

Ô3
4 = 1

4 [ Ĵz( Ĵ
3
+ + Ĵ

3
−) + ( Ĵ

3
+ + Ĵ

3
−) Ĵ z],

Ô4c
4 = 1

2 ( Ĵ
4
+ + Ĵ

4
−),

Ô0
6 = [231 Ĵ

6
z − 315J (J + 1) Ĵ

4
z + 735 Ĵ

4
z + 105J 2(J + 1)2 Ĵ

2
z

− 525J (J + 1) Ĵ
2
z + 294 Ĵ

2
z − 5J 3(J + 1)3 + 40J 2(J + 1)2

− 60J (J + 1)],

Ô2
6 = 1

4 {[33 Ĵ
4
z − 18 Ĵ

2
zJ (J + 1) − 123 Ĵ

2
z + J 2(J + 1)2

+ 10J (J + 1) + 102]( Ĵ
2
+ + Ĵ

2
−) + ( Ĵ

2
+ + Ĵ

2
−)[33 Ĵ

4
z − 18 Ĵ

2
z

J (J + 1) − 123 Ĵ
2
z + J 2(J + 1)2 + 10J (J + 1) + 102]},

Ô3
6 = 1

4 [(11 Ĵ
3
z − 3 Ĵ zJ (J + 1) − 59 Ĵz)( Ĵ

3
+ + Ĵ

3
−) + ( Ĵ

3
+ + Ĵ

3
−)(11 Ĵ

3
z

− 3 ĴzJ (J + 1) − 59 Ĵ z)],

Ô4
6 = 1

4 [(11 Ĵ
2
z − J (J + 1) − 38)( Ĵ

4
+ + Ĵ

4
−) + ( Ĵ

4
+ + Ĵ

4
−)(11 Ĵ

2
z

− J (J + 1) − 38)],

Ô6c
6 = 1

2 [( Ĵ
c

+ + Ĵ
6
−)].
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Some expressions for the crystal field in sites with different symmetry are:

Cubic: B0
4

[
Ô

0
4 + 5Ô

4c
4

]
+ B0

6

[
Ô

0
6 − 21B4c

6 Ô
4c
6

]
Fm3m

Tetragonal: B0
2 Ô

0
2 + B0

4 Ô
0
4 + B4c

4 Ô
4c
4 + B0

6 Ô
0
6 + B4c

6 Ô
4c
6

4/mmm

Trigonal: B0
2 Ô

0
2 + B0

4 Ô
0
4 + B3

4 Ô
3
4 + B0

6 Ô
0
6 + B4

6 Ô
4
6 + B6

6 Ô
6
6

3m

Hexagonal: B0
2 Ô

0
2 + B0

4 Ô
0
4 + B0

6 Ô
0
6 + B6

6 Ô
6
6

6/mmm, 6m2

Orthorhombic: B0
2 Ô

0
2 + B2s

2 Ô
2s
2 + B0

4 Ô
0
4 + B2s

4 Ô
2s
4 + B4c

4 Ô
4c
4 + B0

6 Ô
0
6

+B2s
6 Ô

2s
6

mm B4c
6 Ô

4c
6 + B6s

6 Ô
6s
6

Appendix I Magnetic point groups

The 31 magnetic point groups in bold type are compatible with a permanent
magnetic moment, with the components specified:

triclinic (mx,my,mz) 1, 1̄, 1̄′

monoclinic (mx, 0,mz) or (0,my, 0) 2, 2′, m, m′, 2/m, 2′/m′, 2/m′, 2′/m
orthorhombic 222, 2′2′2, mm2, m′m′2, m′m2′, mmm, m′m′m,
m′m′m′, m′mm

trigonal (0, 0,mz) 3, 3̄, 3̄′, 32, 32′, 3m, 3m′, 3̄m. 3̄m
′
, 3̄′m′, 3̄′m

tetragonal (0, 0,mz) 4, 4′, 4̄, 4̄′, 4/m, 4′/m, 4/m′, 4′/m′,
422, 4′22, 42′2′, 4mm, 4′mm′, 4m′m′, 4̄2m, 4̄′2m′, 4̄′2′m, 4̄2

′
m′,

4/mmm, 4′/mmm′, 4/mm′m′, 4/m′mm, 4′/m′mm′

hexagonal (0, 0,mz) 6, 6′, 6̄, 6̄′, 6/m, 6′/m′, 6/m′, 6′/m,
622, 6′22′, 62′2′, 6mm, 6′mm′, 6m′m′, 6̄m2, 6̄m′2, 6̄m2′, 6̄m

′
2′,

6/mmm, 6′/m′mm′, 6/mm′m′, 6/m′m′m′, 6/m′mm, 6′/mmm′

cubic 23, m3, m′3, 432, 4′32, 4̄3m, 4̄′3m′ m3m, m3m′, m′3m′, m′3m.



Formula index

Ag 146, 282, 284, 379, 547
Al 134, 146, 379, 386, 448, 499, 515
Alq3 516
AlOx 287, 288, 289, 290
Al2O3 289, 293
Am 379
AmFe2 405
AmN 433
AmO2 433
AuFe 218, 432
AuMn 432

Ba2FeMoO6 416
BaFe12O19 174, 201, 242, 265, 376,

377, 426, 462, 427, 536, 537
BaM2Fe16O27 427
Ba2M2Fe12O22 427
Ba2M2Fe24O46 427
Ba3M2Fe24O41 427
BiFeO3 420
Bk 379
BkO2 433

C13H16O4N3 437
Ca 134, 282, 414, 436
Ca3Al2 (OH)12 425
CaC2 436
CaCu5 399, 400
CaF2 433
CaFe2FeO(Si4O7)(OH) 567
Ca2FeMoO6 416
Ca2FeReO6 416
CaFe Si2O6 567
Ca3Fe2(SiO4)3 567
CaRuO3 413
Ca3Si3Al2O12 425
CdI2 421
Ce 134, 379, 379, 399, 402, 403, 405
Cf 379
Cl 428
Cm 379
CmN 433
Co 146, 148, 149, 150, 152, 154, 170,

174, 183, 190, 191, 213, 242, 265,
175, 282, 284, 284, 288, 289, 293,
303, 314, 347, 375, 377, 379, 385,

386, 390, 399, 400, 402, 403, 406,
499, 415, 499, 502, 504, 510, 511,
515, 516, 537, 538, 548, 566

Co80B20 390
CoCl2 544, 545
Co90Cr10 194
Co67Cr20Pt11B6 391
CoF2 428
CoFe 282, 284, 289, 450, 506, 515,

525, 425, 547, 558
CoFeB 521, 525
Co50Fe50 504
CoFe2O4 174, 265, 291, 334, 423
Co2MnGe 394
Co2MnGa 394
Co2MnSi 378, 394, 394, 504, 515
Co2MnSn 394
Co84Nb10B6 299
CoO 206, 175, 334, 417
CoPd 191, 271
Co80Pd20 543
CoPt 191, 242, 265, 272, 375, 377,

378, 391, 392, 392, 536, 548
Co3Pt 392
CoS2 431
Cr 152, 194, 196, 282, 283, 283, 284,

345, 347, 375, 379, 379, 386, 391,
397, 412, 536, 537, 538, 566

CrN 207
CrO2 150, 154, 182, 242, 265, 293,

376, 377, 412, 412, 502, 502, 504,
515, 521, 536

Cr2O3 419, 420
CsO2 436
CuCr2S4 423
CuCr2Se4 423
CuGeO3 228
CuxNi1−x 150, 151
CuMn 218, 432
Cu99 Mn1 376
Cu2 MnIn 394

Dy 134, 375, 379, 398, 399, 402, 403,
405, 471

DyCl3 552
DyFe2 405

Er 379, 399, 402, 403, 405
ErCl3 545
Eu 134, 208, 376, 379, 399, 403, 410,

411
EuO 291, 410, 410, 411, 434
EuS 291, 411
EuSe 411
EuxSr1−xS 432
EuTe 411

F 428
Fe 145, 148, 149, 150, 152, 153, 154,

170, 174, 183, 190, 191, 213, 242,
265, 282, 283, 284, 288, 289, 301,
314, 318, 347, 375, 377, 379, 384,
385, 386, 401, 402, 404, 407, 408,
409, 448, 450, 415, 416, 418,
421–426, 430, 499, 502, 504, 515,
547, 548, 566, 567, 574

Fe3Al 378
Fe3Al2(SiO4)3 567
Fe80 B20 183, 211, 212, 389, 390
Fe3C 408
FeCO3 567
FeCo 191, 280, 293, 378, 386, 387,

536
Fe65Co35 375, 385, 386, 453
Fe70Co30 302
Fe100−xCox 196, 213
FexCo1−x 386
(Fe80−xCox)B20 196, 213
FeCoNi 536
Fe50Co30Ni20 194
(FeCoNi)80 B20 390
Fe55Co13Ni18Al10Cu4 386
Fe49Co24Ni15Al8Cu3Nb1 386
Fe31Co38Ni14Al7Cu3Ti7 386
Fe4.3Co68.2 Si12.5 189
Fe5Co70Si15B10 390
Fe36 Co52 V12 386
Fe49Co49V2 450
Fe73.5Cu1Nb3 Si15.5B7 301
Fe73.5Cu1Nb3 Si13.5B9 390, 450
FeF2 428
FeF3 211, 212, 376, 429
(FexMg1−x)2SiO4 566
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FeMn 196, 278, 396
FeMo 416
Fe4N 375, 407
Fe97N3 408
Fe90N10 408
Fe16N2 408
Fe4N 408
Fe3N 408
Fe100−xNx 408
FeNi 387
FeNi3 387
Fe1−xNix 375, 388, 389, 499,

566
Fe60Ni27Al13 386
Fe90Ni10B20 242, 265, 375
Fe40Ni38Mo4B18 450
Fe40Ni40P14B6 389
FeO 206, 417
Fe2O3 139, 196, 278, 293, 321, 334,

376, 418, 419, 420, 421, 423, 424,
530, 536, 537, 567

Fe3O4 201, 242, 265, 303, 376, 377,
422, 423, 567

FeO(OH) 420, 421, 567
Fe1−x(OH)3 421
Fe(OH)2 421
FePd 272, 392
FePt 191, 239, 378, 392
Fe3Pt 378
Fe3PtN 408
FeS 431, 566, 567
FeS2 431, 566
Fe3S4 423, 431, 567
Fe7S8 376, 430, 431, 567
FeSe1−x 431
FeSe2 431
Fe3Se4 431
Fe7Se8 431
FeSi 300
Fe3Si 378
Fe94Si6 385, 386
Fe85Si10Al5 450
Fe74Si16 Al10 385
FeSiO3 567
Fe2SiO4 567
Fe7Si8O22(OH)2 567
Fe3Si2O5(OH)4 567
Fe3Si4O10(OH)2 567
FeTe2 431
FeTiO3 420, 567
Fe2.4Ti0.6O4 567
Fe1.4Ti0.6O3 567
FeV 152

GaAs 337, 434, 508, 514, 516, 529,
541

(GaMn)As 434
(Ga92Mn8)As 376
GaN:Mn 434
Ga2 O3 312
Gd 134, 154, 183, 314, 379, 399, 402,

403, 405, 406
Gd80 Au20 211
Gd100−xCox 406
GdCo2 274, 303
GdCo5 201, 400
Gd1−xCox 407
Gd2Co17 404
Gd25 Co75 217, 375, 406
GdFeO3 415
GdxLa80−x Au20 220
GdN 411

Hf 379
Ho 379, 398, 399, 402, 403, 405

IrMn 525
IrMn3 196, 278, 375, 395, 396

KO2 436
K2NiF4 228, 428

La 152, 379, 402, 403
La80 Au20 432
(La70Ca30 )MnO3 143, 187, 188, 376,

415, 502, 521
LaF3 428
LaFeO3 420
LaMnO3 415
La70Sr30MnO3 187, 414, 415
LaTiO3 415
Li 134
LiFeO 423
LiHoF4 229
Lu 379, 402, 403

MgAl2O4 422
MgCu2 404
MgFe2O4 423, 567
MgO 287, 288, 289, 290, 291, 521,

523, 524, 525, 539
Mn 196, 347, 375, 379, 392, 393, 395,

398, 428, 432, 434, 566
MnAl 392
MnAs 393
MnBi 375, 392, 393, 395
MnCo3 139, 567
MnF2 139, 196, 375, 427, 428
MnFe2O4 423, 567
(MnxGa1−x)As 434
Mn4 N 408
MnO 206, 417

Mn2O3 420
MnS2 206, 431
MnSb 393
MnSi 398
MnTe2 206
Mn2VAl 394
MnZn 451, 452
Mo 134, 145, 379, 388, 409, 416

N2 338
NbTi 340
Nd 134, 336, 379, 399401, 402, 403,

405, 409, 410, 471, 566
NdFeB 470, 473, 486, 492, 579
Nd2Fe14B 242, 265, 302, 318, 332,

333, 375, 377, 401, 471, 473, 532,
579

Nd14Fe80B6 300
Ni 148, 149, 150, 151, 152, 153, 154,

170, 174, 181, 183, 190, 191, 194,
196, 265, 269, 272, 314, 347, 377,
379, 386, 393, 448, 417, 499, 502,
504, 566, 574

NiAl 294
NiAs 393, 431
Ni80B20 390
NiF2 428
NiFe 242, 265, 284, 300, 449, 506,

515, 525, 547
Ni36Fe64 450
Ni50Fe50 450, 453
Ni78Fe22 548
Ni80Fe20 242, 282, 449, 504
Ni80Fe20 377, 387
Ni77Fe16.5Cu5Cr1.5 450
Ni3Fe 378
Ni3FeN 408
NiFe2O4 174, 291, 423, 567
NiMn 278, 396
Ni3Mn 392
Ni2MnGa 394
NiMnSb 375, 378, 393, 394, 405, 504
Ni2MnSn 394
NiO 206, 278, 375, 417
NiS2 431
NiZn 451, 452
Np 379
NpFe2 405
NpO2 433

O2 338, 376, 381, 435, 436

Pa 379
Pd 134, 146, 379, 547
Pd2M Sb 394
Pd52Pt18Mn50 278, 396
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Pm 379
Pr 379, 399, 402, 403, 405, 409, 410
Pt3Co 378
PtMn 178, 396
PtMnSb 191, 394
Pu 379
PuFe2 405
PuN 433
PuO2 433

RbO2 436
RCo2 405
R2Co17 400
R2Co14B 402
RFe2 403, 405
RFe3 403
R2Fe23 403
R2Fe17 403
RFe12−xXx 409
R3(Fe, X)29 409
R2Fe14B 402
RFeO3 415
R3Fe5O12 425
RNi2 143, 405
Rb2CoF4 428
RhMn3 178, 396
Ru 280, 282, 379, 398, 413, 525
RuO2 413

SiFe 449
Sm 379, 399, 400402, 403, 405, 409,

410, 566
SmCo 470
SmCo4B 400
SmCo5 242, 265, 346, 375, 377, 399,

400, 471, 473, 541, 548
Sm2Co17 340, 377, 404, 471, 473, 490
Sm2Fe17 404, 409

Sm2Fe17C3 409
Sm2Fe17Hx 409
Sm2Fe17N3 265, 409
Sm (FeCoCuZr)7−8 400
Sm2Fe17N3 265, 375, 377, 408
Sm2Fe17N3Fe 302, 303
SmxFe(100−x)N3x 302
Sr 413, 414, 416
Sr2CrReO6 416
SrCu2O3 228
Srn−1Cun+1O2n 228
SrFe12O19 471, 472, 473, 427
Sr2FeMoO6 375, 415, 416‘
Sr2FeReO6 416
Sr2FeWO6 416
SrRuO3 182, 375, 413
Sr4Ru3O10 413

Tb 379, 471, 399, 402, 403, 404, 405
(Tb30Dy70)Fe2 405
TbFe2 201, 404, 405
Tb3Fe5O12 190
Tb25Co75 278
ThMn12 409
Th2Ni17 403
Th2Zn17 403, 409
Ti 134, 152, 347, 379, 409, 410, 422
TiFe 420
TiFe2O4 567
TiO2 412, 413, 428
Ti2O3 420
TinO2n−1 413
TiO2Co 434
Tl2Mn2O7 414, 502
Tm 134, 379, 399, 402, 403, 405

UAs 433
UFe2 405

UN 433
UO2 433
UP 433
US 376, 433
USb 433
USe 433
Ute 433

V 152, 183, 347, 379, 386, 409
VO2 413
V2O3 420

W 379

Y 134, 152, 379, 402, 403, 424,
425

Yb 154, 208, 379, 402, 403
YCo5 169, 174, 400
YCo2 274, 303, 405
Y2Co17 375, 402, 404
YFe2 152, 405
Y2Fe17 404, 409
Y2Fe17C3 409
Y2Fe17Hx 409
Y2Fe17N3 409
Y1−xFe 194
Y2Fe5O12 377
Y3Fe5O12 190, 201, 424
YMnO3 415
YTiO3 415

Zn 134, 146, 379, 547
ZnFe2O4 423
ZnO:Co 434
ZnS 434
ZnZr2 381
Zr 379
ZrZn2 150, 405



Index

3d elements, 378
3d ions, 115t
4f elements, see rare-earths
4f ions, 114t
4f –3d alloys, 154
5f band, 182
5f elements, see actinides

AC-core, 458f
actinides, 182, 295, 405t, 433
active recoil, 469
actuators, 486

moving-iron, 487
moving-magnet, 487
rotary, 487
voice-coil, see voice-coil motors, 532

adiabatic demagnetization, 112
adiabatic process, 113
advection, 571
advection–diffusion equation, 553
AFC bilayer medium, 537
airgap, 467, 481
akaganénite, 421
aliasing effect, 280
almandine, 567
alnico magnets, 293, 386, 471, 473
amakinite, 421
amorphous ferrimagnet, 217
amorphous ferromagnetic wire, 189
amorphous magnets, 209, 210f, 210,

211f, 211, 212f, 212, 213f, 213,
214f, 214, 215f, 215, 216f, 216,
217f, 217, 218f

Ampère’s law, 30
Ampère, André-Marie, 3
ampere, definition, 30
Anderson criterion, 145
Anderson model, 144
andradite, 567
Andreev reflection, 503
angular momentum, 63

operator, 67
orbital, 64
quantum mechanics of, 67
quenched, 115
spin, 65

anisotropy, 10, 168–174, 599
circumferential, 189
cobalt, 169
cubic, 170
energy, 10
exchange, 275
exchange-related, 236
hexagonal, 170
induced, 168, 172
iron, 169
local single-ion, 212
magnetocrystalline, 168, 169, 197,

232, 297
nickel, 169
perpendicular, 252
random, 300
shape, 168, 197, 270, 297
single-ion, 122, 172, 173
strain, 272
stress-induced, 172
surface, 236, 271, 295, 297
temperature-dependence, 173
tetragonal, 170
two-ion, 172, 173

anisotropy averaging, 300
anisotropy field, 171
antenna, 457
antibody, 558
antiferromagnet, 11
antiferromagnetic domains, 197
antiferromagnetic interaction, 137
antiferromagnetic minerals, 567t
antiferromagnetic order

body-centred cubic lattice, 205
face-centred cubic, 205
simple cubic lattice, 204

antiferromagnetic resonance, 305, 315
antiferromagnetism, 195, 196f, 196,

196t, 197f, 197, 198f, 198, 199f,
199, 200, 201f, 201t, 202f, 202,
203f, 203, 204f, 204, 205f, 205,
206f, 206, 207f, 207, 208f, 208,
209f, 209, 210f, 210, 211f, 211,
212f, 212, 213f, 213, 214f, 214,
215f, 215, 216f, 216, 217f, 217,
218f, 218, 219f, 219, 220f, 220,

221f, 221, 222, 222t, 223f, 223, 224,
224t, 225, 225t, 226f, 226, 227,
227t, 228f, 228, 229f, 229, 230

applications
dynamic, with active recoil, 485–491
dynamic, with mechanical recoil,

481–485
high-frequency, 457–462
low-frequency, 454–457
medical, 561
microwave, 459
static, 453, 473–481

applied field, 38, 55
approach to saturation, 258, 260
Arago, Dominique-François, 3
archaeometry, 572
Arrott–Belov plots, 132
artificial antiferromagnet, 199, 287
artificial ferrimagnet, 281
asperomagnetism, 216
asperomagnets, 220
atomic physics, 97
Aurora Borealis, 575

band structure, Fe, 148f
Barkhausen jump, 250, 257
Barkhausen noise, 538
bearings, 483
Bernal structure, 211, 389
Bernal, J. D., 211f
Bernouilli, Daniel, 2
Berry phase, 73
Biot–Savart law, 26, 340
bitter magnets, 340
Bloch equations, 324
Bloch line, 243
Bloch T 3/2 power law, 166
Bloch wall, 235, 240, 317

width, 267
Bloch’s theorem, 81
Bloch–Bloembergen equations, 326
blocking temperature, 278, 296
blood oxygen-level dependent imaging,

564
Bohr magneton, 5, 64
Bohr model, 64
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Bohr radius, 65, 99
Bohr–van Leeuwen theorem, 76
Boltzmann statistics, 94
bonding

covalent, 93
ionic, 93
metallic, 93

Boolean logic, 526
Born–Oppenheimer approximation,

158f, 182
boundary conditions, 47
Brillouin function, 109, 196, 202
Brillouin light scattering, 349
Brillouin theory, 107
Brillouin, Léon, 108
Brown’s micromagnetic equations, 239
Brown’s paradox, 245
Brown’s theorem, 245, 247
Brown, William Fuller, 239f
Brownian motion, 545
bulk-material growth, 334

C and S configurations, 295
C and S states, 251
canonical momentum

operator, 88
canted antiferromagnet, 418
carbon atom, ground state, 103
carbon nanotubes, 516
cellular biology, 556
chains, magnetic, 227
characteristic length scales, 265
charge, magnetic, 34
charge avoidance principle, 238
charge transfer insulator, 380
chemical potential, 59, 82, 285, 505
chemical shift, 319
circular birefringence, 192
circular dichroism, 192
circulators, 460, 461
close-packed structures, 377
closure domains, 232
Co–Fe alloys, 450
coercivity, 9, 253

intrinsic, 41
mastery of, 9, 17

coherence radius, 255, 267, 293
coherent reversal process, 233
coherent rotation, 250
cold crucible, 553
commutation rules, 69
compensation point, 406
compensation-point writing, 540
complementary metal-oxide

semiconductor logic, 494
condon domains, 244

conductance quantum, 500
conductance ratio, 506
conduction

ballistic, 499, 515
diffusive, 497
hopping, 501, 515
tunneling, 501

conduction electron spin resonance, 311
conduction mechanisms, 497
conjugate field, 133, 223
constants and conversion factors, 600
constitutive relations, 43
continuous medium approximation, 25
contrast agents, 563
coordination

octahedral, 117
tetrahedral, 117

core losses, 17
corkscrew rule, 25
correlation length, 223
Cotton–Mouton effect, 193
Coulomb gauge, 88
Couloumb interaction, 156
couplings, 483
covalency, 119
critical behaviour, 167, 223
critical exponents

dynamic, 223
static, 133

cross-tie wall, 243
crystal abundance, magnetic elements,

566t
crystal field, 114, 114t, 115, 115t, 116,

116t, 117f, 117, 118f, 118, 119f,
119, 120f, 120, 120t, 121f, 121,
122f, 123f, 123–125, 125t, 126, 209,
310, 599

cubic parameter, 122
interaction, 115
notation, 118
stabilization energy, 120
uniaxial parameter, 124

crystal growth
Bridgeman method, 334
Czochralzki method, 334
flux method, 334

crystal-field excitations, 349
cubic antiferromagnets, 204
Curie constant, 11, 78ff, 131

molar, 126
numerical value, 109

Curie groups, 382
Curie law, 11, 78f, 108

classical form, 111
Curie temperature, 9, 130

nickel, 9

paramagnetic, 197, 216
Curie-point writing, 540
Curie–Weiss law, 11, 131, 150, 197
curling, 253
curling modes, 251, 254
cusp field, 478
cyclotron frequency, 74
cyclotron orbits, 74
cyclotron radiation, 74
cyclotron radius, 74, 267

damping, 315, 513
Datta–Das transistor, 529
DC servomotor, 488
de Broglie relation, 62
de Gennes factor, 126, 142
de Hass–van Alphen effect, 90
Debye–Waller factor, 329
delocalized-electron model, 95
 E effect, 174, 178
demagnetizing factor, 36, 169, 293

powder, 39
demagnetizing field, 35, 231, 313
demagnetizing tensor, 36
density functional theory, 159
density of states, 79
Descartes, Réné, 2
diamagnetism

Landau, 86
of common ions, 76
orbital, 75

differential scanning calorimetry, 369
differential thermal analysis, 369
diffraction methods, 344
digital recording, 530
dimensions, 592
dipolar coupling, 282
dipole selection rule, 307
Dirac notation, 69
direct exchange, 156
dispersion relation

electrons, 166
magnons, 166
phonons, 166
spin waves, 315

displacement
electrical, 42

dissipation, 530
DMS, 434
DNA, 560
domain measurements, 353, 355f, 355,

356f, 356, 357f, 357, 358f, 358,
359f, 360f

Bitter method, 354
magnetic force microscopy, 355

domain rotation, 244
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domain theory, 239, 240f, 240, 241f, 241,
242, 242t, 243f, 243, 244

domain walls, 240
71◦, 232
90◦, 232, 279
109◦, 232
180◦, 240
dynamics, 317
energy, 295
geometrically constrained, 294
mass, 257, 318
mobility, 257
motion, 244, 256, 261
transverse, 294
velocity, 256, 317, 318f
vortex, 294
width, 242, 294

domain-wall energy, 242
domain-wall equation, 242
domain-wall parameters, 242t
domain-wall pinning, 244, 245f, 245,

246f, 246, 247f, 247, 248f, 248,
249f, 249, 250f, 250, 251f, 251, 252,
253f, 253, 254f, 254, 255f, 255, 256,
257f, 257, 258f, 258, 259f, 259,
260f, 260, 261f, 261, 262

domains, 8, 231, 232f, 233f, 233–235,
236f, 236, 237, 238f, 238, 239f, 239,
240f, 240, 241f, 241, 242, 242t,
243f, 243, 244, 245f, 245, 246f,
247f, 247, 248f, 248, 249f, 249,
250f, 250, 251f, 251, 252, 253f, 253,
254f, 254, 255f, 255, 256, 257f, 257,
258f, 258, 259f, 259, 260f, 260,
261f, 261–263

antiferromagnetic, 278
bubble, 253
closure, 239
head-to-head, 294
maze, 273
stripe, 273

Doppler shift, 330
Döring mass, 318
double exchange, 187
dynamo

liquid-metal, 572
self-exciting, 571

Dzyaloshinski–Moriya interaction, 139

Earnshaw’s theorem, 484, 549
Earth’s crust, 565
Earth’s dynamo, 570
Earth’s magnetic field, 297, 555, 568

fluctuations, 575
reversal, 572
secular variation, 569, 572

easy direction, local, 213
economics, 16
effective Bohr magneton number, 109,

114
effective mass, 84
effective spin, 150
efficiency, 474
Einstein–de Hass effect, 66
elastic constants, 238
electric field gradient, 209
electric motors, 455
electrical conduction, 82
electrical steel, 385, 448
electrodeposition, 293, 547

magnetic field effects, 548
electromagnet, 4, 341, 453, 534
electromagnetic devices, 372

time dependence, 372
electromagnetic waves, 4
electron paramagnetic resonance, 305,

307, 308f, 308, 309f, 309, 310f, 310,
311f, 311, 312f

electron spin resonance, 305
electronic structure, 353
electronic structure calculations,

158
electrons

delocalized, 94
localized, 94

electrons in solids, 92–95, 95t
elemental abundance, 16
energy

anisotropy, 236
demagnetizing, 237
elastic, 177
exchange, 235
in an external field, 55
magnetostatic, 50, 51f, 51, 52f, 52, 53f,

53, 54f, 54–56, 57f, 57, 58f, 58, 59
magnetostriction, 237
micromagnetic, 234, 235, 236f, 236,

237, 238f, 238, 239f, 239
strain, 237
Zeeman, 106

energy product, 18, 54, 467, 470
limit, 19
units, 18f

entropy, magnetic, 121
EPR, absorption line, 308f
Euler equation, 241
European Framework Progammes,

570
Ewing, James, 7
exchange, 128–134, 134t, 135–146, 146t,

147f, 147, 148f, 148–150, 150t,
151–166, 166t, 167–183, 183t,

184–190, 190t, 191, 191t, 192, 193,
193t, 194

antisymmetric, 139
biquadratic, 140
direct, 140
double, 143
in insulators, 138
in metals, 140
indirect, 280
interlayer, 282t
RKKY, 142, 209

exchange averaging, 300
exchange bias, 274, 276f, 279

materials, 278t
exchange bias systems, 277
exchange constant, 137
exchange field, 510
exchange integral, 137
exchange interactions, 135–144
exchange length, 236, 265
exchange parameter, 135
exchange spring, 303
exchange stiffness, 235, 255, 273
exchange-correlation potential, 160
excitations, measurement, 368, 369f,

369, 370f
experimental methods, 333, 334f, 334,

335f, 335, 336, 337f, 337, 338, 339f,
339, 340, 341f, 341, 342f, 342, 342t,
343, 344f, 344, 345f, 345, 346f, 346,
347, 347t, 348f, 348, 349f, 349,
350f, 350, 351f, 352, 352t, 353f,
353, 354f, 355f, 355, 356f, 356,
357f, 357, 358f, 358, 359f, 360f,
360, 361, 362f, 362, 363f, 363, 364f,
364, 364t, 365f, 365, 366, 367f, 367,
368, 369f, 369, 370f, 370, 371f, 371,
372f, 372, 373

extended X-ray absorption fine structure,
350

fanout, 526
Faraday balance, 361
Faraday effect, 3, 189, 356, 460

longitudinal, 191f
polar, 191f
transverse, 191f

Faraday rotation, 462, 578
Faraday, Michael, 3, 189
fayalite, 567
Fermi energy, 79
Fermi surface, 79

Co, 149f
Fe, 149f
Ni, 149f

Fermi temperature, 79
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Fermi velocity, 79
Fermi wavevector, 79
Fermi–Dirac statistics, 79, 95
ferrihydrite, 421
ferrimagnet, 12
ferrimagnetic Néel temperature, 202
ferrimagnetism, 200, 201f, 201t, 202f,

202, 203f, 203
ferrite, 423t, 440

M, 426
microwave, 447
soft, 451
spinel, 423
W, 427
X, 427
Y, 427
Z, 427

ferrite magnets, 472t
ferrofluids, 545, 553
ferromagnetic 3d elements, 150t
ferromagnetic correlation length, 214
ferromagnetic interaction, 137
ferromagnetic liquids, 128
ferromagnetic metals, 135, 147
ferromagnetic resonance, 255, 305, 313,

314, 314t, 315f, 315, 316f, 316,
317f, 317, 318f, 318, 447

ferromagnetism, 128–134, 134t,
135–146, 146t, 147f, 147,
148f, 148–150, 150t, 151–166,
166t, 167–183, 183t, 184–190,
190t, 191, 191t, 192, 193, 193t,
194

ferrosilite, 567
ferroxyhite, 567
field-gradient force, 71, 543, 549, 557,

558
field-effect transistor, 494
field-reprogrammable gate array,

525
figure of merit, 444
fine structure, 310
fine-structure constant, 91
finmet, 390, 450, 453
fluctuation dissipation theorem, 222
flux concentration, 476
flux losses, 467
fluxgate, 343
force, magnetic, 59
Franklin, Benjamin, 3
free atoms, 92
free energy

Gibbs, 57
Helmholtz, 57, 113
Landau, 131

free-induction decay, 327

free-electron model, 78
frustration, 203f, 203, 204f, 204, 205f,

205, 206f, 206, 207f, 207, 208f, 208,
209f, 209

furnace
induction, 553
RF levitation, 554

g-factor, 65
effective, 308, 310
Landé, 104

gadolinium, 131
Galvani, Luigi, 3
garnet, 424
Gauss, 568
Gauss’s theorem, 29
generators, 490
geometric factor, 474
geothite, 567
giant magnetoimpedance sensor, 519
giant magnetostriction, 405
Gilbert damping, 316
Gilbert equation, 256, 316
Gilbert, William, 2, 542
glass, 211
glass former, 211
glass transition, 211
global plate tectonics, 573
goethite, 420
Gongliang, Zheng, 1
Goodenough–Kanamori rules, 139
Goss texture, 449
Goudsmit, Samuel, 5
Gouy balance, 543
grain-oriented Si steel, 449
graphene, 516
greenalite, 567
greigite, 423, 567
grunerite, 567
Guillaume, Charles, 175
gyromagnetic ratio, 64, 65, 306

Hadfield, Robert, 448
Hahn, Erwin, 327
Halbach cylinder, 32, 475
Haldane gap, 228
half-metals, 150, 154, 288, 412, 414, 416
half-Heusler alloys, 394t
half-select principle, 523
Hall angle, 187
Hall coefficient, 85
Hall effect, 84

anomalous, 187
planar, 185
quantum, 85
sensor, 343

Hamiltonian
crystal-field, 116
cubic crystal field, 124
Dirac, 91
free-electron, 78
Heisenberg, 138
hyperfine, 320
spin, 126
uniaxial crystal field, 124
Zeeman, 70, 71, 306

Handrich model, 213
hard-disc drive, 532, 539
hard magnets, applications, 464, 465,

465t, 466–468, 468t, 469–493
hardness parameter, 265
Harris–Plischke–Zuckermann model,

214
Hartree–Foch approximation, 101
Hartree–Foch method, 159
heat-assisted magnetic recording, 537
hedenbergite, 567
hedgehog, 229
Heisenberg exchange, 204
Heisenberg Hamiltonian, 5
Heisenberg model, 167, 221, 226

three-dimensional, 224
two-dimensional, 270

Heisenberg, Werner, 5
helimagnets, 207
Helmholtz coils, 32
hematite, 418, 567
Heusler alloys, 394
hexagonal ferrites, 469
hexathiophene, 516
Ho, Cheng, 1
holding magnets, 483
hopping integral, 156
horse power, 455
horseshoe magnet, 2
hot spots, 288
Hubbard model, 157
Hund’s rules, 103
hydrogenic atom, 97, 98f, 98, 99f, 99,

99t, 100f, 100, 100t, 101f
Hamiltonian, 97
Schrödinger equation, 98

hyperfine field, 311
hyperfine interaction, 310, 320, 351
hyperfine structure, 311
hypernik, 450
hypothermia, 560
hysteresigraph, 366
hysteresis, 7, 8f, 8, 9, 10f, 10–12, 231,

232f, 233f, 233–235, 236f, 236, 237,
238f, 238, 239f, 239, 240f, 240,
241f, 241, 242, 242t, 243f, 243, 244,
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hysteresis (cont.)
245f, 245, 246f, 247f, 247, 248f,
248, 249f, 249, 250f, 250, 251f, 251,
252, 253f, 253, 254f, 254, 255f, 255,
256, 257f, 257, 258f, 258, 259f, 259,
260f, 260, 261f, 261–263, 616t

loop, 9, 258
rotational, 276f

ilmenite, 567
ilvanite, 567
immunoassay, magnetic, 558
impurities in ferromagnets, 152
incommensurate magnetic order,

208
inductors, 454, 458
initial magnetization curve, 258
interfaces, 283
INTERMAGNET, 570
intermetallic compounds, 378, 398,

399f, 399, 400, 400t, 401, 402f,
402, 403f, 403, 404, 404t, 405,
405t, 406

intersistal compounds, 379, 407, 408,
408t, 409, 409t, 410

invar, 450
invar effect, 175f
ionic insulators, 379
ionic radii, 380t
ions in solids, 114, 114t, 115, 115t, 116,

116t, 117f, 117, 118f, 118, 119f,
119, 120f, 120, 120t, 121f, 121,
122f, 123f, 123–125, 125t, 126

iron, 567
iron group metals and alloys, 384–386,

386t, 387f, 387, 388f, 388, 389,
390f, 390–392, 392t, 393, 393t,
394, 394t, 395, 395t, 396, 396t,
397f, 397

Ising model, 221
isolators, 461
isomer shift, 331
ITER, 555, 570

j–j coupling scheme, 101
Jaccarino–Walker model, 145
jacobsite, 567
Jahn–Teller effect, 120
Joule effect, 176
Joule, James, 176
Jullière model, 288

Karlquist equations, 534
keeper layer, 536
Kelvin force, 59
Kennelly convention, 590

Kerr effect, 273, 356
longitudinal, 191f
MOKE, 190
polar, 191f
transverse, 191f

Kerr rotation, 190
Kerr, John, 190
Kittel equation, 313
klystron, 479
Knight shift, 322
Kohler’s rule, 183, 185, 186
Kohn–Sham method, 160
Kondo effect, 145, 298
Kondo scattering, 146
Kondo temperature, 146, 146t
Korringa relation, 323
Kramers doublets, 124
Kramer’s theorem, 124
Kramers–Kronig relations, 445
Kronecker delta, 117
Kua, Shen, 1

L–S coupling scheme, 101
labelling, magnetic, 558
ladder operators, 70, 307
ladders, magnetic, 228
lamination, 441, 442
Landau theory, 131
Landau, Lev, 8, 132
Landau–Lifschitz equation, 316
Landau–Lifschitz–Gilbert equation, 446,

512
Landauer formula, 500
Langevin function, 109, 111, 546
Langevin theory, 110
Langevin, Paul, 110
lanthanide contraction, 208
Larmor precession, 75, 255, 305, 307,

321
frequency, 75

Laves phase, 404
layer

antiferromagnetic, 277
ferromagnetic, 277
free, 280, 286
pinned, 276, 280, 286
ruthenium, 281
spacer, 280, 286

LBMO, 414
LCMO, 414
lepidocrocite, 421, 567
level crossings, 126
levitation, 542

diamagnetic, 551
frogs, 551
magnetic, 549–555

radio-frequency, 553
static, 549

Li ferrite, 440
Lifschitz, Evgenii, 8
ligand field, 118
lines of force., 27
lithography

electron-beam, 339
optical, 339

local density approximation, 160
local spin density approximation, 160,

353
localized-electron model, 94
lodestone, 1, 422
logic, 525
longitudinal recording media, 391
Lorentz

cavity field, 49
force, 4, 30, 74, 548

Lorentz microscopy
Foucalt, 358
Fresnel, 358

loss angle, 444
losses, 441–447

anomalous, 442
eddy-current, 442
high-frequency, 443
hysteresis, 442
low-frequency, 441

loudspeakers, 486
low-spin state, 121
lower critical dimension, 227t
LSMO, 414

Mössbauer effect, 329
Mössbauer spectroscopy, 329, 352
macrospin, 12, 295, 313
macrospin dynamics , 513
maghemite, 423, 567
Maglev, 484

Transrapid, 550
Magnelli phases, 413
magnesoferrite, 567
magnet, fridge, 478f
magnetars, 578
magnetic after-effect, 262
magnetic amplifiers, 456
magnetic annealing, 476
magnetic battery, 467
magnetic bearings, 402, 484
magnetic biochip, 560
magnetic charge, 232
magnetic circuits, 54, 466–468, 468t, 469
magnetic circular birefringence, 459
magnetic circular dichroism, 193, 350
magnetic dipole, field, 28
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magnetic field, 28, 29f, 29, 30f, 30, 31f,
31, 32f, 32–34, 35f, 35, 36, 37f, 38f,
38, 39f, 39, 40, 41f, 41, 42f, 596t,
597, 597t

B, 28
calculations, 43, 44f, 44–48, 49f, 49,

50
due to electric currents, 26
due to magnetic moments, 26
energy, 53
external, 38
generation, 340
H , 33
internal, 38
local, 48
measurement, 342
uniform, 31

magnetic field gradient, 478
magnetic field strength, 33
magnetic flux, 29

density, 29
quantum, 29
sources, 31

magnetic hinge, 485
magnetic image, 48f
magnetic imaging, 561
magnetic impurities, 144
magnetic induction, 29
magnetic ink, 530
magnetic linear dichroism, 193
magnetic liquids, 543–547, 547t
magnetic materials, 374, 375t, 376, 377f,

377, 377t, 378f, 378, 378t, 379f,
379, 379t, 380, 380t, 381f, 381, 382,
383f, 383, 384f, 384–386, 386t,
387f, 387, 388f, 388, 389, 390f,
390–392, 392t, 393, 393t, 394, 394t,
395, 395t, 396, 396t, 397f, 397, 398,
399f, 399, 400, 400t, 401, 402f, 402,
403f, 403, 404, 404t, 405, 405t,
406–408, 408t, 409, 409t, 410, 411,
411t, 412–416, 416t, 417, 417t, 418,
419f, 420, 420t, 421, 421t, 422, 423,
423t, 424, 425f, 425–427, 427t, 428,
428t, 429–431, 431t, 432, 433, 433t,
434f, 434, 435, 436f, 436t, 437, 438

hard, 8
soft, 8, 390, 448, 449, 449t, 450, 450t,

451, 452, 452t
magnetic media, 536
magnetic memory, 522, 523f, 523, 524f,

524, 525f, 525
magnetic microsystems (MEMS), 491
magnetic mirror, 48
magnetic models, 221, 222, 222t, 223f,

223, 224, 224t, 225, 225t, 226f, 226,
227, 227t, 228f, 228, 229f, 229, 230

magnetic moment, 24, 25f, 25, 26f, 26,
27f, 27, 28f, 28

current loop, 25
density, 25
nuclear, 24, 63
orbital, 24, 64, 88
spin, 24, 65, 91

magnetic multilayers, 274
magnetic nanoparticles, 545
magnetic periodic table, 12
magnetic point groups, 600
magnetic potential

scalar, 46
vector, 45

magnetic pressure, 554
magnetic quantum length, 267
magnetic racetrack memory, 525
magnetic random-access memory,

522, 523
magnetic recording, 494f, 494, 495f, 495,

496f, 496, 497f, 497, 498f, 498,
499f, 499, 499t, 500, 501f, 501, 502,
502t, 503f, 503, 504f, 504, 504t,
505f, 505, 506f, 506, 507f, 507,
508f, 508, 509f, 509, 510f, 510,
511f, 511, 512f, 512, 513f, 513,
514f, 514, 515f, 515, 516f, 516,
516t, 517, 517t, 518f, 518, 519f,
519, 520f, 520, 521, 522f, 522, 523f,
523, 524f, 524, 525f, 525, 526f, 526,
527f, 527, 528f, 528, 529f, 529,
530f, 530, 531f, 531, 531t, 532f,
532, 533f, 533, 534, 535f, 535, 536f,
536, 537f, 537, 538f, 538, 539f,
539–541

density, 19
density, units, 19f
history, 530
superparamagnetic limit, 19

magnetic resonance, 305f, 305, 306f,
306, 307f, 307, 308f, 308, 309f, 309,
310f, 310, 311f, 311, 312f, 313, 314,
314t, 315f, 315, 316f, 316, 317f,
317, 318f, 318, 319, 319t, 320, 320t,
321f, 321, 322f, 322, 322t, 323,
324f, 324, 325, 326f, 326, 327f, 327,
328f, 328, 329, 330f, 330, 330t, 331,
332

magnetic resonance imaging, 306, 561
functional (fMRI), 563

magnetic Reynolds number, 577
magnetic semiconductors, 434f
magnetic sense in animals, 556
magnetic sensors, 516f, 516, 517, 517t,

518f, 518, 519f, 519, 520f, 520, 521,
522f, 522

thin-film, 559

magnetic separation, 480
electromagnetic, 481
high-gradient, 480
open-gradient, 480

magnetic shielding, 453
active, 343
Faraday cage, 343
passive, 343

magnetic shift register, 524
magnetic steel, 449t
magnetic symmetry, 382
magnetic tunnel junctions, 287
magnetic tunnel transistor, 529
magnetic tweezers, 557, 558
magnetic valence model, 151
magnetic viscosity, 261
Magnetische Verein, 568
magnetism in biology and medicine,

555–558, 559f, 559–565
magnetism, history of, 7
magnetite, 1, 6, 201, 422, 567

biogenic, 422
magnetization, 25

creep, 262
local, 25
macroscopic, 25
spontaneous, 25
sublattice, 196, 202
switching, 306
time dependence, 260

magnetization dynamics, 445
magnetization measurements, 360, 361,

362f, 362, 363f, 363, 364f, 364,
364t, 365f, 365, 366, 367f, 367,
368

closed circuit, 366
flux method, 362
force method, 361
open circuit, 361

magnetization processes, 244
magnetization reversal, 244, 245f, 245,

246f, 247f, 247, 248f, 248, 249f,
249, 250f, 250, 251f, 251, 252, 253f,
253, 254f, 254, 255f, 255, 256, 257f,
257, 258f, 258, 259f, 259, 260f, 260,
261f, 261, 262

coherent, 255
incoherent, 255
small elements, 249
thin films, 249

magnetization rotation, 261
magnetizing force, 33
magneto-optic phenomena, 193t
magneto-optic recording, 539
magneto-optics, 189
magnetocaloric effect, 179

Ni, 181
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magnetocardiography, 561
magnetocrystalline anisotropy, 314

origin, 171
magnetoelectrochemistry, 547, 548, 548t,

549
magnetoencephalography, 561
magnetohydrodynamics, 570
magnetoimpedance, 188
magnetometer

alternating gradient force, 361
extraction, 362
fluxgate, 456
SQUID, 363
torque, 362
vibrating sample, 363

magnetoplumbite, 426
magnetoresistance, 84, 187, 284, 286

anisotropic, 181, 184, 283
classical, 284
colossal, 181
giant, 283f, 283
tunnelling, 288

magnetorheological fluids, 546
magnetostatic limit, 233
magnetostatic modes, 314
magnetostatics, 24, 25f, 25, 26f, 26, 27f,

27, 28f, 28, 29f, 29, 30f, 30, 31f, 31,
32f, 32–34, 35f, 35, 36, 37f, 38f, 38,
39f, 39, 40, 41f, 41, 42f, 42, 43, 44f,
44–50, 51f, 51, 52f, 52, 53f, 54f,
54–56, 57f, 57, 58f, 58, 59, 61, 596t,
597, 597t

magnetostriction, 174, 232
forced volume, 175
iron, 267
linear, 176
measurement, 368
spontaneous volume, 174
tensor, 177

magnetostriction averaging, 301
magnetotactic bacteria, 555
magnetotaxis, 555
magnetotransport, 181
magnetron, 479
magnon, 165
many-electron atom, 100, 101f, 102f,

102, 102t, 103, 104f, 104, 105, 105t,
106f, 106, 107f

Hamiltonian, 100
multiplets, 102
terms, 102

many-electron states, 121
market, 13f, 13, 14f, 14, 15f, 15, 16f,

16
applications, 15
material, 14
soft magnets, 448f

materials growth, 333, 334f, 334, 335f,
335, 336, 337f, 337, 338, 339f, 339,
340

matrix, hermitian, 68
matrix mechanics, 62
Matteuchi effect, 177
Matthiesen’s rule, 183
Maxwell relations, 58
Maxwell resistance, 499
Maxwell’s equations, 3, 41–43, 233, 553
Maxwell, James Clerk, 3
mean free path, 83, 498

spin-dependent, 499, 510
mechanical recoil, 469, 481
melt spinning, 334
memory, 286

DRAM, 522
ferrite core, 522
flash, 495
MRAM, 522
nonvolatile, 522
semiconductor, 522
SRAM, 522

Mermin–Wagner theorem, 167, 228,
270

Messmer, Anton, 3
metal–insulator–metal junctions, 287
metal–insulator–superconductor

junctions, 292
metallic glass, 334
metallic radii, 379f
metamagnetic transition, 12
metamagnetism, 199
meteorites, 388, 431
metglas 2605SC, 389
metglas 2628SC, 450
metglas 2826, 389
micromagnetism, 231, 232f, 233f,

233–235, 236f, 236, 237, 238f, 238,
239f, 239, 240f, 240, 241f, 241, 242,
242t, 243f, 243, 244, 245f, 245,
246f, 247f, 247, 248f, 248, 249f,
249, 250f, 250, 251f, 251, 252, 253f,
253, 254f, 254, 255f, 255, 256, 257f,
257, 258f, 258, 259f, 259, 260f, 260,
261f, 261–263

microwave ferrites, 459
microwave oven, 479
microwaves, X-band, 307
mild steel, 448, 449
minerals

magnetically-ordered, 567t
oxide, 566
rock-forming, 566
silicate, 566
sulphide, 566

minnesotaite, 567

mixed sensor, 521
mixed valence, 143, 187
Mn–Zn ferrite, 440, 452
mobility, 83
molecular field, 129, 196
molecular field theory, 213

antiferromagnetism, 196f, 196, 197f,
197, 198f, 198, 199f, 199, 200, 201f

ferromagnetism, 129
molecular-field approximation,

227
momentum, operator, 67
Monsma transistor, 529
Moore’s law, 495
Morin transition, 418
morphic effect, 178
Moses effect, 544
motional narrowing, 329
motors, 487

brush, 489f
brushless, 489f
DC, 488
induction, 455
Lavet, 490f
linear, 489
pancake, 489
spindle, 532
stepping, 490
synchronous, 489
variable-reluctance, 456

Mott criterion, 182
Mott insulator, 380
Mott’s two-current model, 183, 283, 497
Mott–Hubbard insulator, 182
multiferroics, 384
multipole field, 477

external, 478
mumetal, 388, 450
muon spin rotation, 331

Néel lines, 243
Néel point, 195
Néel temperature, 12, 197
Néel wall, 243
Néel, Louis, 6, 195
nanoparticles, 264, 295–298

acicular, 293
synthesis, 339

nanoscale magnetism, 264, 265f, 265,
266, 266t, 267–282, 282t, 283, 284,
284t, 285–290, 291f, 291–304

nanostructures
bulk, 299–303
hard/soft, 301
magnetic, 265f
single-phase, 299
two-phase, 301
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nanowires, 264, 293
natural remanence, 567
neomax, 401
network modifiers, 211
Neumann’s principle, 382
neurons, 560
neutron diffraction, 347
neutron scattering lengths, 347t
neutron scattering, inelastic, 348
neutron stars, 577
Ni–Fe alloys, 449
Ni–Zn ferrite, 440, 452
nickel, 388
nitromag, 408
noise, 516, 519

1/f , 520
electrical, 519
magnetic, 521
pink, 520
random telegraph, 521
shot, 520
white, 520

nonlocal transport, 504
nonuniform field, 464

generation, 477
notation, 580
nuclear magnetic resonance, 305, 318f,

318, 319, 319t, 320, 320t, 321f, 321,
322f, 322, 322t, 323, 324f, 324, 325,
326f, 326, 327f, 327, 328f, 328, 329,
352

nuclear magneton, 311
nuclear quadrupole resonance, 322
nucleation, 253

domain, 244, 245f, 245, 246f, 246,
247f, 247, 248f, 248, 249f, 249,
250f, 250, 251f, 251, 252, 253f, 253,
254f, 254, 255f, 255, 256, 257f, 257,
258f, 258, 259f, 259, 260f, 260,
261f, 261, 262

nucleation field, 253
nuclei, 320t
numerical methods

finite difference, 371
finite element, 371
static field, 370

octahedral site, 117f
Oersted fields, 509, 524
Oersted, Hans-Christian, 3, 189
Ohm’s law, 83
olivines, 566
one-dimensional Heisenberg chain

model, 228
one-dimensional Ising model, 227
one-network structures, 212

one-sided magnet, 478
operator, 67

angular momentum, 88
rotation, 73

orange-peel effect, 282
orbital, 99
orbital order, 207
order parameter, 133, 223

spin glass, 225
ordered superstructure, 378
Orgel diagrams, 121f
oriented magnet, 471
oxides

antiferromagnetic, 417, 417t, 418,
419f, 420, 420t, 421, 421t, 422, 423,
423t, 424, 425f, 425–427, 427t, 428,
428t, 429–431, 431t

ferromagnetic, 410, 411, 411t,
412–416, 416t

packing fraction, 211
pain relief, 560
paleomagnetism, 572
Paracelsus, 542
paramagnetic liquid tubes, 544
paramagnetic liquids, 543
paramagnetism

Curie-law, 77
local moment, 106, 107, 108f, 108,

109, 110f, 110, 111f, 111, 112, 113f,
113

partition function, 107, 113
patterned media, 537
Pauli exclusion principle, 100
Pauli spin matrices, 68
Peierls distortion, 228
percolation threshold, 565
permalloy, 172, 387, 440, 449
permalloy sensor, AMR, 537
permanent magnet, 41, 262
permanent magnet applications, 465t
permanent magnet flux sources, 341,

402, 475
variable, 481

permanent magnet materials, 469–473
permanent magnet motors, 402
permanent magnets, 270
permeability, 39, 439

complex, 444
free space, 40
initial, 439
maximum, 439
recoil, 469
relative, 439

permeameter, 366
permeance, 468

permeance coefficient, 467
permendur, 385, 440, 450
permittivity, 191
permittivity tensor, 191
perovskite, 413, 414

double, 416
perpendicular media, 537
perpendicular recording, 533
perpendicular recording media, 391
perpetual motion, 542
phase shifters, 461
phase transition, 129, 222t
photoemission spectroscopy, 353
photons, 192
pinning

strong, 216, 257
weak, 216, 257

planar defect, 257
planetary and cosmic magnetism, 565,

566, 566t, 567, 567t, 568, 569, 569t,
570–572, 573f, 573, 574f, 574–578

planetary magnetism, 574
point groups, 382

magnetic, 383
polar, 382

Poisson’s equation, 233
polar wander paths, 573f
polarization

electrical, 42
magnetic, 42
of electrons, 71

polarized light, 192
poles, North and South, 34
polymer bonded magnets, 471
potential coil, 367
pressure, magnetic, 256
Pry and Bean model, 442, 443f
pseudo spin valve, 286
pseudospin, 108
pulse transformers, 458
pulsed NMR, 326
pyrite, 431
pyrrhotite, 430, 567

Q-factor, 452
quadrupole field, 477
quadrupole moment, 123, 125, 209
quality factor, 252, 444
quantum computing, 528
quantum dots, 298
quantum mechanical operators, 598
quantum number

orbital, 66
orbital magnetic, 64
spin, 65
spin magnetic, 65
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quantum oscillations, 89
quantum phase transition, 229
quantum wells, 434

radar, 305
radial distribution function, 209
raising and lowering operators, 164
Raleigh laws, 259
random anisotropy, 213
random-access memory

dynamic (DRAM), 494
static (SRAM), 494

rare-earths, 399
rare-earth ions, 123, 125t
rare-earth metals, 142, 208, 398, 399f,

399, 400, 400t, 401, 402f, 402–404,
403f, 404t, 405, 405t, 406

rare-earth permanent magnets, 471
Rashba effect, 92
read head, 537
reciprocity, 51
recoilless fraction, 329
recording media, 270
reduced magnetization, molecular field

theory, 598
relativity, 92
relaxation, nuclear, 323
relaxation time
T1ρ , 326
T1, 308, 323
T2, 323, 324

reluctance, 453, 468
remanence, 9
remanence enhancement, 300, 301
renormalization group method, 224
resistance mismatch, 507
resistivity, metals, 183t
resistivity ratio, 284
resonant filters, 458, 462
Reynold’s number, magnetic, 554
rhodochrosite, 567
rigid-band model, 150
RKKY interaction, 141, 280
rock magnetism, 565
rolloff frequency, 451
rotating frame, 325
rotors, 488

squirrel-cage, 455, 488
Ruddlesden–Popper phases, 413
rutile, 412, 428
Rydberg, 65, 99

s–d exchange, 145
s–d model, 141
S-state ions, 309
scalable technology, 496, 510, 539

CMOS, 494
dipole field, 491

scaling, electromagnetic interactions,
492t

scanning electron microscopy, 355
electron-optic method, 356
magneto-optic method, 356

scattering, spin-flip, 285
Schottky barrier, 507
Schrödinger equation, 62

time-dependent, 63
seals, 546
second harmonic generation, 193
self-energy, 51
sendust, 385
sensors, 286, 485

AMR, 516
anomalous Hall, 518
GMR, 518
Hall, 525
magnetic-field comparison, 517t
planar Hall, 518
TMR, 518
variable reluctance, 485

SFMO, 415
shape anisotropy, 293
Sharvin resistance, 499
sheets, magnetic, 228
Shubnikov groups, 384
Shubnikov–de Hass effect, 90
Si steel, 449
SI units, 590
siderite, 567
Simmons’s formula, 288
single-domain particle, 233, 244, 536

radius, 245, 267
singular-point detection method, 365
skin depth, 441
Slater determinants, 158
Slater-Pauling plot, 151
smythite, 431
Snoek’s relation, 447, 451
soft iron, 440, 450, 453
soft magnetic underlayer, 535
soft magnets, applications, 390, 439,

440, 440t, 441–449, 449t, 450, 450t,
451, 452, 452t, 453f, 453–463

solar and stellar magnetism, 575
solenoid, long, 32
solid solution, 378
Sommerfield convention, 590
space groups, 383

magnetic, 384
specific heat, 58

magnetic, 130, 133, 179, 219
nickel, 9

spectrochemical series, 119
speromagnetism, 216
speromagnets, 220, 429
spherical harmonic, 98
spin, 5, 63

operator, 68
spin accumulation, 285, 504, 529
spin accumulation voltage, 505
spin amplifier, 529
spin correlation, 179
spin currents, 513
spin density wave, 397
spin diffusion length, 285, 498

semiconductors, 509
spin echo, 327
spin electronic device, 515
spin electronic materials, 515
spin electronics, 494f, 494, 495f, 495,

496f, 496, 497f, 497, 498f, 498,
499f, 499, 499t, 500, 501f, 501, 502,
502t, 503f, 503, 504f, 504, 504t,
505f, 505, 506f, 506, 507f, 507,
508f, 508, 509f, 509, 510f, 510,
511f, 511, 512f, 512, 513f, 513,
514f, 514, 515f, 515, 516f, 516,
516t, 517, 517t, 518f, 518, 519f,
519, 520f, 520, 521, 522f, 522, 523f,
523, 524f, 524, 525f, 525, 526f, 526,
527f, 527, 528f, 528, 529f, 529,
530f, 530, 531f, 531, 531t, 532f,
532, 533f, 533, 534, 535f, 535, 536f,
536, 537f, 537, 538f, 538, 539f,
539–541

spin filter, 288, 291
spin flop, 198
spin freezing temperature, 216
spin gap, 412f
spin glass, 12, 218, 219f, 219, 220f, 220,

221f, 432
behaviour, 219
canonical, 218
dilute alloy, 219
re-entrant, 220

spin Hall effect, 513
spin Hamiltonian, 310
spin injection, 504
spin lifetime, 508
spin locking, 328
spin polarization, 293, 307, 353, 501, 502

Andreev reflection, 504t
calculated, 502t

spin reorientations, 402
spin temperature, 327
spin-transfer torque, 509
spin transistors, 496, 528
spin valves, 280, 286
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spin wave, 162
antiferromagnetic, 199
energy gap, 165
measurement, 369

spin-accumulation voltage, 285
spin-diffusion length, 267, 285
spin-disorder scattering, 183
spin-flip scattering, 166
spin-glass theory, 225
spin-lattice relaxation, 308, 323
spin-orbit coupling, 103, 187

constants, 105t
spin-orbit interaction, 66
spin-Peierls effect, 228
spin-polarized currents, 497f, 497, 498f,

498, 499f, 499, 499t, 500, 501f, 501,
502, 502t, 503f, 503, 504f, 504,
504t, 505f, 505, 506f, 506, 507f,
507, 508f, 508, 509f, 509, 510f, 510,
511f, 511, 512f, 512, 513f, 513,
514f, 514, 515f

spin-selective scattering, 511
spin–spin relaxation, 323
spin-wave dispersion

antiferromagnetic, 200
spin-wave dispersion relation, 163

Tb, 165
spin-wave stiffness, 163, 315
spindle motors, 402
spinel, 422, 423
spinor, 68, 73
spontaneous magnetization, 8
standing spin waves, 315
static scaling hypothesis, 224
stator, 488
Stern–Gerlach experiment, 72, 507
Sternheimer factors, 322
Stevens operators, 124
Stoner criterion, 134, 135, 145
Stoner excitations, 166
Stoner, Edmund, 148f
Stoner-Wohlfarth

asteroid, 249, 523
coercivity, 253
particles, 249

Stoner–Wohlfarth model, 247, 259,
293

stray field, 35, 231, 245f
strip-out, 253
strong ferromagnet, 148, 150
Sturgeon, William, 4
Sun, 575
sunspots, 576
superconducting solenoids, 340
superconductivity gap, 292
superexchange, 138
superlattice, 274

supermalloy, 388
superparamagnetic blocking, 296
superparamagnetic blocking radius, 267
superparamagnetic excitations, 298
superparamagnetic limit, 534
superparamagnetic particles, 297
superparamagnetism, 12, 295, 296, 545
surface reconstruction

magnetic, 424
surface-charge density, 232
susceptibility, 11, 39, 597

AC, 366
aluminium, 597t
complex, 445
copper sulphate, 597t
Curie, 109
Curie–Weiss, 132
diamagnetic, 76
dimensionless, 597
external, 39
ferrimagnetic, 202
gadolinium sulphate, 597t
generalized, 133
initial, 366
internal, 39
mass, 86
measurement, 365
molar, 86
of antiferromagnet, 197f
of compounds, 87
of metals, 134t
of the elements, 86
Pauli, 81, 92, 134
perpendicular, 198
powder average, 198
tensor, 447
units, 87
van Vleck, 112
water, 597t

switchable magnets, 483
switching, 317
switching dynamics, 255

taenite, 388
Tanabe–Sugano diagrams, 121
tape recording, 531, 537
Tedrow–Meservey experiment, 292, 503
terfenol, 457
terfenol-D, 405
tesla, 31
tetrahedral site, 117f
therapy, magnetic, 560
thermal analysis, 368
thermodynamics

first law, 57
third law, 58

thermogravimetric analysis, 369

thermomagnetic analysis, 361, 369
thermomagnetic recording, 393, 539
thermopiezic analysis, 369
thermoremanent magnetization, 297, 566
thin films, 264, 267–274

anisotropy, 270
bilayer, 276
Curie point, 269
domain structure, 270
epitaxial, 268
Fe, 269
heterostructures, 274–278, 278t,

279–282, 282t, 283, 284, 284t,
285–290, 291f, 291, 292

magnetization, 269, 273
oriented, 268
Pd, 269
stray field, 270

thin-film growth, 335
electrodeposition, 338
electron-beam evaporation, 335
Franck–van der Merwe, 336
ion-beam deposition, 338
molecular-beam epitaxy, 336
pulsed-laser deposition, 336
reactive sputtering, 338
sputtering, 337
Stransky–Krastanov, 337
thermal evaporation, 335
Volmer–Weber, 337

thin-film head, 538
thin-film stack, 286
Thompson, William, 184
Thouless–Kosterlitz transition, 229
three-dimensional Heisenberg

ferromagnet, 229
time-varying field, 465
titanohematite, 566, 567
titanomagnetite, 566, 567
toggle-mode switching, 524f
tokamak, 555
topology, 204
torque, 51, 306
transducers, 457
transformers, 454
transport

current in plane, 284
perpendicular to plane, 285

trevorite, 567
trigonometric relations, 595
trolite, 431, 567
tunnel barriers, 287, 288, 291

AlOx , 287
MgO, 287

tunnelling, 500
coherent, 290

two-dimensional electron gas, 80
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two-dimensional Heisenberg model,
228

two-dimensional Ising model,
229

two-dimensional xy model, 229
two-electron model, 155
two-hemisphere model, 254
two-network structures, 217
type I bcc order, 205
type I fcc order, 206
type II bcc order, 205
type II fcc order, 206
type III fcc order, 206

Uhlenbeck, George, 5
ulvospinel, 567
undulator, 479
uniform field, generation, 473
units

cgs, 591
SI, 30

universality, 223
upper critical dimension, 224

vacuum, ultra-high, 268
van den Berg construction, 238f

variable flux sources, 481
variable-range hopping,

501
vector relations, 595
vectors

axial, 26
polar, 26

Verdet constant, 190
Verwey transition, 422
vicalloy, 386
video recording, 530
Villari effect, 177
virtual bound state, 152
voice-coil actuators, 402
vortex configurations, 295

Walker breakdown, 318
wandering-axis ferromagnet,

214
wave mechanics, 62
wavelength, Fermi, 267
weak ferromagnet, 148, 150
weak itinerant ferromagnet,

135
Weiss coefficient, 129
Weiss, Pierre, 5, 129, 195

Wiedemann effect, 177
wigglers, 478
Wigner–Eckhart theorem, 124
Williams-Comstock model, 535
work, magnetic, 55, 58
working point, 41
write head, 532, 534

X-ray absorption spectroscopy, 350
X-ray diffraction, 345

iron, 345
cobalt, 346
hematite, 418
nickel, 345
magnetude, 422

xy model, 221

YAG, 425
YIG, 424, 440, 452, 461, 462
Young’s modulus, 178

Zaanen–Sawatzky–Allen diagram, 381f
Zeeman energy, 51
Zeeman interaction, 104
Zeeman splitting, 70, 306
zero-field splitting, 310
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Constants

a0 Bohr radius (4πε0�
2/mee

2) 52.92 pm
c velocity of light 2.998 × 108 m s−1

e elementary charge 1.6022 × 10−19 C
G0 conductance quantum (e2/h) 3.874 × 10−5 �−1

h Planck’s constant 6.626 × 10−34 J s
� Planck’s constant/2π 1.0546 × 10−34 J s
kB Boltzmann constant 1.3807 × 10−23 J K−1

me electron mass 9.109 × 10−31 kg
mn neutron mass 1.675 × 10−27 kg
mp proton mass 1.673 × 10−27 kg
mµ muon mass 206.7me

NA Avogadro’s number 6.022 × 1023 mol−1

u unified atomic mass unit 1.6605 × 10−27 kg
re the electron radius 2.818 fm
R gas constant 8.315 J mol−1

R0 Rydberg 2.180 × 10−18J = 13.61 eV
α fine structure constant (e2/4πε0�c) 1/137.04
ε0 permittivity of free space (1/µ0 c2) 8.854 × 10−12 C V−1 m−1

µ0 permeability of free space 4π × 10−7 T m A−1

µB Bohr magneton (e�/2me) 9.274 × 10−24 A m2

µN nuclear magneton (e�/2mp) 5.0508 × 10−27 A m2

�0 flux quantum (h/2e) 2.068 × 10−15 T m2

Unit conversions

1 eV= 11606 K (e/kB) = 8066 cm−1 (e/hc)
1 T µB = 0.6717 K (µB/kB)
1 µB/atom= 5.585 J T mol−1 (N0µB)
1 K/atom = 8.314 J mol−1 (N0kB)
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