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Abstract:
A car driver needs at least five hundred milliseconds before
he can react to unexpected yaw motions. During this time
the uncontrolled car may produce a dangerous yaw rate
and sideslip angle. Automatic steering control for distur-
bance rejection is designed such that it bridges over the
driver reaction time, but returns the full steering authority
to the driver thereafter. The solution is robust with respect
to uncertainties in the road-tire contact and in the mass and
velocity of the vehicle. The model representation is scaled
by methods of similarity mechanics.

1 Introduction

Critical car driving situations arise, when a disturbance tor-
que acts on the vehicle. Examples are crosswind, flat tire,
braking on a slippery road and gas release in a curve. It
takes the driver at least five hundred milliseconds to react to
the resulting yaw motion of his car. During this time the tire
sideforce may already reach its physical limits. A delayed
overreaction of the driver may also cause driver-induced
oscillations. Such dangerous situations can be avoided by
robust decoupling of car steering [1, 2]. On the other hand,
the driver should not be cheated by the feedback control
system. In particular he should feel a similar response to
his steering commands as in the uncontrolled car. This ap-
plies both to the immediate reaction after a step input at the
steering wheel and to the required steering-wheel angle for
steady-state cornering. These requirements call for a modi-
fication of the decoupling control law.
In section 2 of this paper the car steering model is first sca-
led by application of similarity mechanics [3] in order to
simplify the further analysis. In section 3 the properties of
the robust decoupling control law are analyzed. Section 4
introduces the modified control law. In section 5 we discuss
some of the benefits that come from the application of simi-

larity mechanics and the meaning of the various similarity
numbers. Some simulation results are shown in section 6 to
compare the conventional car with both controlled cars.

2 Scaling of the car steering dynamics

Consider the vehicle of Fig. 1. Vehicle data are usually given

Fig 1: Vehicle with arbitrary mass distribution

in the form of
�����������

vehicle mass 	 , and moment of inertia

w.r.t. a vertical axis through the center of gravity (CG).

These quantities are related with the quantities 	 1
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of Fig. 1 by
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There is a one-to-one relationship between the parameter
sets

� 	 � 
 �������������
and

� 	 ���
1
������� �����

. We will use
�

1 in the
derivation of the model. � is the yaw angle between the
vehicle center line � and an inertially fixed direction � 0.
Input to the system is the front-wheel steering angle � � ,
output is the yaw rate � � ˙� measured by a gyro. For small
sideslip angle � and small steering steering angle � � the
standard single-track model of car steering [4] is	 	�

� ˙� 
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Only a disturbance torque 	�� is assumed and no disturbance
lateral force, because the latter is easily compensated by the
driver in the course of his normal steering.
The steering force

���
and torque 	�� are generated by the

lateral tire forces
� � ��� � � and

� � ��� � � via	�� �
	 � � � 	
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The tire forces depend on the tire sideslip angles � � and � �
as illustrated in Fig. 2 for the front wheel.

Fig 2: Variables of the tire model

The sideslip angle at the front mass � 1 will be introdu-
ced as a state variable. The sideslip angles at the CG ��� � and
at the axles ��� � � � �!� � � are related with � 1 by the kinematic
relations for small angles� � � 1
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The local velocity vector "
 � forms the (chassis) sideslip
angle � � with the car body and the tire sideslip angle � �
with the tire direction, thus� � � � � � � � �#� � � � 1

� ��� � �
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In this paper we do not use rear wheel steering, i.e. � �'& 0.
The tire force characteristics are linearized as� � ��� � � � ( � � �� � ��� � � � ( � � � (8)

where the cornering stiffnesses ( � and ( � are uncertain pa-
rameters that vary with the road tire contact. We assume( � �*) ( � 0

� ( � �+) ( � 0 where ( � 0 and ( � 0 are nominal values
for the dry road and )-,+. )0/ ; 1 1 � )0/-2 0 is an uncertain
parameter. Other uncertain parameters are the vehicle mass
	3,-. 	4/ ; 	�561 and velocity 
�,7.8

/ ; 
9561 . The model (4),
(5) with the above equations substituted becomes:;<

	�
=� ˙� 1
� �

1
 ˙� 
 ���
	 ����� 1 ˙�

>@?A �
:<

1 1

� � � � � >ACB
B :;< ) ( � 0 ��� �D� � 1

� � �E� �
1
 ���) ( � 0 � � � 1 


�
1 
 ���
 ���

>@?A 

:<

0

	�� >A
and, solving for ˙� 1 and ˙� ,:< ˙� 1

˙� >A �

:;;;< � � 
 � �
	 ��� 
 0

���
	 � 1

� � � 1
	 � 1

>@???A B
B :;< ) ( � 0 ��� ��� � 1

� ��� � �
1
 ���) ( � 0 � � � 1 


�
1 
 ���
 ���

>@?A �
� :<

1

0

>A � 
 :;;;< 1
	 � � 


1
	 � 1

� �

>@???A 	�� (9)

This form shows that ˙� 1 does not depend directly on the
forces at the rear tires. An indirect coupling occurs through
the � -terms in the equation for ˙� 1. These � -terms will be
cancelled by the decouplingcontrol law. The state equations
of the system are
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This equation contains seven independent parameters
(
�

1
��� � ��� � � 	 � 
 � ) ( � 0

� ) ( � 0) involving three basic units (m,
kg, s). Thus we know by Buckingham’s theorem [3] that
7
�

3 � 4 dimensionless similarity numbers suffice to
characterize the system, provided that also the variables
and the time are scaled appropriately. There are many ways
to choose such similarity numbers. We have chosen a set of
numbers with some physical meaning and the property that
the uncertain operating point 	 � 
 � ) enters only into one
number. Let	�
 �

�
1��� mass distribution number	
� �

���
� � CG location number	�� � ( � 0( � 0

cornering stiffness ratio	�� � 
�� 	) ( � 0
� � operating point number

(11)

Also introduce the dimensionless state and input variables
respectively
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and scale the time by
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In the Laplace transformed equation (10) with � � 1 ��� � and� �9��� � on the left hand side, the scaled Laplace variable
becomes

˜� ����� 	 � �) ( � 0
(14)

such that ˜� ˜� � � � . With the above substitutions
(11),(12),(14), the Laplace transformed state equations (10)
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˜� ˜� 1 � ˜���
˜� ˜�9� ˜��� >A �

:< ( 5 ( 6( 7 ( 8

>A :< ˜� 1 � ˜� �
˜�9� ˜� � >A 





:;;;< 1	 ��� 1 
 1	����
1	 
 	���	 �

> ???A ˜� � � ˜��� 
 :;;;< 1	�� 	 �
1	 
 	�� 	 �

> ???A ˜	�� � ˜��� (15)

( 5 � � 1	 � � 1 
 1	�� �
( 6 �

	 
 �
1 
 	�� � 	 
 �

1
� 	 2� �	 � 	��

( 7 � 1	 � 	 
!� 	�� � 1	����
( 8 �

	 
 �
1
� 	 � 	��

(
	�� 
 	 


)	�
"	 � 	��
3 Robust decoupling control law

Robust decoupling [1] is achieved by the feedback control
law� � ��� � � 1� �$# ��
9�&%(' �)' �*��� � �9��� � 
 ��� � �

1
 � �9��� �+� (16)� ' is the steering wheel input, % ' denotes the transmission
ratio of the steering gear. # ��
 � is the steady-state yaw rate
response to a unit step input for a nominal model ( ) � ) 0
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and 	 � 	 0). It can be computed by (10) with ˙� 1 � ˙� �
	�� � 0 and � � � 1.
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 � � � 2 
 ��( � 0 � �$� ( � 0
� � � 	 0) 0


 2
(17)

For a general investigation, again the scaled (dimensionless)
representation is employed. Therefore we introduce the di-
mensionless variable

˜� ' � % ' � ' (18)

The introduction of a nominal virtual mass 	 0
� ) 0 makes it

necessary to define a new similarity number.	�� � 	 0) 0

)
	 virtual mass number (19)

The dimensionless form of (17) is
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1 � 	 � 	
2� (20)

With the above substitutions (11),(12),(14),(18),(20) the
control equation (16) becomes
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Consider now the lateral acceleration � 1 at the front mass
	 1, see Fig. 1. It is related with the model quantities by

� 1 ���	��
 
 �
1 ˙� � � � ��� � � 
 � � ��� � �

	 
 �
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We substitute (7) and (8) to obtain the output equation for� 1 (Laplace-transformed)
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The dimensionless lateral acceleration at the front mass is
defined as

˜� 1 �
���
 2 � 1 (24)

Equation (23) now can be rewritten in its dimensionless
representation	 2� ˜� 1 � ˜��� � � � 1 
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The transfer function from the yaw disturbance torque to
the yaw rate ( ˜� ' � ˜��� & 0) is obtained by substituting (21)
into (15) and solving for ˜�9� ˜� � .
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The properties of the decoupling control law are

� The coupling from the yaw mode into the lateral ac-
celeration � 1 has been removed. Thereby the steering
transfer function from ˜� ' � ˜��� to ˜� 1 � ˜� � is of first order
( ˜	��9� ˜��� & 0).

˜� 1 � ˜��� � � 1 
 	 � � ˜#
1 
 	 � 
 	 � 	��

˜� ˜� ' � ˜��� (27)

The influence of the uncertain parameters 	 , 
 and )
has been drastically reduced by decoupling. Theore-
tically the steering dynamics can be made arbitrarily
fast by additional feedback of � 1, measured by an ac-
celerometer, to � ' . The task of the driver is only to
keep the point mass 	 1 on top of his planned path by
commanding � 1. He does not have to care about the
stable yaw motion [1].

� For a step input at the yaw disturbance 	 � (e.g. from
crosswind, ) -split braking) the conventional car has
a nonzero steady state value of the yaw rate, whereas
for the decoupled car the yaw rate quickly returns to
zero [2]. The steady-state effect can be seen from (26),

where lim ��� 0 
 ��� � �*���� ��� � �*��� � 0. Considerable safety ad-

vantages have been shown in [2].

On the other hand, the decoupling control law (16) also has
some disadvantages that motivate the modifications in the
next section.

� By the integration in the control law there is no imme-
diate reaction of � 1 after a step command at ��' . The dri-
ver feels that the car is not reacting as promptly as the
conventional car. Therefore a direct throughput from�)' to � � will be provided, i.e. � � � %(' �)' 
 � � , where� � is produced by the controller (16). This change does
not affect the feedback path from � to � � and therefore
the disturbance attenuation properties of the control
law (16) are preserved.
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� The yaw damping is decreased at high velocity. In [2]
a good yaw damping was achieved by rear-wheel stee-
ring, which is not available under the assumptions of
this paper. The driver is not so much concerned about
the first overshoot in � (which is similar to the conven-
tional car) but about the following undershoot, which
occurs about 0 � 8 seconds after a steering wheel step
input. One remedy is a velocity scheduled feedback of
the lateral rear axle acceleration � � [5]. Another one
is to provide the decoupling action only for the first
0 � 5 seconds after a step input and thereafter to return
smoothly to the properties of the conventional car, i.e.� � should follow the integral action only initially and
then return to zero. Regarding a disturbance step 	4�
this concept helps the driver during the first half second
by providing an additional steering angle but thereaf-
ter it returns the full authority gradually back to the
driver. Reasonable yaw damping can be achieved by
tuning the parameters of the filter which is employed
to implement the fading decoupling action.

� The feedback from � provides an additional term to � � .
In steady-state cornering there is no need for this term,
the controlled car should behave like the conventional
car in this situation, i.e. the driver should apply the
same � ' . The above modification takes care of this
requirement.

4 The modified control law

The modified control law is� � �*��� � % ' � ' �*��� 
 � � �*��� (28)� � �*��� � �� 2 
 2
� �

0 � 
 � 2
0

� 1 �*���
� 1 �*��� � # ��
9�&% ' � ' ��� � � �9��� � 
 ��� � �

1
 �$�9�*���
Now there is a direct throughput of the input by the steering
wheel � ' to the front wheel steering angle. The pure inte-
grator has been replaced by a dynamical filter. The initial
behaviour ( ����� ) of this filter to any input is the same
as the response of an integrator. But the steady-state output
of the filter ( ��� 0) is zero. In the meantime the filter is
unloaded so that after some time the responsibility is softly
returned to the driver. It also leads to the same steady-state
cornering as of the conventional car.
Hence by the modified control law both the immediate and
the long term reaction to any driver input is the same for
the controlled car as for the uncontrolled car. But the tran-
sient behaviour is different as well as the disturbance re-
jection property of both systems. Since we add additional

dynamics to the system by applying the modified control
law, new parameters are introduced to the system. They are
independent of each other and of the already introduced
parameters. This increases the number of independent pa-
rameters to ten (

�
1
��� � � � � � 	 � 
 � ) ( � 0

� ) ( � 0 � 	 0
� ) 0

� � � �
0).

According to Buckingham’s theorem the number of simila-
rity numbers which suffice to characterize the system now
is 10

�
3 � 7. In addition to (11) and (19) we define two

more similarity numbers	�� � �
filter damping number

		� � �
0 � 	 0

���) 0 ( � 0
filter bandwidth number

(29)

With the substitutions (11),(12),(14),(18),(29) the control
equation (28) becomes

˜� � � ˜��� � ˜� ' � ˜��� 
 ˜�
˜� 2 
 2

	�� 	 �

 	 � ˜� 
 	 2�	 � ˜� 1 � ˜��� (30)

˜� 1 � ˜��� � ((1
� 	�


) ˜� � 	��
) ˜�9� ˜��� 
 	�� ˜# ˜� ' � ˜���

5 Meaning of the similarity numbers

Using a dimensionless representation of a system’s equati-
ons and introducing dimensionless similarity numbers has
several benefits. Most interesting with respect to robust con-
trol theory is the fact, that the number of uncertain pa-
rameters of a system possibly can be reduced. Thus the
analysis and design of controlled systems are simplified.
Without employing similarity mechanics, for the analysis
of the model (10) a two-dimensional operating domain has
to be checked. The three uncertain parameters ( ) � 	 � 
 )
have to be varied in order to cover the whole operating
domain. Since ) and 	 only occur in the combination of
	 � ) , the variation of uncertain parameters of this plant is
a two-dimensional problem.
After making use of Buckingham’s theorem, we succee-
ded to put all uncertain parameters of the conventional car
into one similarity number

	��
. Hence all possible operating

points of the system in its dimensionless form can be repre-
sented by one single number. The other similarity numbers
(
	 
 � 	�� � 	 �

) are invariant for a specific car due to construc-
tion, tire properties etc.
If for one value of

	 �
an analysis is performed (e.g. a simu-

lation or an eigenvalue computation), the results stand for
an infinite number of uncertain parameter values, i.e. one
can obtain the same

	��
for either large values of 
 or 	 or

a small value of ) . The dimensionless time-domain results
of a simulation can be transformed to original time-domain
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Fig 3: Response to steering wheel step and yaw disturbance torque step for
	 � � 1

by rescaling the time and variables.
With the robust decoupling control law a new similarity
number was needed, because the use of a nominal model
introduced a new scale to the system. Every new indepen-
dent parameter which is added to the system brings with it
a new similarity number, unless it brings a new physical ba-
sic unit with it also (Buckingham). By the modified control
law two more filter parameters and similarity numbers are
needed to sufficiently characterize the system.
In the following simulation study we used the data of a
BMW 735i passenger car to determine the values of the cer-
tain similarity numbers (

	 � � 0 � 874
� 	�� � 2 � 1 � 	�
 � 1 � 0)

as well as the operating domain of the car (1 � 0 � 	�� �
8 � 0).

A lower limit for
	��

is necessary since the controller is swit-
ched on only after a certain velocity is reached. The car is
not controllable for 
 � 0, i.e.

	�� � 0. The virtual mass
number

	 �
is a new uncertain similarity number although

it can be influenced by the choice of the nominal values
( ) 0

� 	 0). Concerning the modified control law, the values
of

		�
and

	 �
can be set in the controller design for a speci-

fic car. We choose a filter bandwith � 0 � 1
� ��� ( to provide

the above described properties (the decoupling action is
supposed to fade out after ca. 0 � 5 seconds). With the data
of the car we have

	 � � 0 � 2. The damping of the filter is
tuned by the value of

�
. It turned out, that a scaling with

velocity of this parameter is useful to achieve a reasonable

damping at all velocities.

� � � ��
9� � ��� ��
 � 	 0
� ��) 0 ( � 0

��� � �
	 � � � � � 	 ��� 	 � �

(31)

6 Simulation results

In the following simulation plots of the scaled yaw rate ˜�
and additional steering angle ˜� � the three controller versions
are compared.

� The conventional car. Equation (15) is employed to
compute the yaw rate response to yaw disturbance
torque step inputs or steering wheel step inputs res-
pectively. The "control law" is just ˜� � � ˜��� � ˜�)' � ˜��� .
The additional steering angle is zero. Dotted line style
is used for the dimensionless time response plots and
circles denote the eigenvalue position in the dimen-
sionless ˜� -plane.

� The decoupled car with direct throughput. To obtain
comparable results with the two other versions of the

6
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Fig 4: Response to steering wheel step and yaw disturbance torque step for
	 � � 8
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Fig 5: Response to steering wheel step and yaw disturbance torque step for
	 � � 0 � 5
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car, the direct throughput is combined with the robust
decoupling control law (21). Thus the steering angle
equation reads

˜� � � ˜� � � ˜� ' � ˜��� 
 1
˜� �

((1
� 	�


) ˜� � 	��
) ˜�9� ˜��� 



 	 � ˜# ˜�)' � ˜��� �
Dashed line style for the resonses and star markers for
the eigenvalues are employed.

� The filter-equipped car. It is described by equation
(15) extended by the steering angle equation of the
modified control law (30). Plots use solid line style for
the responses and x-marks for the eigenvalues.

The time scale
� � ˜� � 	 � � � � 0


 	 � � (see (13)) is printed
below the eigenvalue plot. Original time scale is obtained
by multiplying the dimensionless time of the plots with the
specified time scale and original eigenvalue scale is obtai-
ned by dividing the dimensionless ˜� by the same time scale
such that ˜� ˜� � � � .
In the first simulation of Fig. 3 a steering wheel step input is
applied to the three cars at a small value of

	 � � 1 (low car
mass at low velocity on dry road). For the choosen value of	��

there is not much difference between the three versions.
Both the decoupled and the filter-equipped car perform a
little overshoot in the yaw rate. With the simulation in Fig.
3 for a disturbance torque step input the concept of fading
out the decoupling action is well recognizeable. Within the
first 0 � 5 seconds both the decoupled and the filter-equipped
car provide the same disturbance rejection activity. Howe-
ver after 0 � 5 seconds for the filter-equipped car the steering
authority is softly returned to the driver and the additional
steering angle ˜� � � ˜��� � ˜� � � ˜��� � ˜� ' � ˜��� goes to zero. Only
now the driver is supposed to react to the yaw disturbance.
The right upper plot of Fig. 3 shows the eigenvalues for	 � � 1. They are well damped for all three controllers.
Concerning Figs. 4 and 5, for every complex eigenvalue pair
of the filter-equipped car three more curves (dash-dotted)
are added to the eigenvalue plot to simplify comparison.
One is a natural frequency circle around the origin through
the eigenvalues. The other curves are damping lines which
connect the origin with the eigenvalues.
Fig. 4 shows the responses for

	�� � 8 which corresponds
e.g. to higher speed on wet road. The yaw damping for
all controllers is worse than at lower values of

	 �
. The

worst damping occurs for the decoupled car. The oscilla-
tions of the filter-equipped car after a steering wheel step
input decrease as quickly as those of the conventional car
although the damping of the corresponding eigenvalues is
less but their bandwidth is higher. The yaw disturbance re-
sponses show again how the initial decoupling action is
fading out. Fig. 5 shows the result of deviations (

	 � �� 1)

of the real car from the nominal model w.r.t. the virtualmass
at a medium velocity (

	�� � 4 � 5). Here
	 �

equals 0 � 5. The
steady-state responses of the car with filter-feedback are the
same as for the conventional car, whereas the decoupled car
has a nonzero steady-state value of the additional steering
angle.

7 Conclusions

The filter-equipped car can be considered as a compromise
between the conventional car which has bad yaw distur-
bance attenuation properties and the decoupled car which
exhibits poor yaw damping at higher velocities. Within the
minimum driver reaction time of 0 � 5 seconds, the filter
equipped car behaves like the decoupled car and then it
returns smoothly to the steady-state behaviour of the con-
ventional car. By using the modified control law of the filter-
equipped car instead of the pure decoupling control law the
yaw damping properties are considerably improved.
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