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Abstract:

A car driver needs at least five hundred millisecondsbefore
he can react to unexpected yaw motions. During this time
the uncontrolled car may produce a dangerous yaw rate
and sidedip angle. Automatic steering control for distur-
bance rejection is designed such that it bridges over the
driver reaction time, but returns the full steering authority
to the driver thereafter. The solution is robust with respect
to uncertaintiesintheroad-tire contact andin the mass and
vel ocity of the vehicle The modd representation is scaled
by methods of similarity mechanics.

1 Introduction

Critical car driving situationsarise, when a disturbancetor-
gue acts on the vehicle. Examples are crosswind, flat tire,
braking on a dippery road and gas release in a curve. It
takesthedriver at least five hundred millisecondsto react to
theresulting yaw motion of hiscar. During thistimethetire
sideforce may aready reach its physical limits. A delayed
overreaction of the driver may aso cause driver-induced
oscillations. Such dangerous situations can be avoided by
robust decoupling of car steering [1, 2]. On the other hand,
the driver should not be cheated by the feedback control
system. In particular he should feel a similar response to
his steering commands as in the uncontrolled car. This ap-
plies both to theimmediate reaction after astep input at the
steering wheel and to the required steering-wheel angle for
steady-state cornering. These requirementscall for amodi-
fication of the decoupling control law.

In section 2 of this paper the car steering model isfirst sca-
led by application of similarity mechanics [3] in order to
simplify the further analysis. In section 3 the properties of
the robust decoupling control law are analyzed. Section 4
introducesthemodified control law. In section 5 we discuss
some of the benefits that come from the application of simi-

larity mechanics and the meaning of the various similarity
numbers. Some simulation results are shown in section 6 to
compare the conventional car with both controlled cars.

2 Scaling of the car steering dynamics

Consider thevehicleof Fig. 1. Vehicledataareusually given
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Fig 1: Vehicle with arbitrary mass distribution

intheformof ¢, ¢;, vehiclemass m, and moment of inertia
J w.r.t. avertical axis through the center of gravity (CG).
These quantities are related with the quantities mq, m,., 1
of Fig. 1 by

m = mi+m, 2)
J = myl?4m.l? @)
mlﬁl = m,«f,« (3)

(2) may be expressed using (3) as
J =m Ll + milly
and with (1)
J =ml.l
The resulting lengthis




There is a one-to-one relationship between the parameter
sets{m, J, £, £¢} and {m, {1, ¢, £¢ }. Wewill usef inthe
derivation of the model. ¢ is the yaw angle between the
vehicle center line « and an inertialy fixed direction zg.
Input to the system is the front-whedl steering angle é;,
outputistheyaw rater = ¢ measured by agyro. For small
sideslip angle # and small steering steering angle 6 the
standard single-track model of car steering [4] is

mv(ﬁj +r) | | fy 0
[ Jr ] | m, + my )
Only adisturbancetorquem, isassumed and no disturbance
lateral force, because thelatter iseasily compensated by the
driver in the course of his normal steering.
The steering force f, and torque m, are generated by the

lateral tireforces f¢(ay) and f, (a,) via
¥ (O‘f) :| (5)
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Thetireforces depend onthetiresideslipangles o ; and o,
asillustrated in Fig. 2 for the front whed.

Fig 2: Variables of the tire model

The sidedlip angle at the front mass 3, will be introdu-
ced asastatevariable. Thesideslipanglesat theCG (3) and
a theaxles (3, ), (8y) arerelated with 81 by the kinematic
relationsfor small angles

g = ﬁl—g—lr
.
By = B gf;glr
040,
B = - 2T (6)

The local velocity vector ¥; forms the (chassis) sidedlip
angle §; with the car body and the tire sideslip angle « ¢
with thetire direction, thus
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In this paper we do not use rear whed steering, i.e. 6, = 0.
The tireforce characteristics are linearized as

filag) = croy
frlar) = crar (8)

where the cornering stiffnesses ¢; and ¢, are uncertain pa-
rameters that vary with the road tire contact. We assume
¢y = pego, ¢ = peroWherecyoand c.o arenominal values
forthedryroadand p € [~ ; 1], p~ > Oisan uncertain
parameter. Other uncertain parameters are the vehicle mass
m € [m~; mt]andveocity v € [v~ ; v*]. Themodd (4),
(5) with the above equations substituted becomes

(ﬁl_ L +r) [1 1 ]
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and, solving for 51 and r,
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This form shows that 3; does not depend directly on the
forces at therear tires. Anindirect coupling occurs through
the r-terms in the eguation for 1. These r-terms will be
cancelled by the decoupling control law. The state equations
of the system are
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This equation contains seven independent parameters
(€1, €5, 4., m, v, pcyo, prero) involving three basic units (m,
kg, s). Thus we know by Buckingham's theorem [3] that
7—3 = 4 dimensionless similarity numbers suffice to
characterize the system, provided that aso the variables
and thetime are scaled appropriately. There are many ways
to choose such similarity numbers. We have chosen a set of
numberswith some physical meaning and the property that
the uncertain operating point m, v, i1 enters only into one
number. Let

L o
P; = E_l mass distribution number
f
£y .
P = 7. CG location number
! (11)
P, = o cornering stiffness ratio
Cfo
m . .
P, = operating point number
pieroly

Also introduce the dimensionless state and input variables
respectively

£
T = 2y
"
fi = B
i (12)
by = &
1

mg
pieoly

and scal e the time by

F=q [HO (13)
mﬁf

In the Laplace transformed equation (10) with s31(s) and
sr(s) on the left hand side, the scaled Laplace variable
becomes

¥4
5= sy S (14)
Hero
such that 5 = st. With the above substitutions

(11),(12),(14), the Lapl ace transformed state equations (10)
become

BN
= +
§F(§) c7 Cg 7:(5)
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¥ 5/(5) + 74(5) (15)
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3 Robust decoupling control law

Robust decoupling [1] is achieved by the feedback control
law
us r(s)) (16)

1 .
67(6) = 2 (Pintn(s) = () + 2
61 isthe steering whedl input, iz denotes the transmission
ratio of the steering gear. F'(v) is the steady-state yaw rate
response to a unit step input for anomina model (¢ = po



and m = my). It can be computed by (10) with 8 = 7 =
mg = Oand (Sf =1

F('U) = Cfocro(ﬁf + gr)'” (17)
2 mo >
crocro(fy +£r)% + (crolr — cfoff)gv

For ageneral investigation, again the scaled (dimensionless)
representation is employed. Therefore we introduce the di-
mensionless variable

§. = iy (18)
Theintroduction of anominal virtual mass mo/ puo makesit
necessary to define anew similarity number.
P, = £ yirtua mass number (19)
Ho m

The dimensionlessform of (17) is

- ¢
F = “ru)
v

_ Pe1+7) (20)
P.(1+ P2+ (PP — 1)P,, P2

With the above substitutions (11),(12),(14),(18),(20) the
control equation (16) becomes

1

§

8;(5) =2 [(A—P))5— R)F(5)+ P, F8r(3)] (1)

Consider now the lateral accderation aq at the front mass
my, See Fig. 1. It isrelated with the model quantities by

frag) + fr(ar)

m

ay = acg + lr = + 47 (22)

We substitute (7) and (8) to obtain the output equation for
a1 (Laplace-transformed)

m(s) = 0T g ) 4 KT (5) 4

cro(lr + €1) — cro(ly — 1)

mv

+ <f15 +u ) r(s)  (293)

The dimensionless |ateral acceleration at the front mass is
defined as

- £
ap = U—J;al (24)

Equation (23) now can be rewritten in its dimensionless
representation

PZiy(3) = (14 Po)5a(3) + 6;(5)+
+(Py— 14 P.(Py + P) + PyP,5)i(35) (25

The transfer function from the yaw disturbance torque to
the yaw rate (61 (5) = 0) is obtained by substituting (21)
into (15) and solving for #(5).

~ Rdec(g) ~

Fdec(s) = m md(§) (26)
Riec(5) = 3R(5)=35(P,5+ 1+ F.)
Dge.(5) = (PP,sS+1+4+P)-

(PJPU§2+(PJ+PI)PC§+PCPU)
The properties of the decoupling control law are

¢ The coupling from the yaw mode into the latera ac-
celeration a4 has been removed. Thereby the steering
transfer function from 8., (5) to @y (5) is of first order
(ma(5) = 0).

1+ Pz)ﬁ' ~

= ——F—=61(5 27
SRS @7

a(5)
The influence of the uncertain parameters m,v and p
has been drasticaly reduced by decoupling. Theore-
ticaly the steering dynamics can be made arbitrarily
fast by additional feedback of a1, measured by an ac-
celerometer, to §r. The task of the driver is only to
keep the point mass 4 on top of his planned path by
commanding «;. He does not have to care about the
stable yaw motion [1].

e For astep input at the yaw disturbance m, (e.g. from
crosswind, p-split braking) the conventional car has
a nonzero steady state value of the yaw rate, whereas
for the decoupled car the yaw rate quickly returnsto
zero [2]. The steady-state effect can be seen from (26),

Raee(s) _ ) considerable safety ad-
dec|S
vantages have been shownin[2].

where lim,_.o

Onthe other hand, the decoupling control law (16) also has
some disadvantages that motivate the modifications in the
next section.

e By theintegrationinthe control law thereisnoimme-
diatereactionof a; afterastepcommandat 6, . Thedri-
ver feelsthat the car is not reacting as promptly as the
conventiona car. Therefore a direct throughput from
6 to 67 will be provided, i.e. 6y = irér + 6., where
6. isproduced by the controller (16). Thischangedoes
not affect the feedback path fromr to ¢ ; and therefore
the disturbance attenuation properties of the control
law (16) are preserved.



e Theyaw damping isdecreased at high velocity. In [2]
agood yaw damping was achieved by rear-wheel stee-
ring, which is not available under the assumptions of
this paper. The driver is not so much concerned about
thefirst overshoot in» (whichissimilar to the conven-
tiona car) but about the following undershoot, which
occurs about 0.8 seconds after a steering wheel step
input. Oneremedy isavelocity schedul ed feedback of
the lateral rear axle acceleration a, [5]. Another one
is to provide the decoupling action only for the first
0.5 seconds after a step input and theresfter to return
smoothly to the properties of the conventional car, i.e.
8. should follow the integral action only initialy and
then return to zero. Regarding a disturbance step my
thisconcept helpsthedriver during thefirst half second
by providing an additiona steering angle but thereaf-
ter it returns the full authority gradualy back to the
driver. Reasonable yaw damping can be achieved by
tuning the parameters of the filter which is employed
to implement the fading decoupling action.

o Thefeedback from r providesan additional termto 6.
In steady-state cornering thereisno need for thisterm,
the controlled car should behave like the conventiona
car in this situation, i.e. the driver should apply the
same 6. The above modification takes care of this
requirement.

4 The modified control law

The modified control law is

(Sf (5) = iL(SL(S) + 50(8) (28)
be(s) = s2 4+ 2Dwos + wéml(s)
z1(s) = F(v)igdp(s) —r(s)+ @5 r(s)

Now thereisadirect throughput of theinput by the steering
whedl 61, to the front wheel steering angle. The pure inte-
grator has been replaced by a dynamical filter. The initia
behaviour (s — o) of thisfilter to any input is the same
as the response of an integrator. But the steady-state output
of the filter (s — 0) is zero. In the meantime the filter is
unloaded so that after some time the responsibility is softly
returned to the driver. It also leads to the same steady-state
cornering as of the conventional car.

Hence by the modified control law both the immediate and
the long term reaction to any driver input is the same for
the controlled car as for the uncontrolled car. But the tran-
sient behaviour is different as well as the disturbance re-
jection property of both systems. Since we add additional

dynamics to the system by applying the modified control
law, new parameters are introduced to the system. They are
independent of each other and of the already introduced
parameters. This increases the number of independent pa-
rameterstoten (¢4, €4, £, m, v, fico, pero, mo/ po, D, wo).
According to Buckingham’stheorem the number of simila-
rity numbers which suffice to characterize the system now
is10— 3 = 7.Inadditionto (11) and (19) we define two
more similarity numbers

Pp =D filter damping number

— (29)
P, = woy | —L filter bandwidth number
HoCf0

With the substitutions (11),(12),(14),(18),(29) the control
equation (28) becomes

513 =800 + ——p—prF1(5) (30
L 2PoP.

VP B,

52
#1(5) = (1= Py)5 — P)F(5) + P, F 6.(5)

5 Meaning of the similarity numbers

Using a dimensionless representation of a system'’s equati-
ons and introducing dimensionless similarity numbers has
severa benefits. Most i nteresting with respect to robust con-
trol theory is the fact, that the number of uncertain pa-
rameters of a system possibly can be reduced. Thus the
analysis and design of controlled systems are simplified.
Without employing similarity mechanics, for the analysis
of themode (10) atwo-dimensiona operating domain has
to be checked. The three uncertain parameters (u, m, v)
have to be varied in order to cover the whole operating
domain. Since i and m only occur in the combination of
m/ u, the variation of uncertain parameters of thisplant is
atwo-dimensional problem.

After making use of Buckingham’s theorem, we succee-
ded to put all uncertain parameters of the conventional car
into one similarity number P,. Hence all possibleoperating
pointsof the system in itsdimensionlessform can berepre-
sented by one single number. The other similarity numbers
(Py, Py, P.) areinvariant for a specific car due to construc-
tion, tire properties etc.

If for onevaueof P, an andysisisperformed (e.g. asimu-
lation or an eigenvalue computation), the results stand for
an infinite number of uncertain parameter values, i.e. one
can obtain the same P, for either large values of v or m or
asmall value of y. The dimensionlesstime-domain results
of asimulation can be transformed to original time-domain
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Fig 3: Response to steering whedl step and yaw disturbance torque step for P, = 1

by rescaling the time and variables.

With the robust decoupling control law a new similarity
number was needed, because the use of a nomina model
introduced a new scale to the system. Every new indepen-
dent parameter which is added to the system bringswith it
anew similarity number, unlessit bringsanew physical ba-
sic unit withit also (Buckingham). By the modified control
law two more filter parameters and similarity numbers are
needed to sufficiently characterize the system.

In the following simulation study we used the data of a
BMW 735i passenger car to determinethe valuesof thecer-
tain similarity numbers (P, = 0.874, P. = 2.1, Py = 1.0)
aswell astheoperatingdomain of thecar (1.0 < P, < 8.0).
A lower limitfor P, isnecessary sincethecontrollerisswit-
ched on only after a certain velocity is reached. The car is
not controllable for v = 0, i.e. P, = 0. The virtual mass
number P, isanew uncertain similarity number although
it can be influenced by the choice of the nominal values
(10, mo). Concerning the modified control law, the values
of P, and Pp can be set in the controller design for a speci-
fic car. We choose afilter bandwithwo = 1/sec to provide
the above described properties (the decoupling action is
supposed to fade out after ca. 0.5 seconds). With the data
of the car we have P, = 0.2. The damping of thefilter is
tuned by the value of D. It turned out, that a scaling with
velocity of this parameter is useful to achieve areasonable

damping at all velocities.

D = f(v)=f (v\/m)
Po = 1 (Pov/P) (3)

6 Simulation results

In the following simulation plots of the scaled yaw rate 7
and additional steering angle §. thethree controller versions
are compared.

e The conventiona car. Equation (15) is employed to
compute the yaw rate response to yaw disturbance
torque step inputs or steering wheel step inputs res-
pectively. The "control law" is just 6;(5) = 6.(5).
The additiona steering angleis zero. Dotted line style
is used for the dimensionless time response plots and
circles denote the eigenvalue position in the dimen-
sionless s-plane.

e The decoupled car with direct throughput. To obtain
comparable results with the two other versions of the
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car, the direct throughput is combined with the robust
decoupling control law (21). Thus the steering angle
equation reads

§;(8) = 6.5+ [((A— Py)5—P)FE)+

2
]

+P, Fér(3)]

Dashed line stylefor the resonses and star markersfor
the elgenva ues are empl oyed.

e The filter-equipped car. It is described by eguation
(15) extended by the steering angle equation of the
modified control law (30). Plotsuse solid line stylefor
the responses and x-marks for the eigenval ues.

The time sce t/i = P,/(wov/Pm) (see (13)) is printed
below the eigenvalue plot. Original time scale is obtained
by multiplying the dimensionlesstime of the plotswith the
specified time scale and original eigenvalue scale is obtai-
ned by dividingthe dimensionless s by the sametimescale
such that 57 = st.

Inthefirst simulationof Fig. 3 asteering wheel step inputis
appliedto thethree cars at asmall valueof P, = 1 (low car
mass at low velocity on dry road). For the choosen value of
Pp thereisnot much difference between thethreeversions.
Both the decoupled and the filter-equipped car perform a
little overshoot in the yaw rate. With the simulationin Fig.
3 for a disturbance torque step input the concept of fading
out the decoupling action iswell recognizeable. Within the
first 0.5 seconds both the decoupled and thefilter-equipped
car provide the same disturbance rejection activity. Howe-
ver after 0.5 seconds for the filter-equipped car the steering
authority is softly returned to the driver and the additional
steering angle 6.(5) = 6¢(5) — 61.(S) goes to zero. Only
now the driver is supposed to react to the yaw disturbance.
The right upper plot of Fig. 3 shows the eigenvalues for
P, = 1. They are well damped for all three controllers.
Concerning Figs. 4 and 5, for every complex eigenvaluepair
of the filter-equipped car three more curves (dash-dotted)
are added to the eigenvalue plot to simplify comparison.
Oneisanatural frequency circle around the origin through
the eigenvalues. The other curves are damping lines which
connect the origin with the eigenval ues.

Fig. 4 shows the responses for 2, = 8 which corresponds
eg. to higher speed on wet road. The yaw damping for
al controllers is worse than at lower values of P,. The
worst damping occurs for the decoupled car. The oscilla
tions of the filter-equipped car after a steering whed step
input decrease as quickly as those of the conventional car
athough the damping of the corresponding eigenvaluesis
less but their bandwidth is higher. The yaw disturbance re-
sponses show again how the initial decoupling action is
fading out. Fig. 5 shows the result of deviations (P,,, # 1)

of thereal car fromthenomina model w.r.t. thevirtua mass
at amedium velocity (P, = 4.5). Here P,,, equals 0.5. The
steady-state responses of the car withfilter-feedback arethe
same asfor the conventional car, whereas the decoupled car
has a nonzero steady-state value of the additional steering
angle.

7 Conclusions

The filter-equipped car can be considered as a compromise
between the conventional car which has bad yaw distur-
bance attenuation properties and the decoupled car which
exhibits poor yaw damping at higher velocities. Within the
minimum driver reaction time of 0.5 seconds, the filter
equipped car behaves like the decoupled car and then it
returns smoothly to the steady-state behaviour of the con-
ventional car. By usingthemodified control law of thefilter-
equipped car instead of the pure decoupling control law the
yaw damping properties are considerably improved.
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