SIMPACK User Meeting 2014 October 8 – 9, Augsburg, Germany

Simulation of Vehicle Dynamics Control by active Steering Systems

Volker Dorsch, Faculty of Mechanical Engineering

Wolfenbüttel

- Development scenario
- Validated mechanical multibody simulation (MBS) vehicle model
- Implementation of active steering at rear and front wheels
- Control strategy
- Co-Simulation of Simpack and Matlab/Simulink®
- Simulation Results
- Conclusions

Development Scenario

Wolfenbüttel

MBS Model: Coordinates

Suspensions: simulation of Kinematics and Compliance (K&C) measurements

Complete vehicle model: step steering input maneuver

driver	objective, no driver influence
velocity	100 km/h
front wheel steering angle	sudden steering angle with more than 200 deg/s steady-state lateral acceleration is 0.4 g
road surface	dry, $\mu = 0.9$

Simpack model validation: Step Steering Input

MBS Model: steering systems

Wolfenbüttel

Active front and rear wheel steering

Simple implementation by

- additional rotational degrees of freedom at the corresponding wheels
- control of these degrees of freedom by external input of the co-simulated Matlab/Simulink controller model

Study of effects on vehicle dynamics

Vehicle stabilization by adjusted steering angles

Control algorithm: bicycle model

Equations of motion with linearized tire behavior: $F_S = C_{\alpha} \alpha$

$$\ddot{\Psi} = \frac{C_{\alpha H}l_H - C_{\alpha V}l_V}{J_z}\beta - \frac{C_{\alpha H}l_H^2 + C_{\alpha V}l_V^2}{J_z v}\dot{\Psi} + \frac{C_{\alpha V}l_V}{J_z}\delta_V - \frac{C_{\alpha H}l_H}{J_z}\delta_H$$
$$\dot{\beta} = -\frac{C_{\alpha V} + C_{\alpha H}}{mv}\beta + \left[\frac{C_{\alpha H}l_H - C_{\alpha V}l_V}{mv^2} - 1\right]\dot{\Psi} + \frac{C_{\alpha V}}{mv}\delta_V + \frac{C_{\alpha H}}{mv}\delta_H$$

Wolfenbüttel

In case of steady-state cornering (i.e. $\ddot{\Psi}=0$ and $\dot{\beta}=0$) without rear wheel angle

$$\dot{\Psi} = \frac{v_x \delta_w}{(l_v + l_H)(1 + \frac{v_x^2}{v_{ch}^2})}$$

The characteristic velocity v_{ch} can be computed (or be identified in tests)

$$v_{ch} = \frac{C_{\alpha V} C_{\alpha H} l^2}{m (C_{\alpha H} l_H - C_{\alpha V} l_V)}$$

Furthermore the maximum yaw rate is limited

$$|\dot{\Psi}| \leq \frac{a_{y,max}}{v_x}$$

The yaw rate ψ is used as desired yaw rate in the control algorithm.

Control algorithm: predict rear wheel steering angle

Setting $\dot{\beta}=0$ and $\beta=0$ in the differential equations of the bicycle model yields

$$\frac{\delta_{H}(s)}{\delta_{V}(s)} = K_{\delta_{H}} \frac{1 + T_{z}s}{1 + T_{1}s} \qquad \text{with} \qquad K_{\delta_{H}} = \frac{C_{\alpha V}C_{\alpha H}l_{H}l - C_{\alpha V}l_{V}mv^{2}}{C_{\alpha V}C_{\alpha H}l_{V}l + C_{\alpha H}l_{H}mv^{2}},$$

$$T_{z} = \frac{J_{z}v}{C_{\alpha H}l_{H}l - l_{V}mv^{2}},$$

$$T_{1} = \frac{J_{z}v}{C_{\alpha V}l_{V}l - l_{H}mv^{2}}$$
[Woern

[Woernle, C.: Fahrmechanik. Lecture notes, University of Rostock]

The steady-state case with $K_{\delta H}$ results in a characteristic diagram, that is used as a first prediction of the rear wheel steering angle.

Control algorithm: predict rear wheel steering angle

Active rear wheel steering: Control structure with co-simulation

Active front wheel steering: Control structure with co-simulation

Steering angle orientation

Volker Dorsch: Simulation of Vehicle Dynamics Control by active Steering Systems

-16-

Co-Simulation: Input - Output

Wolfenbüttel

Co-simulation:

- Simpack and Matlab/Simulink[®] run parallel
- Data exchange at each millisecond
- Relatively slow motion of the whole vehicle: uncritical

Maneuver steady-state cornering

Wolfenbüttel Simpack driver model, driver Driver influence increasing up to 75 km/h Velocity Track Circle with 80 m radius Steering closed loop, by driver wheel angle input dry, $\mu = 0.9$ Road surface

Volker Dorsch: Simulation of Vehicle Dynamics Control by active Steering Systems

SIM PACK

Steady-state cornering: simulation results

Ostfalia University of Applied Sciences

Steady-state cornering: simulation results

Ostfalia University of Applied Sciences

Maneuver step steering input

Driver	objective, no driver influence	
Velocity	80 km/h	
Steering wheel angle input	sudden steering angle step with more than 200 deg/s, steady-state lateral acceleration is 0.4 g	
Road surface	dry, µ = 0.9	

Step steering input: simulation results

Step steering input: simulation results

Maneuver sine with dwell

Wolfenbüttel

Driver	objective, no driver influence	9
Velocity	80 km/h	
Steering wheel angle input	single sine of 0.7 Hz with dw of 500 ms after ³ / ₄ of period, steady-state lateral accelera amplitude is 0.4 g	vell tion of
Road surface	dry, μ = 0.9	

Sine with dwell: Simulation results

Sine with dwell: Simulation results

Sine with dwell: Simulation results

Sine with dwell on slippery road

Driver	objective, no driver influence	
Velocity	80 km/h	
Steering wheel angle input	single sine of 0.7 Hz with dwell of 500 ms after ³ / ₄ of period, steady-state lateral acceleration amplitude is 0.4 g (for vehicle without control)	n of
Road surface	slippery, $\mu = 0.35$	

Sine with dwell on low μ : Simulation results

Volker Dorsch: Simulation of Vehicle Dynamics Control by active Steering Systems

Ostfalia

University of

Wolfenbüttel

Maneuver slalom

Wolfenbüttel

driver	Simpack driver model, driver influence
velocity	90 km/h
front wheel steering angle	closed loop, by driver
road surface	dry, μ = 0.9

Slalom: Simulation results

Slalom: Simulation results

Wolfenbüttel

Slalom: Simulation results

Conclusion and Outlook

Wolfenbüttel

- Validated mbs vehicle model as a basis
- Simple implementation of active steering systems by additional dofs: rear wheel steering, front wheel steering
- Co-Simulation of Simpack and Matlab/Simulink[®] for integration of control systems
- Systems work effectively, effects on vehicle dynamics can be studied, active rear wheel steering seems more powerful
- Optimization of both systems still needed (optimize control parameters, take side slip limit and wheel slip into account)
- Mechanical design of rear wheel steering and implementation of an actor model
- Implementation of a steering actor model in case of front wheel steering

Acknowledgment

The author would like to thank Yangfang Yu for doing a lot of excellent modeling and simulation work.